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Abstract 

 

Analysis of Single Axis Flexure Mechanisms Approaching Ideal Bearing 

Characteristics  

 

Siddharth Sood, M.S.  

The University of Michigan, 2013 

 

Supervisor:  Shorya Awtar 

 

This thesis presents analysis and metrics for comparing the bearing performance 

of single axis (linear) planar flexure mechanisms. In particular, analysis of two previously 

reported flexure mechanisms – the clamped paired double parallelogram (CDPDP) and 

the double parallelogram-double tilted beam (DP-TDP) parallelogram is presented which 

offer superior bearing performance compared to some conventionally used designs in 

terms of the metrics – range of motion, parasitic/off-axis motions, motion direction and 

bearing direction stiffness. Design of a macro-scale experiment in order to validate the 

closed form results obtained for the CDPDP mechanism is discussed and some 

preliminary results have been reported. Finally, as a case study, a holistic design 

procedure for comb-drive actuators employing the CDPDP and DP-TDP mechanisms is 

introduced with the objectives of obtaining large stroke with minimum actuator effort. 

For the flexure mechanism used, these objectives roughly translate into the goal for 

approaching ideal bearing characteristics namely – large range, negligible error motions, 
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small motion direction stiffness and large bearing direction stiffness. The devices 

designed using this procedure were separately fabricated and were shown to achieve 

much larger strokes compared to commonly used comb drive actuator designs.           
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Chapter 1:  Introduction  

Flexure mechanisms comprise of a set of bodies, both rigid and compliant and provide 

motion guidance through the elastic deformation of its flexible members [1, 2]. Given 

their lack of traditional joints, flexure mechanisms completely eliminate friction and 

backlash, leading to smooth, repeatable and maintenance-free operation [3-5]. These 

merits make flexure mechanisms suitable for many precision guidance applications [6-

15]. Moreover, their monolithic construction makes them suitable for water-jet and wire-

electric discharge machining at the macro-scale and photolithography based fabrication 

techniques at the micro-scale. Thus, compared to their rigid-link counterparts with 

movable joints (e.g. revolute and prismatic joints), flexure mechanisms are simpler to 

fabricate and assemble thereby reducing cost and maintenance requirements. Finally, 

flexure mechanisms can be made very compact and light which is desirable for many 

aerospace applications [16, 17] and essential for MEMS [7, 18-22].  

Stator / Ground

Stator / Ground

Mover / Shuttle / Motion Stage

Motion Direction

X Bearing Directions

Y

q

 

Figure 1: A Single Axis Bearing 

From the perspective of precision machine design, flexures can be thought of as a means 

for providing constraints. Ideally, a constraining element or a bearing should provide 

infinite stiffness and zero displacements along certain directions, known as the Degrees 

of Constraint (DOC), and allow infinite motion and zero stiffness or resistance in all 

other directions, referred to as the Degrees of Freedom (DOF) [23, 24]. Moreover, these 
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attributes of the element remain unchanged over the whole range of motion. However, a 

flexure mechanism might fail to provide all of the above. Hence, in order to determine 

the quality or the performance of the flexure bearing, there is a need to formulate a set of 

metrics that can help compare it quantitatively with other bearing designs based on their 

deviation from ideal behavior. We are also interested in revealing and quantifying design 

tradeoffs between these metrics for a given flexure bearing. It should be noted that these 

would apply to any general non-ideal bearing and not just a flexure based one. All the 

analysis done in this thesis would be purely static and dynamic performance metrics like 

bandwidth would not be a discussed in great detail although some valuable insights about 

them can be obtained from the static analysis. In this thesis, we will focus specifically on 

planar single axis linear systems, which can be used as building blocks or modules for 

multi-axis systems [23, 25-30]. A single axis system with DOCs (x, θz) and DOF (y) is 

shown in Figure 1. Displacements along the x, y and θ directions are named Ux, Uy and θz 

respectively.  It is assumed that the out of plane directions (θx, θy, z) would be adequately 

constrained and hence, wouldn’t be dealt with specifically here. Thus, for single axis 

planar bearings, the metrics are listed below along with their corresponding design 

optimization goals that would enable these bearings to approach ideal behavior: 

 

1. Range of Motion (Uy|max) 
 

The range of motion along the degree of freedom (y) of a single axis flexure bearing is 

limited by yielding or fracture of the constituent flexure beams and is thus finite. Thus, 

the first objective of the design optimization would be to: 

  /|y yield fractureMaximize U  (1.1) 

 

2. Error motions (Ex, Eθ)  

Any deviations from ideal straight line motion along the degree of freedom in the absence 

of any external bearing direction loads are called parasitic error motions [23, 24]. The 

cause could be elastic deformation or kinematics of the mechanism and/or geometric 
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imperfections due to fabrications and are generally undesirable. Therefore, it is required 

to keep these as small as possible over the entire range of motion i.e. 

 
max max( ( ) | , ( ) | )x y yMinimize E U E Uq

 (1.2) 

 

3. Motion Direction Stiffness (Ky) 

In a flexure bearing, the motion direction stiffness is usually small but finite. Apart from 

this, it may also vary with increasing displacement (Load-stiffening [31]) which leads to 

undesirable non-linearity. Stiffening also leads to an increased actuator effort. For 

example, in a comb drive actuator, the actuator displacement is calculated using the 

equilibrium relation between the spring and the electrostatic force. An increase in motion 

direction stiffness would lead to an increased spring force for the same motion direction 

displacement thereby requiring a greater electrostatic force and hence, a greater actuation 

voltage [32-34].Thus, we need to impose the following restrictions on Ky: 

 

0

max

( ( ) | )

( )

yy y U

y y

y

Minimize K U

K U
Minimize

U



 
 
 
 

 (1.3) 

In a general bearing, we would aim to reduce the resistance to motion which could stem 

from a spring stiffness or friction. In applications that emphasize dynamic performance, 

this condition may have to be relaxed, or least bounded. This is because Ky 
dictates the 

resonant frequency of the motion systems. 

 

4. Bearing Direction Stiffness (Kx) 
 

The bearing direction stiffness of a flexure bearing is large but still finite. Also, it may 

vary, (in some cases, drop very sharply) with increasing y displacement. Thus, over the 

whole motion range, the following should be the objectives: 
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0 0

max max

( ( ) | , ( ) | )

( ) ( )
,

y yx y U y U

x y y

y y

Maximize K U K U

K U K U
Minimize

U U

q

q

 

  
 
  
 

 (1.4) 

The above conditions can also be formulated in terms of the compliance, C=1/K, and 

alternatively we can write: 

 

0 0

max max

( ( ) | , ( ) | )

( ) ( )
,

x y y y y

x y y

y y

Minimize C U C U

C U C U
Minimize

U U

q

q

 

  
 
  
 

 (1.5) 

Depending on the application requirements, we can choose the weighing terms for each 

of these conditions in the design optimization of the mechanism.  

Constraint 

Direction (X)

Motion 

Direction (Y)

Comb 

Drive
DP-DP Flexure 

Mechanism

Static 

Comb

Moving 

Comb

 

Figure 2: A comb drive actuator with a flexure bearing[35] 

To illustrate the effect of non-ideal bearing behavior on the performance of a device and 

application specific design optimization of a flexure mechanism with the above-

mentioned constraints, we can consider the use of flexure bearings in MEMS comb-drive 

actuators (Figure 2). Because of their numerous advantages highlighted previously, 

flexure mechanisms are often employed to provide motion guidance in these actuators 
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[32-34, 36, 37]. The strokes of these actuators get limited because of the phenomenon of 

electrostatic snap-in. This occurs when the bearing direction stiffness is inadequate to 

resist the electrostatic attraction forces along the same direction causing the moving comb 

to snap into the static comb. This limit is usually much lower than the yield/fracture limit 

of the flexure bearing and can get lowered further in the presence of error motions. Snap-

in has been analyzed extensively in literature [34, 38, 39] and the maximum displacement 

before snap-in with zero error motions of the mechanism is given by the following 

equation: 

 
0

2

( ) ( ) ( )

( ) ( )

y y y xc y x y

y y y y

U U U K U K U

G K U K U


   (1.6) 

Where, Y0 is the initial overlap between the comb fingers, Y is the displacement from the 

initial (rest position) of the bearing, G is the separation between the comb fingers in the 

absence of any error motions or offsets and Kx(Uy) and Ky(Uy) are stiffness of the flexure 

mechanism in the bearing and motion direction respectively (Figure 3). The implicit 

assumption here is that the rotational stiffness of the mechanism is large enough to be 

ignorable. However, if this assumption fails, equation (1.6) must be corrected to include 

the rotational stiffness [39]:  

 
 
 

 
 

0

2

0

2

2 2

x y y y y off

y y off y y off

K U U U U rL

GK U L U U rL

 
 
   
 

 (1.7) 

Where Loff is the distance between the center of stiffness1(COS) [23, 24] of the flexure 

mechanism and the tip of the comb fingers (Figure 3) and r is given by: 

                                                 

1 The center of stiffness of a mechanism is that at which if a force is applied, the resultant displacement has 

no rotational component 
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If the ratio Kθ/(Kx(Loff)
2
) is greater than 5, the error in the stroke given by equation (1.6) 

would be less than 10%. Hence, by choosing dimensions such that the above condition is 

satisfied, provided that Kθ can be varied independent of Kx, we can assume purely axial 

(along x direction) snap-in dictated by equation (1.6). 
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Figure 3: Comb drive Parameters. The displacements of the mover comb in the bearing directions can be 

split into error motions (Ex,Eθ) and spring deformations (Ux,θz) as shown. 

In presence of error motions (Ex and Eθ), we can no longer can obtain a simplified 

criterion for snap-in like that in equation (1.7). In this general case, the solution can be 

obtained numerically using the following steps: 

 

1. At every x and y location, we simultaneously solve the x and θ direction 

equilibrium equations to obtain the voltage required to maintain equilibrium 



 25 

between the electrostatic and spring force. As Ux and θz are dependent on each 

other, we assume Ux as the independent variable and solve for θz as a function of 

Ux. Thus, the voltage obtained is a function of Ux and Uy. The equilibrium 

relations are given below: 
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(1.10) 

2. The critical voltage at every y displacement is then given as: 
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3. Finally, the equilibrium relation in the motion (Y) direction gives the voltage 

corresponding to a certain Y displacement: 

   
2

eq

y y y

NHV
K U U

G


  (1.12) 

The stroke Uy|max is thus given by solution of the following equation: 

    *

max| : ,
yy eq x crit yU V U V U U  (1.13) 

 

If the rotational stiffness is large enough and the rotational error motions are zero i.e. if 

we can use a one dimensional model for snap-in, the above set of equations reduce to the 

following equation for a non-zero Ex [34, 38]: 
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Error motions can be classified into - theoretical arising from the geometry of the 

mechanism and those from fabrication imperfections. The former can be obtained using 

flexure analysis methods whereas the latter is usually indeterminate during the design 

stage. Thus, to include the effect of latter error motions, we include a stability factor S, 

analogous to a safety margin, in the above equation to obtain: 
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Moreover, we can combine the effect of both of these error motions to obtain a total 

stability factor (Stot): 
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 (1.16) 

Moreover, the above equation can be graphically represented in Figure 4. The maximum 

stroke of the actuator would be given by the abscissa of the intersection point between 

required stiffness ratio Kxc(Uy)/Ky(Uy) and the available stiffness ratio Kx(Uy)/Ky(Uy). 

This figure also shows the increasing required stiffness ratio due to increasing axial or x 

direction error motions (given by equation (1.14)) leading to pre-mature snap-in.   
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Figure 4: Generalized Snap-In 

Thus, generally speaking, a bearing with a higher available stiffness ratio and small errors 

would give a larger stroke. In the design optimization of a comb drive actuator, our 

objective is not only increasing the stroke but also minimizing the effort i.e. the number 

of comb teeth (N) and the actuation voltage (V) required to achieve that stroke. The 

actuator effort can be easily determined using the equilibrium relation between the 

restoring spring force and the attractive electrostatic force in the motion direction:  

 2

max|y y

H
K U NV

G


  (1.17) 

Where ε is the permittivity of free space and H is the out-of-plane depth of the comb 

fingers. Eliminating G between equation (1.17) and a simplified version of equation 

(1.16) with zero initial overlap, we get: 
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 (1.18) 

Thus, to maximize the actuation stroke (Uy|max) while minimizing the actuation voltage 

(V) and device foot-print (N), it is clear that that one has to maximize the right hand side 

of the above equation at the desired Uy|max. However, the above formulation assumes no 

constraint on the gap size G which is often limited by fabrication capabilities. Thus, a 

constraint equation has to be added to the above optimization problem to ensure that the 
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chosen flexure requires a gap size which is greater than the minimum feature size that can 

be fabricated using existing processes. The above metric combines the three objectives 

given by equations (1.2), (1.3) and (1.4). As mentioned before the yield or fracture limit 

of the mechanism is usually much larger than the stroke and hence, maximizing it is not a 

critical objective.  

 

Similar constraints exist for electromagnetic actuators employing flexure mechanisms as 

linear guides. Off-axis electromagnetic forces can cause instability causing the mover to 

crash into the stator [40, 41] and therefore, one has to account for them while designing 

the flexure bearings. As before, error motions can further increase the stiffness 

requirements for maintaining stability. However, a simplified objective function like the 

one in equation (1.18) does not exist in previous literature for this class of actuators. In 

general, a flexure mechanism satisfying the objectives listed before would be desirable 

for any linear guidance application where significant side loading exists and there is little 

or no tolerance for any off-axis motions.  

 

However, this is not easily achieved. Fundamental performance tradeoffs exist in flexure 

mechanisms. The parallelogram (P) (Figure 10) and double parallelogram (DP) (Figure 

15) flexures are the most commonly used ones for linear guidance applications. In case of 

the P flexure, the error motion in the bearing direction is too high. In case of the DP 

flexure, the stiffness in the bearing direction drops precipitously with increasing motion 

direction stroke. In this thesis, the underlying reasons behind these tradeoffs have been 

identified and quantified. Several new flexure mechanisms will be presented which 

systematically deal with these tradeoffs using additional topological features and 

configurations to bridge the performance gap between a non-ideal flexure bearing and an 

ideal bearing. Moreover, wherever possible, closed-form expressions for the stiffness and 

error motions, validated experimentally or using finite element analysis, of these 

mechanisms will be provided.  
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The following list gives the organization of the rest of this thesis and highlights its 

specific contributions: 

1. Chapter 2 presents the mathematical background, which can be found in previous 

literature [23, 24] for analysis in the subsequent sections. This will include the 

non-linear static force displacement relations for a lumped compliance beam 

obtained using both the Euler-Bernouilli stress-strain relations and strain energy 

methods. The yielding criterion for the same beam configuration has also been 

derived. 

 

2. A review of some existing flexure mechanisms[1, 23, 24, 42] will be presented in 

Chapter 3 along with some closed-form or finite element results for the stiffness 

and error motions. The merits and demerits of each of these flexure mechanisms 

would be listed along with their causes. It will be shown that a mere shape 

optimization / careful dimension selection is not adequate to exceed a certain 

performance level. There are hard limits, which can be analytically quantified and 

physically explained. 

 

3. Chapter 4 presents two novel flexure mechanisms recently invented by Shorya 

Awtar [43]- the Clamped Paired Double Parallelogram (C-DPDP) and the Double 

Parallelogram Tilted-Beam Double Parallelogram (DP-DTB), which provide a 

considerable improvement in performance compared to the existing mechanisms. 

This thesis presents a qualitative discussion on the working of the mechanisms 

followed by the derivation of the closed form expressions for the motion and the 

bearing direction stiffness of the C-DPDP mechanism. The chapter concludes 

with a discussion on possible variations to further boost the performance and 

optimization of the mechanisms in the context of comb drive actuators.  

 

4. The setup for experimentally validating the stiffness expressions for the C-DPDP 

mechanism is described in Chapter 5. The experimental set-up was previously 
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designed by Shorya Awtar and Michael Wang to be modular, reconfigurable and 

low cost without compromising the precision and accuracy of the measurements. 

Specifically, this thesis presents a detailed discussion on the design and 

fabrication of the experimental setup. This is followed by a thorough error 

analysis, FEA validation and preliminary results.  

 

5. Chapter 6 discusses the optimization of flexure designs – CDPDP and DP-TDP to 

obtain large stroke while keeping the footprint to a minimum in a comb drive 

actuator. The chapter also includes results from experimental fabrication and 

measurements performed by Dr. Mohammad Olfatnia separately, outside of this 

thesis, which validate the analytical predictions. Finally, a new metric is proposed 

for the comparison of performance of different comb drive actuator designs. 
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Chapter 2:  Background 

A beam is one of the most common flexure elements and with the existing non-linear 

static beam bending analysis, we can analyze the performance metrics of several beam 

based flexure mechanisms presented in this thesis. While thermal effects can play an 

important role in the performance of flexures, we limit our present analysis to only the 

structural aspects. The beam flexure analyzed in this chapter has length L and a uniform 

rectangular cross-section with height T and width H, as shown in Figure 5. As in this 

thesis, we deal with only planar mechanisms, a state of plane strain is assumed for the 

beam implying that the dimension H >> T. Moreover, the beam is sufficiently slender and 

long i.e., L >> T so that bending is the primary mode of deformation.   
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Figure 5: A simple beam with a uniform cross-section 

DIRECT APPROACH: BEAM CONSTRAINT MODEL  

The mathematical background presented in this section is a summary of work published 

previously [23, 24]. All the desired characteristics of a beam can be obtained using the 
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principles of solid mechanics. In general, a formulation in mechanics comprises of the 

following three components: 

1. Constitutive relationships  

2. Force equilibrium relations or force compatibility relations 

3. Geometric equilibrium or geometric compatibility relations 

Each of these components might contribute some non-linearity to the overall force-

displacement relations. As we step through the analysis, some of these would be retained 

while others neglected by conducting an order of magnitude analysis.  

 

Constitutive relations relate loads to deformations and are dependent on the material 

properties and the geometry. In this case we can directly use euler’s formula for pure 

bending given by: 

 
E M

I
  (2.1) 

Where M is the moment at a given cross-section in the beam, I is the second moment of 

area about the Z axis and for the cross-section shown in Figure 5, is equal to HT
3
/12, ρ is 

the radius of curvature and E=E
*
/(1-ν

2
), where E

*
 is the Young’s modulus and ν is the 

Poisson’s ratio for the material. Unless otherwise mentioned, we would use this definition 

of E throughout this thesis.  

 

The force equilibrium relations are applied in the deformed beam configuration to 

essentially capture the effect of an axial force Fx on the load-displacement relations. The 

moment at any location (x) along the beam would be given by: 

  (2.2) 

Where the forces Fx, Fy and moment Mz applied at the beam end cause deflections Ux, Uy 

and θz respectively. 

 

     z y x x yM X M F L U X F U Y     
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Finally, the geometric compatibility relation can be given as an expression for the beam 

curvature at any given X location along the beam length: 
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When the curvature expressed in terms of the undeformed beam co-ordinates, the formula 

comes out to be slightly different [44].  Typically, the maximum displacement range is of 

the order of 0.1L. Moreover, as most of the mechanisms analyzed in this thesis have a 

single linear DOF, the rotational direction θ is a DOC. Therefore, the constituent beams 

deform in an approximately ‘S’ shape as shown in Figure 6. In this configuration, the 

maximum slope is achieved at x=L/2 and for a maximum Y displacement of 0.1L, is equal 

to about 0.15. For these values, the error in the approximation made in equation (2.3) is 

about 3.4% which is small enough to be neglected in order to obtain closed-form 

parametric results. 
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Figure 6: The S-Shaped Beam 

Combining the above equations (2.1), (2.2) and (2.3), we obtain the following relation: 

    "

z y x x yEIY M F L U X F U Y       (2.4) 

At this point, we introduce a non-dimensionalizing scheme for the forces, displacements 

and the dimensions given as: 
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Using this scheme, equation (2.4) can be rewritten as: 

    " 1z y x x yy m f u x f u y       (2.6) 

Which can be double-differentiated to obtain: 

 " 2 " 2,iv iv

x xy f y y k y f k    (2.7) 

Finally, the above equation can be solved with appropriate boundary conditions to get the 

well-known [2] transverse direction load displacement relations: 
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 (2.8) 

The axial displacement comprises of an elastic component, ux
e
 which is a result of pure 

axial stretching and a kinematic component, ux
k
 which arises from the relation for beam 

arc-length conservation given as: 

 
1
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0
0.5k

xu y dx    (2.9) 

Where y’ can be obtained from the solution of equation (2.7). Therefore, the net axial 

displacement is given by: 
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 (2.10) 

 Where k33=12/t
2
 for a beam with a uniform rectangular cross-section and: 
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Because of their transcendental nature, these equations give little engineering insight into 

the nature of the load-deformation characteristics. With a first order series approximation 

derived in [24], equations (2.8) and (2.10) can be rewritten as:  
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 (2.12) 

Where constants kij
(k)

 depend only on the beam shape.
 
These are three equations in six 

unknowns – three loads and three displacements and represent the beam constraint model 

or BCM for a beam flexure.  Given any three, the remaining can now be easily solved for 

analytically in most cases. The maximum estimated error in the above expressions is less 

than 5% for normalized transverse displacements of ±0.1 and axial forces and moments 

within ±10.  

 

Using relations (2.11) and (2.12), we can make some important observations regarding 

the characteristics of a beam flexure: 

 

1. Equation (2.11) shows the dependence of the transverse and rotational stiffness on 

the axial force, fx. The expression clearly shows the two kinds of stiffness 

matrices- the elastic and geometric. It quantitatively captures how the transverse 
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stiffness increases in the presence of a tensile axial force and decreases with a 

compressive axial force. This effect is often called load stiffening/softening [23, 

24] and can be attributed to the extra moment exerted by the axial force in the 

presence of a transverse displacement uy. 

  

2. The dependence of the axial stiffness on transverse and rotational displacements 

is captured by equation (2.12). The axial displacement has three components- the 

first one, ue is a purely elastic component which results from the stretching of the 

beam, the second term, uk is a purely kinematic component, and is a consequence 

of beam arc length conservation and the third term called the elasto-kinematic 

term, uek has both elastic and kinematic aspects and arises due to the contribution 

of the axial force to the bending moment in the deformed configuration. The 

purely kinematic term uk which has no dependence on the axial loads, essentially 

quantifies the error motions defined in chapter 1 for a simple beam and thus, is a 

metric of the quality of the DOC. The elasto-kinematic term captures the 

degradation of the DOC stiffness with increasing DOF displacements. 

 

3. Variations in the beam shape can be incorporated in the above equations without 

changing their general form. A basic shape variation shown in the Figure 7 given 

below where a rigid section with infinite stiffness is introduced in the center of the 

uniform beam. The end sections of the beam have the same cross-sectional 

dimensions as that of the uniform beam in Figure 5. The coefficients of the 

stiffness matrices in equations (2.11) and (2.12) can be expressed as functions of 

the degree of reinforcement or a0. These have been tabulated in Appendix A. It 

can be seen that the transverse stiffness matrix becomes unbounded as a0 

approaches 02. However, the elastic axial displacement ux
e
 also approaches 0 

                                                 

2 The equations would not be valid in this region as Bernoulli’s assumptions would start to fail. However, 

the trend would be; which is intuitively obvious.  
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which implies that the nominal axial stiffness would improve significantly. While 

considering future designs comprising of beam flexure elements, this can be used 

as a parameter for optimization without changing the overall formulation of the 

problem. It should be noted that this is just one of the several possible shape 

variations albeit an important one as it highlights the tradeoffs in simultaneously 

achieving all the objectives mentioned in chapter 1.  
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Figure 7: A lumped compliance beam. In all future instances we would dimension a lumped compliance 

beam as follows (length i.e. l, degree of compliance i.e a0) without explicitly showing the rigid section.  

 

4. For beams that deform in an approximate S shape, the yielding criterion and hence 

the maximum range can be obtained in terms of the material properties as well as 

the applied loads. At any location (x) along the length of the beam, the strain εxx 

caused due to bending at any y-location along the cross-section of the beam would 

be given by: 

 xx

c



   (2.13) 

Where c is the y-distance from the neutral axis shown in Figure 5. For a 

rectangular cross-section, the maximum strain is achieved at a y distance of T/2 
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from the neutral axis. As we are dealing primarily with linear elastic materials, the 

stress is directly proportional to the strain and thus, is also largest at the same 

locations. Using equation (2.1) for the curvature of the beam, the maximum stress 

can be written as: 

  max max

( )
| | 0.5

2

bending

xx xx

M x T
E Em x t

I
 

 
   

 
 (2.14) 

Thus, along the length of the beam, the stress is maximum at the anchor or x=0. 

However, because of the symmetry of the S shaped beam, the magnitude of this 

moment is the same as that at x=L or: 

      00 1z y x z x y zm x m f u m f u m m x L            (2.15) 

This has been illustrated in Figure 8.  
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Figure 8: Symmetry argument for calculating the maximum moment. 

 Using equation (2.11) and θz=0 for an S shaped beam: 

  (0) (1)

0 11 120.5z x ym k f k u   (2.16) 

Moreover, the total normal stress at any location is given by the sum of the axial 

and the bending stresses where the axial stress is simply given as the axial force 
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divided by the cross-sectional area and is uniform over the entire cross-section. 

Using non-dimensional forces and dimensions, we obtain: 

 

2

12

axial x
xx

Ef T

L


 
  

 
 (2.17) 

 Therefore, using equations (2.14) and (2.17), the total stress σxx is given as: 
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 (2.18) 

Now using the von-mises stress criterion for yielding, we get: 

 2 23
y

xx xy

S
 


   (2.19) 

Where, Sy is the yield stress, η is the safety factor, and the stress σxx  by equation 

(2.18) and τxy is the shear stress on the cross-section and is given as the ratio 

between the transverse force fy and the cross-sectional area: 

 
2

12

y

xy

Ef
t   (2.20) 

With sufficiently slender beams, the τxy << σxx and can be ignored in the rest of the 

derivation. Combining equations (2.18) and (2.19), we get: 
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 (2.21) 

Generally, in comb drive applications, this force fx is usually zero or small (in the 

presence of error motions) and hence, in that case, it can be excluded from our 

analysis in which case equation (2.21) reduces to: 
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 (2.22) 

For a0=0.5, the above relation further reduces to the familiar relation [23, 31]: 
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 (2.22) 
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The above derivation would remain the same for a generalized beam shown in 

Figure 7 and therefore, k11
(0)

 can be a function of a0. For flexures, 1/t ratios of 50 

are common, and Sy/E ratios range from 4e-3 for AL-6061 to 1e-2 for TI-13. The 

safety factor η may be chosen on the basis of stress concentration in the geometry. 

For typical values, the maximum deformation uy|max ranges from 0.05L to 0.1L. 

We will aim to obtain results for deformations as large as 0.1L, but in practice the 

deformations are kept well within this number, especially if fatigue loading is 

considered. At the micro-scale, this limit is usually much higher than this 

although it is not very well defined as the yield limit and the young’s moduli of 

the materials are strongly related to the geometry and the fabrication process.  

 

5. Arbitrary but constant initial orientations and curvatures of the beam can also be 

very easily incorporated in this model [45]. As a special case, the BCM relations 

for pre-bent beams are derived here. In a pre-bent configuration, the beam is 

initially given a shape such that it exactly mimics the profile of an S-shaped beam 

(a linearly varying curvature and zero end-slope) with a transverse end 

displacement of Uypre. This is done so as to shift the x-direction stiffness profile of 

a mechanism comprised of these beams which can then be used to increase the 

stable working range of motion of comb-drive actuators.  
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Figure 9: Pre-bent Beam configuration 

The goal of this exercise is to obtain BCM relations for this configuration which 

validate the qualitative predictions about the shift in the stiffness profile. The pre-

bent beam configuration is shown in Figure 9. For the linearly varying curvature 

also shown, we have: 

 

   

 

"

0 0
2 3

0 0 1 2

1 2

2 3

y x x

x x
y x c x c





 

 
     

 

 (2.23) 

Applying end boundary conditions i.e.  

      ' '

0 0 00 0, 0 1 0y y y    (2.24) 

Gives: 
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  
2 3

0 0
2 3

x x
y x 

 
  

 
 (2.25) 

Expressing this in terms of the end displacement ypre, 

    2 3

0 3 2yprey x U x x   (2.26) 

Rewriting equation (2.6): 

         " "

0 1z y x x y yprey x y x m f u x f u u y x         (2.27) 

Upon double differentiating the above equation, we get the same result as that 

given in equation (2.7) as y0
iv
(x)=0. However, the boundary conditions would 

now become: 

        ' '0 0, 0 0, 1 , 1y ypre zy y y u u y q      (2.28) 

Finally, the load boundary conditions at the beam end, x=1 can be shown to be: 

           "' "' ' " "

0 01 1 1 , 1 1y x zy y f f y y y m       (2.29) 

 Solving equation (2.7) with boundary conditions given by equations (2.28) and 

(2.29), we get: 
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 (2.30) 

Finally, applying beam arc-length conservation i.e.: 

    
 

  
1 12 2

' '

0
0 0

1 1
1 1

2 2

e
x x xpreu u u

y x dx y x dx
     

     
   

   (2.31) 

 Where: 

  1 2

11

1

2
xpre ypreu k u   (2.32) 

Is the initial kinematic axial displacement of the pre-bent beam. Solving equation 

(2.31): 
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Expressions (2.30) and (2.33) are thus the required force-displacement relations. 

Except for the elastic terms in the equations, all other terms exhibit a coordinate 

shift along the y direction. This is understandable as firstly, the geometric 

transverse stiffness and elasto-kinematic axial displacement are caused by the 

extra moment applied by axial force fx which is linearly related to the net 

transverse displacement uy+uypr. Moreover, the net kinematic displacement is 

simply the difference between the displacement at the final position (uy+uypr, θz) 

and that at the initial position (uypr, 0) which can be clearly seen in equation (2.33)

. This equation also shows that the axial stiffness vs uy curve would shift along the 

y direction by a displacement of uypr thereby confirming the qualitative 

predictions about the stiffness behavior of this beam. 

STRAIN ENERGY APPROACH 

The above formulation is mathematically tedious as we have to account for all the 

internal forces and moments to arrive at the final force-displacement relations. This 

becomes especially cumbersome while solving for the characteristics of more complex 

mechanisms comprising of several beam elements in a serial or parallel arrangement or 

both. Strain energy methods [46] are mathematically more efficient and succinct. A non-

linear strain energy formulation for the beam flexure should be consistent with the 

transverse-direction load-displacement and axial direction geometric constraint relations 

in the BCM. An explicit non-dimensionalized strain energy expression in terms of the 

beam end displacements that accommodates generalized loading conditions, boundary 

conditions, initial curvature, and beam shape has been derived in previous literature [47] 

and is presented below: 
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The force displacement relations are obtained by equating the variation of the above 

strain energy expression in response to virtual displacements δux, δuy and δθz to the 

virtual work done by the external forces, held constant over the entire displacement and 

applied at the beam tip i.e. 
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 (2.35) 

This approach is found to be very powerful for solving problems where simple geometric 

relationships exist between the end-displacements of the constituent beams e.g. in a 

parallelogram mechanism which would be discussed in greater detail in the next chapter. 

However, when this is not possible and end loads dictate these relationships as in a serial 

arrangement, equation (2.35) becomes a system of multivariate polynomial equations 

which might be almost impossible to solve analytically. In such cases, in order to reduce 

the complexity, it is helpful to make blocks comprising of two or more beams for which 

the net strain energy can be obtained in terms of the end displacements  

 

Based on the results of this analysis, in chapter 2 we would analyze some existing flexure 

mechanisms in terms of the characteristics defined in chapter 1. Wherever possible, we 

would obtain the characteristics of these flexure based mechanisms using both the BCM 

and the strain energy method and highlight the relative merits of both these approaches. 
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Chapter 3:  Prior Art 

In this chapter we would review the performance characteristics of some conventionally 

used flexure mechanisms. The non-linear force displacement relations have been 

obtained using the BCM analysis presented in the previous chapter for most of these 

mechanisms and with the strain energy method for some. We would do the complete 

derivation of the force displacement relations only in the cases where the analysis hasn’t 

been done before. In all other cases, we would merely present the results and obtain the 

performance metrics ((1) to (4)) based on it. 

TWO-BEAM PARALLELOGRAM 

A parallelogram [48], shown in Figure 10 provides a constraint arrangement that allows 

approximate straight-line motion. The y displacement represents a DOF, while x and θ 

are DOC. These displacements are measured at the center of the stage where the forces 

and the moments are also applied. These displacements are composed of the differential 

displacements caused by the forces and the error motions of the mechanism. The two 

beams are treated as perfectly parallel and identical, at least initially, and the stage 

connecting these two is assumed rigid. Loads and displacements can be normalized with 

respect to the properties of either beam which are the same as those of the simple uniform 

beam discussed in the last chapter. In this case, the stage rotation θ can be shown to be 

several orders of magnitude smaller than the y displacement. Therefore, higher order θ 

terms are dropped wherever appropriate in the analysis.  

 

BCM Analysis 

The derivation has been covered in [23, 24] and the normalized results are presented 

below for small θs: 
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Figure 10: The parallelogram mechanism 

Also, the above results are valid for a parallelogram mechanism with a reinforced beam 

flexure where the BCM coefficients would be functions of a0.  

Strain Energy Analysis 

For simplicity, we would only consider the uniform beam in this analysis. The strain 

energy function [47] of a beam i (where i=1,2)  in the parallelogram flexure as shown in 

figure is: 
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                 (3.4) 

The net strain energy of the whole parallelogram will then be given as: 
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      1 1 1 2 2 2 1 1 1 2 2 2, , , , , , , , ,p x y z x y z x y z x y zv u u u u v u u v u uq q q q   (3.5) 

However, in order to obtain the force displacement relations at the center of the stage, we 

would have to express the strain energy of the system entirely in terms of the 

displacements at the center i.e. ux, uy and θz.  In this case, there exists a simple geometric 

relationship between the displacement variables uxi, uyi and θzi imposed by the rigid link 

connecting the two beams: 
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Substituting the above relations in equation (3.5): 
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 (3.7) 

The above expression can be simplified to a great extent by making some order of 

magnitude estimates. However, this must be done carefully so as to obtain relations 

consistent with the BCM. In other words, a term can be dropped from the strain energy 

expression if the resultant force displacement relations obtained using equation (2.35)

remain unchanged or approximately the same upon doing so.  

 

Using relations (3.1), (3.2) and (3.3), we can set upper bounds on the displacement 

variables. These estimates can also be obtained using finite element analysis. These have 

been listed in the table below with their justifications: 

Table 1: Order of Magnitude estimates for a parallelogram 

Variable Order Justification 

fx +/-10 Model limits 
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mz +/-10 Model limits 

t 1/50 Typical Dimensions 

w 0.3-1.0 Typical Dimensions 

uy +/-0.1 Yield Limit 

ux O(10
-2

) Using relation (3.2) 

θz O(10
-3

) Using relation (3.3) 

 

For complex systems the strain energy expression like that given in equation (3.7) may 

become long and unwieldy. Therefore, it is worthwhile to formulate an algorithm for this 

procedure which can be later implemented in code. The steps are outlined below: 

 

1. As a first step, equation (3.7) can be rewritten as: 
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Where α, β, γ, α’, β’ and γ’ can take non-negative integral values, the Ns and Ds 

are real coefficients associated with each of these terms. κ and κ’ are non-

repeating integers from 1 through Num(N or D) where Num() gives the number of 

terms in an expression, associated with every unique tuple (α, β, γ) and (α’, β’, γ’) 

respectively.  

 

2. With each term in the numerator and denominator, we can associate a retention 

coefficient Ri (i=n/d) which can be either 0 or 1. Therefore, 
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 (3.9) 

These coefficients determine whether a particular term in the strain energy 

expression must be retained or dropped. They would all be initialized to a value of 

1.  
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3. We would now obtain the three force/moment displacement relations from the 

above expression using equation (2.35). Therefore, we can write: 
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 These can be remapped to a new set of coefficients such that: 
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6. At this point, we can use the order of magnitude estimates given in Table 1 to 

obtain retention coefficients for the numerator and the denominator for each of the 

relations given above. This can be obtained as follows: 

 

     

      1.. ( )

1 if 

0 otherwise

p q r
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l m n
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Ki u u
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  



  
  

q

q

   
          

   
  

 (3.12) 

Where i=x,y or z, K=N or D, k=n or d and Tol is used to eliminate the small 

quantities when compared to large ones in the expression. In other words, we 

would assign the numerical value of 1 to the retention coefficient if the ratio 

between the corresponding term and the maximum term in the sum is greater than 

the tolerance (Tol) that we set. The numerical estimates for each of the 

displacement variables are used. However, neglecting terms in a sum can 

sometimes not be this straightforward. This is because a sum could be composed 

of several moderately sized terms which can add up to become comparable to 

large ones. As an illustration, consider the set: <50,1,1,1,1…,1>. Using the above 

scheme, the retention vector would be <1,0,0,..0>. This is obviously an incorrect 

approximation as the sum of a large number of small terms (1) can become 

comparable to the large one (50). However, there is a scope for making the 

algorithm more robust which can be taken up in future work.  

 

7. Moreover, the retention coefficients obtained in equation (3.12) can be related to 

their parent coefficients given in equation (3.9). If Num(D) is the number of terms 

in the denominator and Num(N) is the number of terms in the numerator of the 

strain energy expression, for the x force displacement relation: 

 

' ( )*( 1) '

' ( )*( 1) '

' 1, 2,.., ( ), 1,2,.., ( )

Num D

Num D

Rnx Rn Rd

Rdx Rd Rd

Num D Num N

   

   

 

 

 





 

 (3.13) 

 Now, for the denominator, this relation can be expanded as follows: 
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    

 
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2

1 1 1 2 1 ( )

, ..., ... ,...

[ , ,... ,..., ]

Num D Num D num D Num D

Num D Num D

Rdx Rdx Rdx Rdx Rdx Rdx

Rd Rd Rd Rd Rd Rd Rd


 
  


 (3.14) 

A simple way to link the parent terms (Rd) to the reduced terms (Rdx) would be to 

use the following scheme: 

  *( 1)
1 if 1

, 1, ( )
i j num D i j

Rd Rd Rdx

i j Num D
 

  


 (3.15) 

 Similarly, the numerator can be expanded as follows: 

      1 2 ( ), ( ) 1 2

1 1 1 2 1 ( ) ( ) ( )

, ..., ... ,...

[ , ,... ,..., ]
Num D Num D num D Num D Num N

Num D Num D num N

Rnx Rnx Rnx Rnx Rnx Rnx

Rd Rn Rd Rn Rd Rn Rd Rn


 
 


 (3.16) 

Finally, we can evaluate the retention vector for the numerator using a simple 

scheme shown below: 

 ( )*( 1)1 if 1

1, ( ); 1, ( )
i j Num D i jRd Rn Rnx

i Num D j Num N
   

 
 (3.17) 

Thus, from equations (3.15) and (3.17), we get two different Rds, the union of 

which would give the retention vector for the denominator of the strain energy 

expression. At the end of this step we have two parent retention vectors associated 

with every force-displacement relation ((Rn(Fx), Rd(Fx)),(Rn(Fy), Rd(Fy)), 

(Rn(Mz), Rd(Mz))). These retention vectors basically signify the terms that have to 

be retained in the original strain energy expression to arrive at the corresponding 

approximate force displacement relation.   

 

8. Finally, the union of the three retention vectors for the numerator (Rn(Fx, Fx, Mz)) 

and three vectors for the denominator (Rd(Fx, Fx, Mz)) would give us the final 

retention vectors for the strain energy expression i.e. 

 
     
     

x y z

x y z

Rn Rn F Rn F Rn M

Rd Rd F Rd F Rd M

  

  
 (3.18) 

Using relation (3.9) and (3.18), we can now obtain the approximate expression for 

the strain energy. 
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Using the above algorithm for a parallelogram, the approximate strain energy expression 

can be given as: 

  
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q q
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 
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      
 

  

 (3.19) 

Moreover, we observe that for the force displacement relations for the x and y directions, 

all terms containing θz can be dropped. Therefore, for that case, the strain energy would 

be: 

  
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v u u
k k u

q

 
    

 


 (3.20) 

Using these expressions we can recover the force displacement relations (3.1), (3.2) and 

(3.3) after applying the appropriate retention vectors obtained in step 5.  

 

Performance 

The performance of this mechanism can now be quantified in the following manner: 

 

Range of Motion  

The range of motion of a parallelogram mechanism is simply the maximum stroke of a 

single beam before yielding/fracture as both beams would get displaced by the same 

amount because of the geometric constraint imposed by the rigid link. Therefore, the 

range of motion would be given by equation (2.22) 

 

Error Motions 

Using the definition of error motions,  
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 2 (1)

11

1
( ) ( 0)

2
x y x x ye u u f u k     (3.21) 

It is important to note here that the error in the x direction ex only depends on one 

mechanism geometric parameter a0 and the lower bound of k11
(1)

(a0) is 1.0, which occurs 

as a0→0, therefore, this error motion cannot be reduced beyond 0.5uy
2
. This is a 

fundamental limit and is true for any arbitrary beam shape and not just the lumped 

compliance one. This result can be obtained using the calculus of variations as follows – 

The objective would be to minimize the kinematic x displacement given in equation (2.9) 

i.e.  

   
1 2

0
0.5 'Min y dx  (3.22) 

Moreover, it is also known that: 

 
1

0
' yy dx u  (3.23) 

Finally, we have the boundary conditions given as: 

 
   

 
0 0, ' 0 0

(1) , ' 1 0y

y y

y u y

 

 
 (3.24) 

Taking the variation of equation (3.22), at the minima, we obtain: 

 

  
 

1 2
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1 2

0
1

0

' 0

' 0

' ' 0

y dx

y dx

y y dx









 

 







 (3.25) 

Applying integration by parts on the above equation, 

 

1 1 1

0 0 0
1

1

0
0

' ' ' ' '' 0

' | '' 0

y y dx y y dx y ydx

y y y ydx

  

 

  

  

  


 (3.26) 

Now, y displacement is known at both ends of the beam implying that the variation is 

also zero at those points i.e. δy=0 @ x=0,L. Therefore, the first term in equation (3.26) is 

zero and we have: 
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1

0
'' 0y ydx   (3.27) 

Finally, as the variation δy is arbitrary over the length of the beam except at the ends, we 

can write: 

 " 0 ' . (0,1)y y c const x       (3.28) 

Using equation (3.23), we get: 

 
1 1

0 0
' y y yy dx u cdx u c u




       (3.29) 

Thus, the minimum value of error motion will be: 

   
1

2 2

0
0.5 0.5x y y yMin e u u dx u




     (3.30) 

 It should be noted that throughout the above derivation, no assumptions have been made 

regarding the beam shape or the forces applied. Moreover, if the beam is very stiff in the 

axial (x) direction, this error motion would dominate the axial displacement ux given by 

(3.2).  

 

The theta error motions can be obtained by setting the bearing direction forces/moments 

(fx and Mz) to zero: 

   2 (2) (0)

11 122

33

1 1
[ (2 )]

2
y y ye u u k u k

w k
q

 
   

 
 (3.31) 

Because of the constraint arrangement, these error motions would be very small and can 

be reduced further by increasing the beam separation w or reducing the beam thickness t. 

These error motions occur because of the fact that the point of application of the load 

(center of the stage) does not coincide with that of the center of stiffness. The force fy 

which brings about the y displacement applies a moment about this point causing a net 

rotation. However, as the y direction is a DoF, this force would be small. Moreover, the 

theta direction is a DoC (provided that w is large enough) implying that the rotational 

stiffness would be large. Thus, the overall effect would be a negligibly small rotational 

error motion. For some typical numbers – t=1/50,w=0.3, uy=0.1, we get eθ=1.2e-4 which 
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is several orders of magnitude smaller than the x error motion. With a0 approaching zero, 

this error motion also tends to zero as the mechanism approaches a four bar linkage. 

 

Motion Direction Stiffness 

The motion direction stiffness is given by: 

  (0) (1)

11 112
y

y x

y

f
k k f k

u


  


 (3.32) 

Also,  

 0
y

y

k

u





 (3.33) 

Therefore, the parallelogram mechanism has negligible stiffening in y direction with 

increasing y displacement and 
yk  can be minimized by increasing

0a . As expected, axial 

load causes stiffening or softening depending on its action (tension or compression). 

Bearing Direction Stiffness  

The stiffness in the bearing directions are given by: 
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 (3.34) 
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 (3.35) 

Also, to maximize both these values over the whole motion range, we could minimize the 

compliances 1/ , 1/x xc k c kq q   and / , /x y yc u c uq    . 

 

2 (2)

11 (2)

11

33

1
;

2 2

y x
x y

y

u k c
c u k

k u

  
       

 (3.36) 
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2 (2) (2)

11 11

2 2

33

1 1
;

2 2

y y

y

u k u kc
c

w k u w

q
q

  
       

 (3.37) 

Thus, we need to minimize the elasto-kinematic term k11
(2)

 to reduce the stiffness drop 

and maximize k33 to increase the nominal (uy=0) stiffness both of which imply reducing 

a0.  

 

When we consider objectives (1.1) to (1.4) in conjunction, there is a clear tradeoff in 

choosing the value of 
0a (Figure 11). From Figure 11, we can see that with decreasing a0, 

the bearing stiffness increases at a much higher rate than the motion direction stiffness 

implying that a low value of a0 is favorable for better stiffness performance. A very low 

value of a0 would also imply a smaller range of motion and motion direction stiffness 

approaching infinity. However, one of the major drawbacks of this mechanism is the 

fundamentally large axial error motion which cannot be reduced via any beam shape 

optimization.  

 

Figure 11: Non-dimensionalized performance metrics for a parallelogram mechanism. Parameters: t=1/50, 

w=0.3, Sy=1GPa, E=169GPa.  
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MULTI-BEAM PARALLELOGRAM 

In a parallelogram, we can include more beams (n) in the same configuration to obtain a 

multi-beam parallelogram (shown in Figure 12). This mechanism would be highly over 

constrained according to Grubler’s criterion and for an equivalent rigid link mechanism 

with revolute joints, it would function only when the beams are exactly identical and 

parallel with little or no tolerance for manufacturing imperfections. However, because of 

elastic averaging, small geometric imperfections wouldn’t cause significant over-

constraint in a flexure based mechanism [49]. For this analysis, all the n beams are 

assumed to be identical with the same degree of reinforcement a0. Normalization of the 

forces and displacement is done with respect to the properties of either beam. Finally, in 

order to simplify the final results, the mechanism is assumed to be symmetrical about the 

axis parallel to the x axis and passing through the center of the beam shown as a dotted 

line in Figure 12. The general case when this is not true can be analyzed without any 

added complexity.    

(L ,a0)

w(i)

Beam 1

Beam 2

Beam 3

Beam i

Beam n

w(n)

w(1)=-w(n)

(Fy,Uy)

(Fx, Ux)

(Mz, θz) Y

XZ

Ground

Anchor

Primary 

Stage

 

Figure 12: The multi-beam parallelogram 
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BCM Analysis 

This derivation for the force displacement relations for this mechanism is along similar 

lines to that for the two beam parallelogram. At tip of the i
th 

beam, we would have 

reaction forces/moments and displacement pairs (Fyi, Uyi), (Fxi, Uxi) and (Mzi, θzi). As 

before the rigid stage imposes a geometric constraint on these displacements and we can 

write them in terms of the displacements at the center of the stage (Uy, Ux, θz): 

 
yi y

xi x i z

zi z

U U

U U wq
q q



 


 (3.38) 

Applying the force equilibrium conditions on the free body diagram of the mechanism, 

the reaction forces can be related to the forces at the center of the stage as follows: 
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Now, applying the normalized force displacement relations (2.11) and (2.12) for every i
th

 

beam in the mechanism, we get: 
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Combining relations (3.38), (3.39) and (3.40) and using the small θ approximation, the 

force displacement relations for the multi-beam parallelogram would be given by: 
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Strain Energy Analysis 

The strain energy method for this case [47] is simpler to apply compared to the direct 

BCM because of the existence of purely geometric relationships between the 

displacement variables at every beam tip given by equation (3.38).  Equation (3.7) can be 

modified for the multi-beam case: 
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The above equation can now be used to obtain the force displacement relations, an 

analysis that has been carried out previously[47]. With appropriate approximations, the 

results agree with those obtained using the direct BCM method (equation (3.41)).  

  

Performance 

Using equation (3.41), the performance metrics can be calculated: 

Range of Motion  

The range of motion is the same as that of a parallelogram in the absence of bearing 

loads. However, with a bearing direction load fx, the range of motion can be calculated 

using equation (2.21): 
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This shows that the reduction in the maximum range in the presence of a tensile bearing 

load can be decreased by adding multiple beams.  
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Error Motions 

The error motion ex would be the same as that of a two-beam parallelogram. The theta 

error motions on the other hand would have a dependence on the rotational stiffness and 

would be given by:   
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Motion Direction Stiffness 

From equation (3.41), the motion direction stiffness is given by: 

  (0) (1)

11 11y xk nk f k   (3.45) 

This shows that the new stiffness is simply the sum of y direction stiffness expressions of 

individual beams (with an axial bearing load of fx/n) in the multi-beam parallelogram. An 

important observation that we can make from the above expression is that the sensitivity 

of the motion direction stiffness to the axial load fx also reduces by a factor of n. 

Bearing Direction Stiffness  

The bearing direction stiffness expressions are given by: 
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The expression for the x-direction stiffness is simply n/2 times that of a parallelogram.  

 

The advantage of using this mechanism over the two beam parallelogram is not 

immediately obvious. This mechanism offers a better way of improving the stiffness 
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properties of the two beam parallelogram over merely thickening the constituent beams. 

A comparison between a two beam parallelogram mechanism with thickened beams and 

a multi-beam one is presented below.  

A) Two Beams, T=nT0/2 B) n Beams, T=T0 C) Two Beams, T=T0 D) n Grouped Beams, T=T0

 

Figure 13: Comparison between the multi-beam and the two beam parallelograms  

Consider the three mechanisms shown in the Figure 13. If the forces and moments are 

normalized with respect to the properties of the third parallelogram (C), the motion and 

bearing stiffness of each of these flexures would be given by: 
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We find that by merely increasing the thickness of the beams, we obtain an n
3
/8 increase 

in the motion direction stiffness but only a nominal stiffness increase of n/2 in the bearing 

stiffness. On the other hand, for the multi-beam parallelogram, we obtain a proportional 
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increase of n/2 in both the motion and the bearing direction stiffness. This is graphically 

illustrated in Figure 14 by comparing the stiffness ratios kx/ky.  

 

Figure 14: Stiffness Ratios of the flexures A,B and C 

For lower values of a0 the effect of elastic stiffness term 1/k33 starts dominating the 

elasto-kinematic term k11
(2)
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2
 and therefore, the advantage of using a multi-beam 

parallelogram over the two-beam one would become more prominent as can be seen in 

Figure 14. The gain in the rotational stiffness would also be similar as long as the beams 

are grouped together at the ends (mechanism D in Figure 13). In that case, the rotational 

stiffness would be given as: 
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DOUBLE PARALLELOGRAM AND PAIRED DOUBLE PARALLELOGRAM 

A double parallelogram (DP) [48] flexure with two parallelogram units connected in 

series, and paired double parallelogram (DP-DP) flexure, with two DP units connected in 

parallel, are shown in Figure 15. The two rigid stages are referred to as the primary and 

secondary stages, as indicated. Loads fy, mz, and fx are applied at the center of the primary 

stage. The two parallelograms are identical, except for their beam spacing – w1 and w2. 

Both parallelograms would have the same magnitude of axial error motions given by 

equation (3.21) but in the opposite directions. Thus, these error motions get absorbed in 

the secondary stage leading to a theoretically zero net error motion at the primary stage. 

As before, the forces and displacements are normalized against the properties of any of 

the constituent beams.  

Paired Double Parallelogram (DP-DP)
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Figure 15: The Double Parallelogram and Paired Double Parallelogram Mechanisms. The forces and 

displacements at the secondary stages are also indicated.  

BCM Analysis 

Applying the results derived for a single parallelogram in the last section sequentially on 

the outer and the inner parallelograms, the force displacement relations for a double 

parallelogram with no loads (fx1=fy1=mz1=0) on the secondary stage can easily be derived. 

The results were derived previously [24] and are presented below for a DP mechanism: 
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Force displacement relations in the presence of non-zero loading on the secondary stages 

can also be derived using a similar process without any added complexity.  

Strain Energy Method 

The strain energy for a double parallelogram is simply the sum of the non-dimensional 

strain energies (as both parallelograms are identical) of its two constituent parallelograms 

given by equation (3.19). This resultant strain energy depends on the displacements of 

both the primary and the secondary stages: 

      1, 1 1 1 1 1, , , , ,dp x y z p x y z p x x y y z zv u u v u u v u u u uq q q q        (3.53) 

As in the case of a parallelogram, we can obtain order of magnitude estimates for the 

displacement of a double parallelogram using equations (3.50) to (3.52).  

Table 2: Order of Magnitude estimates for a double parallelogram 

Variable Order Justification 
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fx +/-10 Model limits 

mz +/-10 Model limits 

t 1/50 Typical Dimensions 

w1,w2 0.3-1.0 Typical Dimensions 

uy1 +/-0.1 Yield Limit 

uy +/-0.2 Yield Limit 

ux, ux1 O(10
-2

) Using relation (3.51) 

θz, θz1 O(10
-3

) Using relation (3.52) 

 

Using these estimates, we can now formulate an approximate expression for the strain 

energy of a double parallelogram. Equating the variation of the strain energy to the sum 

of the virtual work done by the forces and moments on the mechanism, we obtain six 

force displacement relations – three each at the primary and the secondary stage. Thus, 

have: 
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The retention vectors for the numerator and the denominator of the strain energy 

expression (3.53), can be written as:  
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Now, in relation (3.54), we have six equations in six (known) forces and six (unknown) 

displacements. As the primary stage is the output stage, these equations have to be 

reduced to a set of three equations between the forces and displacements at the primary 

stage only; implying that the displacements at the secondary stage (ux1, uy1, θz1) have to 

be solved for in terms of those at the primary stage (ux, uy, θz). For each of the force 
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displacement relations, we can individually apply their retention vectors (Using equation 

(3.12)) to further simplify the problem. We observe that the dependence of the x and y 

direction forces on the rotational displacements is weak. Hence, we can decouple these 

force-displacement relations from the moment ones: 

 

       

       

1 1 1 1

1 1 1 1 1 1

1 1

, , , , , , , , ,

1, 1 , , , , 1, 1 , , ,

x x x y y y x x y y

x y

x x x y y y x x y y

x y

v v
f H Rnx Rdx u u u u f H Rny Rdy u u u u

u u

v v
f H Rnx Rdx u u u u f H Rny Rdy u u u u

u u

 
 

 

 
 

 

(3.56) 

And, 
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 Where H(Rni,Rdi) is the retention operator:  

  

        

        

        

        

( )* ( ) ( )* ( )
1 1 1 1

1 1 1 1

1 1

( )* ( ) ( )* ( )
' ' 1' 1' ' ' 1' 1'

1 1

... ...

,

... ...

, 1,

Num N Num D Num N Num D
p q p q p q p q

x y x y x y x y

Num N Num D Num N Num D
p q p q p q p q

x y x y x y x y

Ni u u u u Rni Ni u u u u

H Rni Rdi

Di u u u u Rdi Di u u u u

i x x

       

  
 

       

  
 

 

 





 

 
, 1, , 1y y z z

(3.58) 

Using equation (3.56), we can solve for the four displacements in  terms of the forces 

applied at the primary and the secondary stages. Finally, we can substitute these four 

displacements in equation (3.57) to solve for the rotations θz and θz1.  

 

Unfortunately, the scheme for approximating ratios of polynomials fails in this case. This 

is because dropping terms based on magnitude neglects the possibility of sums of small 

or large terms becoming large or small respectively. Particularly, in the expression for fy1 

given in equation (3.56), it was observed that the sum of the large terms which were 

retained after the approximation procedure was applied, reduced to a small number when 

typical magnitudes of the displacement variables were used thereby becoming 

comparable to the ‘small’ terms which were dropped previously. Therefore, there was a 

huge discrepancy between the approximate and the actual expressions.  
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Moreover, without the use of this algorithm the resulting multivariate polynomial 

equations turn out to be too complex to be solved even numerically, let alone analytically. 

Unless, a better, more robust way is formulated to simplify the force displacement 

equations, it is unlikely that this algorithm would yield good results for more complex 

mechanisms. In this thesis, this method would not be used for any of the mechanisms 

discussed subsequently as there is little merit in doing so.   

Performance 

Range of Motion 

The yield limit of the DP would be the sum of the yield limits of its constituent 

parallelograms as they are connected in a serial configuration. As they are identical, it 

would just be twice that of a single parallelogram. For the DP-DP mechanism, the yield 

limit would be the same as both the DP units are connected in parallel and thus, have the 

same deflections. Thus, the maximum displacement of a DP (and DPDP) flexure is: 
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Error Motions 

In the absence of any geometric imperfections, the x error motions for a DP mechanism 

would be zero. However, the theta error motions would be small but finite arising due to 

the same reasons as those in the case of a parallelogram: 
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The DPDP mechanism would on the other hand, have zero error motions but because of 

symmetry and would have more robustness towards imperfections. It would however, 

have a slight stiffening in the motion direction due to conflicting θ error motions.  

Motion Direction Stiffness  

The motion direction stiffness of the DP mechanism is given by: 
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An axial load fx causes a net softening irrespective of the direction but the effect is much 

smaller than that seen in a parallelogram. This can be explained as follows - when a load 

is applied on the primary stage in the positive direction, the inner parallelogram would be 

in compression, causing it to soften whereas the outer one would be in tension, thereby 

leading to stiffening. The parallelograms would simply reverse roles when the loading is 

applied in the opposite direction. As both these parallelograms are in series, these two 

effects would oppose each other thereby reducing the sensitivity of the motion direction 

stiffness to the axial loading.   

 

Bearing Direction Stiffness/Compliance 

The bearing direction compliances of the DP mechanism (For the DPDP mechanism, the 

compliances are half those of the DP) are given by: 
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Also, the stiffness drops are given by: 
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The purely elastic term in x-stiffness expression is expected and is similar to the one in 

equation (3.36). However, the elasto-kinematic term is significantly different and consists 

of the terms k11
(2)

 and (k11
(1)

)
2
/k11

(0)
, the latter, being two orders larger than the former 

thus dictating the axial compliance. When a y displacement is imposed on the primary 

stage, the transverse stiffness values of the two parallelograms would be the same if no 

axial loading is applied on the primary or the secondary stage. Thus, this y displacement 

gets distributed equally across the two parallelograms leading to half the y displacement 

of the primary stage at the secondary stage. When an axial load Fx is applied on the 

primary stage in the positive direction, the transverse stiffness of the inner parallelogram 

increases while that of the outer one decreases (using equation (3.32)). This results in a 

proportional redistribution of the y displacement between the two as given by equation 

(3.50). In this case, the outer parallelogram would deflect more than that in the unloaded 

case (uy/2) whereas the inner one would deflect less. Since the kinematic axial 

displacement (uk) of each parallelogram has a quadratic dependence on its corresponding 

transverse displacement, and considering the fact that for a parallelogram, the kinematic 

component dominates the axial displacement, the net axial displacement of the outer 

parallelogram exceeds that of the inner one. This difference results in the unexpectedly 

large elasto-kinematic component - (k11
(1)

)
2
/k11

(0)
 mentioned before causing a precipitous 

stiffness drop [23, 24]. The scenario remains the same when the Fx is negative, except the 

two parallelograms switch roles. The axial stiffness of DP and DPDP mechanisms are 

plotted against the transverse displacement (uy) in Figure 16, which shows that the 
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bearing stiffness drops by 90% for a uy of 0.1. This is significantly larger than that of the 

parallelogram mechanism for the same dimensions and is a serious limitation in the 

constraint characteristics of the DP flexure module.  

 

As the motion direction stiffness of the parallelograms have a very weak dependence on 

the applied moment, an application of a moment doesn’t cause any significant 

redistribution of y displacements. This effect is further attenuated as the parallelogram 

mechanism doesn’t have any significantly large kinematic theta error motions which are 

strongly dependent on the y displacement. Thus, both the parallelograms have 

approximately the same rotational stiffness over the whole range of y displacements and 

applied loads. Consequently, the net rotational stiffness of the double parallelogram is 

simply the serial sum3 of the stiffness of the constituent parallelograms.   

 

 

Figure 16: Stiffness ratio comparison between the double parallelogram and the parallelogram 

mechanisms. T=1/50L, a0=0.5  

                                                 

3 The serial sum is defined as the equivalent spring stiffness of two springs (with stiffness k1 and k2) in a 

series connection i.e. keq=(k1k2)/(k1+k2) 
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For the double parallelogram we can implement all the basic variations that were 

discussed previously – reinforced beam flexures and the use of multiple beams in every 

parallelogram. The performance metrics 1 through 4 have been plotted in figure. N 

represents the number of beams in every parallelogram and a0 represents the degree of 

reinforcement. Also, the beams in the parallelograms are grouped at the ends like in 

Figure 13 (D). The trends seen in the rotational stiffness and the maximum range are 

expected and similar to those seen in the case of a parallelogram. The theta error motions 

drop with decreasing a0 and increasing N due to the increasing rotational stiffness of the 

mechanism and resistance to the moment applied by the motion direction force fy about 

the center of stiffness of the mechanism. It is interesting to see that the axial stiffness 

ratio remains relatively unaffected with changes in the N and a0. This shows that this 

phenomenon is fundamental to the mechanism like the arcuate motion of a parallelogram 

and cannot be eliminated without making appropriate topological alterations.  

 

 

Figure 17: Non-dimensionalized performance metrics for a double parallelogram mechanism. Parameters: 

t=2/(50*N), w1=0.25, w2=0.4, Sy=1GPa, E=169GPa. 
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Thus, in the transition from a parallelogram to a double parallelogram flexure, while 

geometric reversal improves the range of motion of the DOF and eliminates the purely 

kinematic component of the bearing displacement, it proves to be detrimental to stiffness 

along the X direction DOC. 

 

The axial stiffness drop in the DP mechanism occurs due to the unconstrained motion of 

the secondary stages[23, 24]. In other words, the secondary stage accommodates the axial 

force fx by displacing in the motion direction. This can be prevented if the stage is 

adequately constrained i.e. held at its equilibrium displacement of uy/2 even in the 

presence of an axial load [50-53]. Rewriting equation (3.50) and (3.51) for non-zero 

forces (fx1, fy1) on the secondary stage (Figure 15), we get: 
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We now have 5 unknowns namely ux, uy, ux1, fx1 and fy1 and four equations. Choosing fx1 

as an input parameter and solving for the remaining variables, we get: 
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 And,  
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Assuming that fx1=0, we notice that the large elasto-kinematic term (k11
(1)

)
2
/k11

(0)
 is no 

longer present in the expression for ux and hence, the stiffness properties of this 

configuration are very similar to those of a parallelogram. The required constraint force 

fy1 for the secondary stage can also be calculated (equation (3.69)) and as is perhaps 

intuitively obvious, is directly proportional to the axial force fx and the motion direction 

displacement uy. Upon investigating further into the effect of fx1, we find that it introduces 

an error motion term in ux (ux@fx=0) which might be undesirable. Moreover, if we try to 

counter this effect by introducing symmetry in the mechanism like in the DPDP 

mechanism, it leads to load stiffening/softening in the motion direction. Setting ux=0 with 

no external axial forces applied in equation (3.68), we get: 

 internal 1 2| 0.5 0.5x x xf f f    (3.70) 

Where fx|internal is the force experienced by the left half of the DPDP mechanism shown in 

Figure 15. Substituting this in equation (3.68) for uy: 
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An outward (negative) force fx1 would cause load stiffening in the mechanism which 

would be undesirable. On the other hand, reversing the direction will cause softening 

which would reduce the actuator effort. 

 

Based on the above analysis, in order to rectify the shortcomings of the DP (DPDP) 

mechanism we need to impose a constraint which has the following properties: 

1. A motion direction constraint force fy1 given by equation (3.69) that would 

restrain the secondary stages at a displacement of 0.5uy 

2. A non-negative bearing direction force fx1. In other words, all x-direction forces 

(if any) on the secondary stages must be acting inwards.  

 



 74 

LEVER-DOUBLE PARALLELOGRAM AND LEVER-PAIRED DOUBLE PARALLELOGRAM 
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Stage

L

Lever

Primary
Stage

Ground
Anchor

Ground
Anchor L1

L2

L3

       

L
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Uy1=0.5Uy
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L

h1 h2

h3

 

Figure 18: The Lever Double Parallelogram 

A method for constraining the motion of the secondary stages using a lever arm like the 

one shown in Figure 18 was first proposed by Jones et.al. [48]. The same design was 

employed in comb drive actuators by Brouwer et.al [54] and Jerman et. al [53] and was 

found to produce a significantly improved range of motion. The lever exactly constrains 

the secondary stages to half the displacement of the primary using short flexural hinges 

(h1, h2, h3 in Figure 18). A thorough design study of this mechanism does not exist in 

previous literature and a very rigorous mathematical analysis wouldn’t be pursued here.  

Instead, a few qualitative observations regarding the performance of this mechanism will 

be presented which would be supplemented with results from non-linear finite element 

analysis.   
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Figure 19: Bearing Direction Stiffness Kx of the Lever Double Parallelogram (LDP). Parameters: 

T=0.0123L, H=0.39L, E=69e9 

It can be seen that for the lever to be effective in providing the motion direction 

constraint on the secondary stage, the hinge h1 should have a high rotational (θ) 

compliance but small transverse (y) direction compliance. We know that the rotational 

compliance is proportional to the length of the flexure whereas the y direction compliance 

is proportional to the cube of the length. Therefore, reducing the length of the beam 

would make it stiffer in the y direction compared to the θ direction. Consequently, shorter 

the length L1, the greater would be the improvement in the bearing stiffness of the 

mechanism. As long as hinges h2 and h3 have adequate axial stiffness, their dimensions 

wouldn’t significantly affect the bearing stiffness. Non-linear finite element analysis 

(using ANSYS4) validates the above claims as shown in Figure 19.  

 

                                                 

4 With BEAM 4 Elements for the beams, MPC184 elements for the rigid section, NLGEOM (large 

deflection static analysis) turned on and shear coefficients set to zero. These settings were used for all FEA 

results shown in this thesis.  
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The motion direction stiffness of the LDP mechanism is higher than that of the DP 

mechanism because of the rotational stiffness of the hinge h1 adding to the motion 

direction stiffness of the DP mechanism. Moreover, this stiffness is inversely 

proportional to length of the hinge L1 and hence, shortening it would significantly 

increase the motion direction stiffness. From Figure 20, we can see that the lever can 

cause up-to 95% increase in the base stiffness of the DP mechanism for the required 

bearing stiffness.  

 

Figure 20: Motion Direction Stiffness Ky of the Lever Double Parallelogram (LDP). Parameters: same as 

those in Figure 19 

Thus, shortening L1 improves the bearing stiffness but significantly increases the motion 

direction stiffness as well. This tradeoff cannot be overcome with any of the beam shape 

or multiple beam modifications suggested before and is inherent to the geometry of the 
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a certain displacement (Figure 21). However, this effect can be avoided by making L2 and 

L3 large enough while maintaining the bearing direction stiffness. 

 

Figure 21: Exponential Rise in the motion direction stiffness of the LDP mechanism. Parameters: 

L1=L2=L3=0.1L, rest same as before. 

In the next chapter two alternative mechanism designs would be analyzed which can be 

optimized to satisfy both the requirements listed in the previous section to obtain 

improved bearing stiffness without causing any significant stiffening in the motion 

direction.  
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Chapter 4:  Analysis of the Clamped Paired Double Parallelogram 

(CDPDP) and Double Parallelogram – Tilted-beam Double 

Parallelogram (DP-DTB) 

In the last chapter, we analyzed the reasons behind the precipitous bearing stiffness drop 

in the Double Parallelogram Mechanism i.e. the unconstrained motion of the secondary 

stages. We also discussed a method, invented previously, of constraining these secondary 

stages by using a lever. However, this mechanism has some drawbacks like increased 

motion direction stiffness and larger footprint and therefore, there is a scope for further 

improvement. In this chapter , the analysis of two flexure mechanisms [43] which 

perform better in terms of the metrics defined in chapter 1 is presented. Wherever 

feasible, we will provide the complete derivation of the force displacement relations 

using BCM and strain energy approaches and a validation of the results using non-linear 

finite element analysis.  

THE CLAMPED PAIRED DOUBLE PARALLELOGRAM 

When we apply an axial force on the primary stage of a DPDP mechanism, the secondary 

stages respond by moving in opposite directions from their equilibrium positions at half 

the primary stage y displacement. Because of symmetry, these differential displacements 

would be equal and opposite as shown in Figure 22.   
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(Fx, Ux)

(Fy,Uy) Uy1=0.5Uy-Δ Uy1=0.5Uy+Δ 

 

Figure 22: Response of the DPDP mechanism to an axial force Fx. The differential displacement Δ  would 

depend on Uy and Fx 
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Figure 23: The Clamped paired double parallelogram mechanism. The dimensions of the base DPDP 

mechanism are the same as before. 
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In the CDPDP mechanism, the two secondary stages are connected to each other in such 

a manner that any relative displacement between the two is prevented. Consequently, the 

stages naturally get restrained to a mean position of 0.5Uy. This connector, also called a 

clamp, comprises a rigid link and two pairs of flexure beams which connect the link to 

the secondary stages as shown in Figure 24. Any relative displacement between the two 

stages directly translates into the rotation of the link. As the rotational stiffness of the 

parallelograms formed by flexure pairs is very large (as it is a constraint direction), the 

clamp rotates by a very small amount and hence, the secondary stages have almost equal 

motion direction displacements. This satisfies the first requirement for the constraint 

force as mentioned in the previous chapter. 

Constraint Requirement 2

(Fy ,Uy)

Constraint Requirement 1

(Fy ,Uy)

(Fx ,Ux)

 

Figure 24: The constraint behavior of the CDPDP mechanism 

Moreover, the clamp provides very small impedance to any motions of the secondary 

stages in the x direction as its parallelogram connectors are fairly compliant in this 

direction. Even though it doesn’t exactly satisfy the second requirement as the force fx1 

and fx2 would be acting outwards on the secondary stages, using some basic dimensional 

optimization, these forces can be made negligibly small without affecting the bearing 

direction stiffness.  
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Before we discuss the closed form analysis of this mechanism, we can make a few 

qualitative observations regarding the effect of the dimensions of the clamp. Such an 

approach can give valuable insights into the working of a mechanism and would be 

useful in cases where closed form results can’t be obtained very easily. Broadly speaking, 

the two constraint requirements translate into the following: 

 

1. Maximize the rotational stiffness of the parallelograms 

Re-dimensionalizing equation (3.35) for the two parallelograms shown in figure, 

we get: 
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Thus, we can improve the rotational stiffness by increasing W3, H3, T3 or by 

decreasing L3 

 

2. Minimize the motion direction stiffness of the parallelograms 

Rewriting equation (3.32) in its dimensionalized form with no axial loads (fx=0): 
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Therefore, we can reduce the motion direction stiffness by increasing L3 or 

reducing H3 and T3.  

 

Considering these two objectives in conjunction, we observe that tradeoffs exist in 

choosing the dimensions L3, H3 and T3. However, we also notice that we can increase the 

rotational stiffness independently by increasing the beam separation 2W3 as long as the 

footprint is not significantly affected. Thus, there is a scope for making the clamp very 

effective i.e. achieve the desired bearing direction stiffness without stiffening the motion 

direction. In the next few sections, we would analytically derive the bearing direction and 
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motion direction stiffness of the CDPDP mechanism. In chapter 6, these results would be 

used to optimize the mechanism for maximizing the stroke of a comb-drive actuator with 

given footprint and voltage specifications.  

BCM Analysis 

All forces and displacements are normalized with respect to the beam parameters of the 

original paired double parallelogram unit. The mechanism comprises of 6 parallelograms 

with 3 force/moment relations each, 3 known forces (at the primary stage), 12 unknown 

displacements (3 at the primary stage, 6 at the secondary stages, 3 at the center of the 

rigid link) and 6 unknown forces (3 at each secondary stage). Thus, using the direct 

approach, we would have a total of 18 equations which in their original form might be 

almost impossible to solve analytically. We would therefore, employ a different approach 

by making many simplifying assumptions and approximations and eventually arrive at 

approximate stiffness expressions which are very close (to within 5% for uy≤0.2) to those 

predicted by FEA. We would list these assumptions with their justifications as we step 

through the derivation. Such an approach can be used for many other complex 

mechanisms where a very high accuracy of the results is not required. 

 

Figure 25 shows the free body diagram of a CDPDP mechanism when acted upon by 

forces at its primary stage. Writing the force and moment equilibrium relations for just 

the clamp, we find that: 
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Figure 25: Free Body Diagram of the CDPDP mechanism showing internal forces and moments 

Assuming that the beam separation in the base DPDP mechanism is large enough, the 

rotations θz1 and θz2 would be much smaller than the rotation of the clamp θz3. Therefore, 

the parallelograms in the clamp would rotate by the same amount: θz3. Moreover, we can 

relate this rotation to the relative motion direction displacement between the two 

secondary stages: 
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Using relation (3.3) for a parallelogram and using the fact that the displacements Ux1 and 

Ux2 would be small, we can neglect the contribution of the elasto-kinematic term and 

approximately write (For a more detailed justification, the reader is referred to Appendix 

B): 
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It should be noted that when re-dimensionalizing the equation, the dimensions of the 

clamp parallelograms are used. Moreover, the forces Fx1 and Fx2 can be obtained by using 

the motion direction stiffness equation for a parallelogram: 
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 Here, we have assumed that the forces Fy1 and Fy2 do not cause any significant 

stiffening/softening in the motion direction (Appendix B). Another point to note here us 

that the BCM coefficients k11
(0)

 are functions5 of the degree of reinforcement of the 

beams in the clamp parallelograms a0
c
 as shown in Figure 23. Using equation (4.3), we 

can obtain a relation between Ux1, Ux2 and Ux3: 
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Combining relations (4.3), (4.4) and (4.5), we get: 
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 (4.8) 

At this point, it would be useful to obtain an order of magnitude estimate of the force Fx1. 

In the absence of any bearing load (Fx=0), the secondary stages would displace in the y 

direction by equal amounts i.e. Uy/2. Using equation (3.2) for the outer parallelograms in 

DP1 and DP2, we can write: 

                                                 

5 Unless explicitly mentioned, these BCM coefficients are functions of a0, the degree of reinforcement of 

the beams in the base DPDP. 
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To obtain an order of magnitude estimate, we can assume that the Fx1 obtained from 

equation (4.6) using the above displacement would remain fairly unchanged when a 

bearing direction force is applied. This is valid as in case of a parallelogram, the 

kinematic displacement (equation (4.9)) would dominate the elastic and elasto-kinematic 

displacements for magnitudes of axial force fx up-to 10. Substituting the expression for 

Fx1 using relations (4.6) and (4.9) in equation (4.8): 
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Using some typical estimates for the variables involved (Table 2 and Table 3) the latter 

term is found to be about four orders of magnitudes smaller than the former. Hence, we 

can rewrite the above equation as: 
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The above force displacement relation has been non-dimensionalized using (2.5) w.r.t the 

dimensions of the base DPDP mechanism. Similarly, the axial forces Fx1 and Fx2 can also 

be non-dimensionalized: 
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With the above two sets of forces, we can now isolate the clamp from the rest of the 

mechanism and analyze the DPDP mechanism with external forces acting on its 

secondary stages, similar to the analysis done in the previous chapter. The parameters γ 

and η essentially capture the effect of the dimensions of the clamp in its entirety.   
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Table 3: Typical dimensions for the clamp 

Variable Order 

l3 0.1-1.0 

t3 1/50 

w3 0.3-1.0 

l2 1-2 

 

The rest of the analysis is divided into two parts – In the first one, we would obtain the 

motion direction stiffness of the mechanism in the absence of bearing direction force. 

This case can be handled very easily using symmetry arguments and the analysis done in 

the last chapter. We would conduct a very rudimentary optimization beyond this step to 

eliminate some more variables for the subsequent analysis. The second part deals with 

obtaining the bearing direction stiffness for a wide range of clamp effectiveness and the 

motion direction stiffness in the presence of bearing loads. 

 

When there is no bearing force acting on the primary stage, the mechanism is 

symmetrical about the y axis passing through the primary stage. Thus, the force fy would 

get split equally between DP1 and DP2 i.e. fy11=fy22=0.5fy (Figure 25). The effect of fx1 on 

the motion direction stiffness has been captured in equation (3.71) and can be directly 

used in this case for DP1 (or DP2): 
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The above equation represents the motion direction force displacement relation for the 

CDPDP mechanism with fx=0. The clamp introduces a non-linear stiffening term which is 

very similar to that seen in a clamped-clamped beam.  

 



 87 

The expression for fx1 given by equation (4.12) is an approximate one. In reality, the 

displacement Ux1 would be affected by this force and hence would be smaller than the 

purely kinematic component given by equation (4.9). However, if each of the 

parallelograms is adequately stiff in the bearing direction, we can ignore this contribution 

whereby the approximation becomes a good one for this analysis. 

 

The stiffness can be calculated as follows: 
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If we wish to limit this stiffening to less than say 5%, we can easily calculate the 

dimensions of the clamp required to achieve this. Using equation (4.14), we can write: 
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 (4.15) 

Assuming h3=h and t3=t and distributed compliance beams, (a0=a0
c
=0.5) this limit comes 

out to be around 0.5. For optimizing the bearing direction stiffness, we can now use this 

lower limit and determine the values of the other independent variables (W3 and L2) to 

obtain the required stiffness. For the next part, we would assume that the stiffening force 

fx1 is much smaller than the bearing force fx and hence, we would exclude it from the 

analysis. Doing this might lead to some loss of accuracy for larger y displacements and 

small bearing forces but would make the equations easier to solve which in turn would 

enable us to obtain closed form parametric results for the stiffness. 

    

Rewriting equations (3.66) and (3.67) for each of the double parallelograms DP1 and 

DP2 shown in Figure 25 while neglecting the contribution of fx1 and assuming that the 

clamp is not perfect i.e. uy1, uy2≠0.5uy: 
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Also, 
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Therefore, we have 10 equations in 10 variables (ux, ux1, ux2, uy, uy1, uy2, fx11, fx22, fy11, fy22). 

Solving the above equations along with equation (4.11) for the constraint force fy1, we 

obtain the following results6: 

 11 22 0.5x x xf f f   (4.18) 
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And the primary stage force-displacement relations: 

                                                 

6 These expressions are approximate because of series truncation.   
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The above results very compactly capture the effect of the clamp on the performance of 

the mechanism. They show that parameter η is directly correlated (positively) with the 

strength or effectiveness of the clamp. Table 4 lists the values of some variables of 

interest for the extrema of effectiveness (η=0,∞). The second column (η=0) lists the 

exact same results that were obtained for the DPDP mechanism in the previous chapter. 

This is equivalent to the clamp being completely ineffective i.e. applying no constraint 

forces on the secondary stages (fy1=0 from equation (4.11)). On the other hand, the 

column under (η=∞) shows results for the case when the clamp behaves as an ideal 

constraint i.e. restricts the secondary stages to exactly 0.5uy. As expected the expression 

for the bearing direction force displacement relation is devoid of the large kinematic term 

(k11
(1)

)
2
/k11

(0)
 and hence, there is a significant improvement in the bearing direction 

stiffness. The y direction force displacement relation is completely independent of the 

bearing direction loading fx which implies that as long as the requirement (4.15) is met, 

the motion direction stiffness would be almost constant over the whole range of 

displacements and loads.  

Table 4: Effect of η on displacement variables 

Parameter η=0 η=∞ 

uy1, uy2  
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The rotational stiffness of the DPDP mechanism wouldn’t be significantly affected by the 

clamp. Due to the weak dependence of the y force displacement relations on the applied 

moment, there isn’t a significant redistribution of y displacements when a moment is 

applied implying that uy1≈ uy2≈0.5uy. This in turn implies that the clamp rotation, 

moments Mz1,2 and forces Fy1,2 would be small. Moreover, as both the secondary stages 

would rotate in the same direction when a moment is applied as shown in Figure 26, the 

clamp would also rotate along with the secondary stage by almost the same amount 

thereby failing to provide any constraint forces (fy1) or moments (Mz1,2) on the secondary 

stages. The stiffening forces would still continue to act but they can also be minimized by 

increasing l3 (equation (4.15)). Thus, the clamp would barely influence the rotational 

stiffness and we can expect it to be the same as that for a DPDP mechanism i.e. twice the 

stiffness given by equation (3.64). This has been validated using non-linear FEA7 for a 

wide range of clamp dimensions (Figure 27).  

                                                 

7 With BEAM 4 elements and 20 elements per beam 
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Figure 26: Response of the CDPDP mechanism to an external moment 

 

Figure 27: Rotational stiffness of the CDPDP mechanism for different clamp dimension, 

Kθ(uy=0)=2.7e
4
Nm. a0

c
=0.5, h=h3, t=t3=1/50, l2=1.4. Dimensions of the DPDP same as before. 

Some of the salient features of the above analysis are listed below: 

1. Using reasonable approximations, we can significantly reduce the complexity of 

the solution procedure. This in turn, enables us to obtain closed form parametric 
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results quantifying the qualitative estimates that we made in the beginning of this 

chapter.  

2. With some insight into the working of the mechanism, we can decide whether 

there is a merit in carrying out a rigorous mathematical derivation to obtain its 

properties. For example, for the rotational stiffness of the mechanism, we chose 

not to pursue a complete derivation as with some intuitive arguments, we could 

conclude that doing so would not yield any significant gains; a claim that was 

later validated by FEA.  

3. The expressions obtained cover the entire gamut of clamp dimensions in a 

compact parametric manner making subsequent optimization much simpler.  

Performance 

Based on the results obtained from the previous analysis, we can now summarize the 

performance metrics for the CDPDP mechanism. We would also examine the effect of 

introducing beam shape variations (changing a0 and a0
c
) and adding multiple beams in 

the parallelograms that the mechanism comprises of (Figure 28). 
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Figure 28: CDPDP Mechanism with multiple grouped reinforced beam flexures.  Normalization would still 

be done w.r.t the original parameters (T and T3) 

Range of motion 

The range of motion of the mechanism would be the same as that of the DP and the 

DPDP mechanisms given by equation (3.59). Moreover, the effect of adding multiple 

beams or varying the degree of reinforcement a0 would also be the same as that shown in 

Figure 17.  

 

Error motions 

Like in the case of the DPDP mechanism, due to symmetry, both the axial and rotational 

error motions would be theoretically zero.  
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Motion Direction Stiffness 

 

Figure 29: The motion direction stiffness of the CDPDP mechanism for different dimensions of the clamp. 

The solid lines represent the predicted values whereas the circles show the corresponding FEA results. 

w1=1.0, w2=0.8, l2=0.9, t=t3=1/50, h=h3 

The motion direction stiffness in the absence of a bearing direction load is given by 

equation (4.14). The predicted (equation (4.14)) and the FEA results8 for different clamp 

dimensions have been found to be in good agreement (<5% error) as can be seen from 

Figure 29. As expected, there is virtually no dependence on the dimensions W3 and L2. 

For cases where stiffening is small, there is some discrepancy between the plots. This can 

be attributed to motion direction stiffening in the DPDP mechanism which was not 

captured in the BCM model. Because of the non-zero opposing theta error motions (3.60) 

of each of the double parallelograms, internal moments get generated. Furthermore, due 

to the weak dependence of the y direction force displacement relations of the double 

parallelogram on the applied moment, these moments, in turn, cause stiffening.   

                                                 

8 The stiffness was calculated using the forward difference method i.e. Ky(i)=(Fy(i)- Fy(i-1))/(Uy(i)-Uy(i)) 
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For the multiple-beam configuration, equation (4.14) can be rewritten as: 
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The above equation shows that we can decrease the nominal stiffness of the mechanism 

by increasing the number of beams (while simultaneously thinning them) in the 

parallelograms of the base DPDP mechanism. However, if we wish to decrease the 

relative amount of stiffening, we should increase the number of beams in the clamp 

parallelograms in a manner such that Nc>N. Doing this would also reduce the lower 

bound on the l3 which is evident from the updated version of equation (4.15): 
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In a later section, we would see how this would increase the scope for making the clamp 

more compact.  

 

In the presence of a bearing load, which is much larger than the stiffening force fx1, this 

stiffness is given as: 
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As discussed before, the clamp reduces the softening effect of the bearing force and in the 

limiting case it is completely eliminated. In Figure 30 , we plot this stiffness for different 

values of η (and γ) and compare it with FEA results. The Figure 30 shows that for small 

to moderate values of η, the values match closely. However, for larger values where the 

softening term is expected to decrease continuously with increasing η, the FEA results 

show that this term saturates to a constant value.  
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Figure 30: Softening due to bearing direction loads in the motion direction. At large values of effectiveness, 

there is a clear discrepancy between FEA and closed form results 

This discrepancy can be eliminated if we include the second order terms in the expression 

for the motion direction stiffness of a parallelogram i.e.: 
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 (4.26) 

Substituting this expression in the transverse direction relations in equation (4.16), and 

thereafter rewriting equations (4.19): 
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Finally, using equations (4.17) and (4.27) we get: 
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Figure 31 shows the comparison between the stiffness given by the above equation and 

the corresponding FEA results and shows good agreement between the two. Thus, for 

large effectiveness, we still have a small softening term left over. Nevertheless, we can 

still say that an effective clamp makes the motion direction stiffness fairly insensitive to 

non-linearity arising due side loading which can simplify the design of controllers in the 

case of comb drive actuators where errors in fabrication can lead to an offset between the 

comb banks causing an unpredictable bearing force.   

 

 

Figure 31: Softening in the motion direction due to bearing direction loads. Comparison between closed 

form solution with second order correction and corresponding FEA results 

With multiple beams, equation (4.25) becomes: 
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The above expression is completely independent of Nc. Moreover, increasing N causes a 

reduction in the nominal stiffness but increases the softening due to the applied force 

significantly (proportional to N
4
 when the η=0 and N

2
 as η becomes large).  

 

Bearing Direction Stiffness 

The bearing direction (x) stiffness can be obtained using equation (4.22): 
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 (4.30) 

The bearing stiffness is plotted against FEA data for different values of the effectiveness 

η in Figure 32. The plot shows that there is less than a 5% discrepancy between the 

predicted and the FEA results which is acceptable for most applications. In our analysis, 

we have not imposed any bounds on the effectiveness assuming that we can make it as 

large as possible by just changing the dimensions of the clamp. However, this is not true 

and the effectiveness is directly limited by the rotational stiffness of the double 

parallelogram. Figure 33 shows the bearing stiffness for different values of effectiveness 

for a smaller rotational stiffness of the double parallelogram (small w1 and w2). The error 

increases at larger values of effectiveness which is probably because for these 

dimensions, the rotational stiffness of the clamp becomes comparable to that of the 

DPDP. This in turn causes the secondary stages to rotate with the clamp reducing the net 

deflection of the clamp parallelograms which leads to lower moments Mz1,2, a lower 

constraint force Fy1 and consequently lowers the effectiveness of the clamp. This effect 

has been illustrated in Figure 34. This case has been dealt with in some detail in 

Appendix C.  
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Figure 32: The bearing stiffness of the CDPDP mechanism for different values of effectiveness. The solid 

lines represent the predicted values whereas the circles show the corresponding FEA results. w1=1.0, 

w2=0.8, l2=0.9, t=t3=1/50, h=h3.  

 

Figure 33: Bearing stiffness for w1=0.3, w2=0.2, l2=0.9, t=t3=1/50, h=h3. 
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Figure 34: Reason for discrepancy between predicted and FEA results at large values of effectiveness 

Rewriting the above equation for the multi-beam case, 
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 (4.31) 

Based on the constraints imposed on the bearing stiffness we can determine the other 

dimensions of the clamp. As we have more variables than constraints, we choose l2, h3 

and t3 to be fixed user-specified values leaving l3 and w3 as variables to be solved for. We 

can set the lower bound on l3 (say l3|min) using the constraint equation for the motion 

directions stiffness given by (4.24) in this step. As an example, let us set the kinematic 

term in the above equation which is a function of the effectiveness η, to be less than 5% 

of the elasto-kinematic term  k11
(2)

 i.e. 
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Substituting the value of η from equation (4.11)  
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 (4.33) 

Using a value of l3=0.57 (for a motion direction stiffening of 5%) and assuming h=h3, 

t=t3, l2=2, a0=a0
c
=0.5, N=2, T=1/200, l2=2, the required w3 comes out to be 0.44. As we 

would see later, there is seldom a need for such conservative bounds on the bearing and 

motion direction stiffness in which case, the overall clamp dimensions can be made 

smaller.  Moreover, by using multiple beams such that Nc>N, l3|min can be reduced 

(equation (4.24)) and consequently the lower bound on w3 would decrease according to 

equation (4.33). Finally, the degrees of reinforcement a0 and a0
c
 can be changed to further 

alter the bounds on l3 and w3. The choice of a0 and N would be made based on the 

application requirements as they primarily dictate the motion and the bearing direction 

stiffness of the mechanism (assuming that the clamp is effective). Beyond this point, 

using equations (4.24) and (4.33), we can choose a0
c
 and Nc to obtain the smallest 

possible size of the clamp.  
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Figure 35: l3|min and w3|min for different clamp variations 

As an example, let us assume a0=0.5 and N=2. Figure 35 shows l3|min and w3|min for 

different values of Nc and a0
c
. From the plots, we can infer that a large value of Nc would 

be preferred. However, this is not always possible as the minimum thickness and hence 

the largest possible Nc is often limited by manufacturing capabilities. Increasing a0
c
 

decreases l3|min but increases w3|min. However, we notice that: 
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 (4.34) 

i.e. the rate of increase of w3|min with increasing a0
c
 is larger compared to the rate of 

increase in l3|min with decreasing a0
c
 which implies that the optimum point would be close 

to a0
c
=0.1. The exact optimization would depend on the relative weights assigned to the 

two dimensions. For example, if the footprint is not sensitive to small variations in w3|min, 

the optimization can be solely done to minimize l3 (i.e. a0
c
→0.5 and large Nc).  

  

The rotational stiffness, as we discussed before, would remain relatively unchanged and 

hence, would exhibit the same trends as those seen in Figure 17.  

 

THE DOUBLE PARALLELOGRAM – TILTED-BEAM DOUBLE PARALLELOGRAM (DP-

DTB) 

The DP-DTB mechanism shown in Figure 36 offers an improved bearing stiffness 

compared to the DPDP mechanism without using any additional topological features like 

in the Lever-DPDP and Clamped-DPDP mechanisms. This mechanism has been 

presented and discussed previously [24, 36, 43] and a summary is presented here. The 

improved bearing stiffness of this mechanism is due to the complementary behavior of 

the DP and the TDP flexures. Referring to Figure 37, if the primary stage of a TDP 

mechanism is not rotationally constrained, the secondary stage is free to move in the y 

direction when a y displacement is applied at the primary stage. This unconstrained 
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motion of the secondary stage, in a manner similar to that in the DP-DP mechanism, 

causes a bearing stiffness drop in the TDP mechanism as well. However, when a θ 

constraint is applied at the primary stage along with a specified y location, two 

conflicting instantaneous centers of rotation C1 and C2 are created for the secondary 

stage locking its motion. (This affect does not occur in a DP flexure as in that case C1 

and C2 are at infinity). The DP flexure with its superior rotational stiffness, provides this 

constraint and hence stiffens the TDP flexure in the bearing direction subsequently 

improving the bearing stiffness of the entire mechanism. Furthermore, unlike the DP-DP 

flexure, the decline in the stiffness ratio in this case is dictated by the weak 

elastokinematic effect, which can be further reduced via beam shape optimization (degree 

of reinforcement a0).  
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Figure 36: The Double Parallelogram- Tilted Beam Double Paralleogram (DP-TDP) 
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Figure 37: Constraint behavior of the TDP flexure 

The analysis for the TDP flexure has been done by awtar et.al. [24]. However, due to the 

asymmetric nature of the overall DP-TDP mechanism, obtaining a closed form analytical 

solution is difficult, if not impossible. Another problem is the large internal forces and 

moments that get generated between the two halves of the mechanism. For such large 

forces, the approximate BCM model might no longer be valid and hence, the solution that 

we obtain using the model could be fairly inaccurate. Hence, we resort to using extensive 

FEA analysis to qualitatively discuss some characteristics of this mechanism. Table 5 

shows the parameters used for the non-linear FEA. The tilt angles α and β were chosen as 

the variables for this analysis as they have the strongest influence on the characteristics of 

the mechanism.  

Table 5: Dimensions of the DP-TDP flexure used in the FEA analysis. 

Dimension Value (microns) 

L 1000 
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T 3  

H 50 

W1 325 

W2 525 

 

Performance 

Error motions 

As we saw in chapter 3, the DP mechanism has theoretically zero x error motions and 

very small θ error motions. Thus, any error motions of the DP-TDP mechanism would be 

caused by the TDP mechanism. As the x and θ directions are DoCs of the DP mechanism, 

the overall error motion would be smaller than that of just the TDP at the expense of 

generating internal forces and moments between the two halves of the mechanism. These 

internal forces might introduce undesirable stresses in the beams causing premature 

failure and therefore reduced range of motion.  From the figures, we can see that the error 

motions are very small close to the α=β line, which is understandable as due to symmetry 

the error motions of the individual tilted beam parallelograms nullify (almost) each other. 

 

Figure 38: X error motions of the DP-TDP mechanism. α,β are in radians.  
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Figure 39: Theta error motions of the DP-TDP mechanism 

Motion Direction Stiffness 

The tilted configuration of the beams in the TDP flexure causes an increase in the 

nominal motion direction stiffness of the mechanism. For every tilted beam parallelogram 

in the TDP flexure, the y direction stiffness is directly proportional to the secant of the tilt 

in the beams. But as the tilt angles are small, the increase in stiffness is not significant. In 

the DP-TDP flexure, the primary cause for motion direction stiffening is the internal 

bearing direction forces and moments brought about by the kinematic conflict between 

the error motions of the DP (theoretically zero) and the TDP flexure. It is because of 

similar reasons that the P-P flexure has a Ky which increases exponentially with y 

displacements which makes it a poor single axis bearing even though it has a satisfactory 

bearing stiffness Kx. Therefore, the trends seen in Ky of the mechanism is similar to those 

seen in the error motions and as before, the tilt angles close to the α=β line would be 

optimal.   
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Figure 40: Motion direction stiffness of the DP-TDP flexure 

 

Bearing Direction Stiffness 

For the TDP flexure, in the limiting case as α,β→0 i.e. as it approaches the DP flexure, 

the instantaneous centers of rotation tend to infinity and hence, no longer oppose each 

other allowing unconstrained y motion of the secondary stage. As these angles increase in 

magnitude, the kinematic constraint on the secondary stage also increases. Figure 41 

shows that for tilt angles greater than 0, we see an improvement in the x direction 

stiffness which gradually increases as either or both of them increase and saturates at a 

certain angle (where the elasto-kinematic effect starts dominating the stiffness drop). 

Beyond this point, the trend reverses and we see a small decline in the stiffness because 

of the effect of the reduced nominal stiffness due to the tilt of the beams. The analysis 

also shows that the bearing stiffness depends on the magnitude and direction of the axial 

force and moment. However, they don’t change the trends seen in the plots and therefore, 

for the purpose of this qualitative discussion, we would ignore this dependence.  
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Figure 41: X direction stiffness of the DP-TDP flexure 

 

Figure 42: θ Direction Stiffness of the DP-TDP mechanism 

The rotational stiffness falls significantly for α,β>0. In fact Kθ for the DP-TDP 

mechanism is almost half that of the DP-DP mechanism. This is understandable as the 

rotational stiffness of the TDP flexure is much smaller than that of the DP flexure due to 

the presence of instantaneous centers of rotation C1 and C2. Figure 42 shows that tilt 

angles such that α≤β would be preferred. 

 

Considering all the characteristics discussed so far in conjunction, almost equal tilt angles 

α,β less than 0.15 radians would yield the most desirable properties of the DP-TDP 
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flexure. In chapter 6, we would use these results to conduct a case specific optimization 

using the objective function given by equation (1.18). 

 

In the next chapter, we would discuss the direct experimental validation for the results 

obtained for the CDPDP mechanism using a macro-scale modular, low cost and high 

precision setup. In a subsequent chapter, we would also briefly touch upon the indirect 

measurement of these attributes using micro-scale comb drive actuators.   
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Chapter 5: Experimental Validation of the Clamped Paired Double 

Parallelogram (CDPDP) mechanism 

Closed form parametric results for the stiffness and error motions were obtained in the 

last chapter for the CDPDP mechanism which were validated using FEA analysis. In this 

chapter, we would further validate these results by directly measuring forces and 

displacements at the primary stage in a macro-scale experimental setup. The experiment 

was designed to be reconfigurable so as to accommodate some variations of the 

mechanism without redesigning the entire setup. Moreover, as cost was a constraint, 

some novel low-cost methods were used for load application and measurement without 

compromising the precision of the results.  

Measurement Scheme  

An obvious question is where should we apply the loads and measure the resultant 

displacements? In all our previous analysis, the point of application of the loads was 

arbitrarily chosen to be at the center of the primary stage. However, if this location does 

not exactly coincide with the location of the center of stiffness of the mechanism, there 

would be a moment that would be generated in addition to the force causing a small 

rotation.  This moment doesn’t affect the bearing or motion direction stiffness of the 

mechanism because of the decoupling between the x, y and the θ direction force 

displacement relations.  
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Figure 43: Center of stiffness of the mechanism 
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In the experimental setup, however, the x (or y) displacement measured at any point 

would comprise of the pure x (or y) displacement brought about by the application of the 

load fx (or fy) and the rotation due to the moment applied about the COS (Figure 43) i.e.: 

 
xP xC PC CU U L q   (5.1) 

As the stiffness is defined w.r.t. displacement and forces at the COS of the mechanism, 

we need to decouple the two components of the x displacement. For doing this, we need 

to know the location of the COS. Although the location of the COS, which is a function 

of the y displacement  in most cases, can be determined using the BCM model and finite 

element analysis, its exact location in the actual setup might differ significantly due to 

manufacturing imperfections. It is because of the same reasons that we cannot apply 

loads and measure displacements at the COS directly. Thus, we would need a method to 

determine the COS experimentally as well. The derivation of the COS for the CDPDP 

mechanism has been done in the Appendix D. It was observed that the COS has a very 

weak dependence on the magnitude of the force fx but depends on the displacement uy. 

Hence, for the experimental validation, we can assume the COS to be a function of uy 

only.  

 

The objective of the experiment would be to obtain the following characteristics of the 

mechanism: 

1. Location of the center of stiffness at every y displacement (C) 

2. Error motions (ex(uy), eθ(uy)) 

3. Motion direction stiffness (ky) 

4. Bearing direction stiffness (kx, kθ) 

 

The last three properties have to be found w.r.t. the COS of the mechanism. The above 

objectives translate to the following: 

 

Apply 
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1. A motion direction displacement Uy 

2. An x-direction force which maintains perpendicularity with the motion direction 

at all displacements 

3. A moment on the primary stage 

 

Measure 

1. Motion direction load Fy at every Uy 

2. X-displacement of the primary stage 

3. Rotation of the primary stage 

 

Due to symmetry of the mechanism about the axis parallel to the y-axis and passing 

through the center of the primary stage, we can assume that the x-location of the COS is 

close to this axis. Hence, we can decouple the measurement of the Y-direction stiffness 

from x and θ direction measurements. Thus, using a force sensor to measure Fy and a 

displacement sensor to measure Uy, we can find the motion direction stiffness of the 

mechanism. For this, we could use the forward difference approach: 

  
    
 

y yf y yi

y yi

yf yi

F U F U
K U

U U





 (5.2) 

Where (Uyf-Uyi) is small. Or instead, we could obtain a polynomial curve-fit for the data 

points – (Fy, Uy) and use the slope of the curve to obtain the motion direction stiffness. 
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Figure 44: The placement of the sensors for measuring x-direction displacements and rotations of the 

stage. 

For obtaining the rest of the properties, we use two displacement sensors for the primary 

stage which would measure rotation as well as the x direction displacement of the stage. 

For now, let us assume that these sensors labeled S1 and S2 are placed a distance D 

(unknown) from the C with a separation of S (known) between each other as shown in the 

Figure 44. The sensors measure displacements Us1 and Us2 in the x-direction. From these 

two readings, we can obtain the rotation and the x displacement at the COS: 
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 (5.3) 

The error motions can be obtained in terms of D by actuating the motion stage in the Y 

direction with no bearing loads acting on it i.e.: 
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 (5.4) 

We now have three unknowns D(Uy), Kx(Uy) and Kθ(Uy) left to determine. For this we use 

a scheme where we apply two forces at different y locations of the primary stage 

individually at every y displacement as shown in Figure 45.  
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Figure 45: Force application on the primary stage. Also, ΔUs11= Us1|load=Fx1- Us1|no-load.  

Using this we get two separate sets of sensor displacements for every force applied. For 

every force we can write out four equations as follows: 
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 (5.5) 

Moreover, the y separation between the two forces can be known beforehand giving: 

    
1 2sepR R R        (5.6) 

If we take into account all the dependencies of the x and θ stiffness expressions on the 

magnitude of the forces and moments applied, we have an under-determined system with 

10 unknowns and 9 equations implying that we need to know the exact location of the 

COS to begin with in order to calculate the x and θ stiffness. However, if we ignore these 

dependencies in the rotational stiffness, we can determine all the unknowns in the 

equations at every y displacement uy.  
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Design of the setup 

The first task was to choose the dimensions of the mechanism. As there wasn’t a 

particular application that had to be designed for, the mechanism was designed around 

the available sensors, actuators and manufacturing capabilities. These are listed below: 

Actuation  

Motion (Y) Direction 

The motion direction has to be actuated using a position actuator. For this purpose, a PI 

actuator M-227.25 [55] with a lead-screw driven by a closed loop DC motor (Figure 46) 

was used. It has a stroke of 25 mm, can provide a maximum push/pull force of 40N and 

can withstand a maximum lateral force of 0.1N. Moreover, it also houses the rotary 

encoder with a minimum incremental motion of 0.05 μm. Finally, the actuator has a 

backlash of 2 μm. The actuator thus imposes the following constraints on the mechanism:
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Figure 46: The DC-mic assembly 
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The DC-mic is held in place by a flexure clamp as shown in Figure 46 to apply an even 

distributed clamping force on the body of the actuator. To prevent damage on the DC-mic 

due to lateral forces, an actuator isolator between the mechanism and the actuator is 

necessary. In this case it is simply a beam with high stiffness in the y direction but large 

compliance in the x direction which helps absorb parasitic displacements in that direction.  

Bearing (X) direction  

A side load has to be applied on the motion stage at two different locations for different 

uy. This loading has to maintain perpendicularity with the motion direction at all y 

displacements. For this purpose a novel scheme was utilized.  

 

Firstly, instead of using a pulley and weights suspension to apply the side load where 

because of friction, total load transmission might not occur, a virtual pulley in the form of 

a three string junction was used for load transmission as shown in Figure 47. By choosing 

the angle between the strings, we can control the amount of load applied on the stage:
 

 cot cotx LF F W    (5.8) 

W

φ 

FL

Fx

Primary 
stage

X
X (Bearing 
Direction)

Y (Motion 
Direction)

Fx

Alignment
pins
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Figure 47: Three-string junction for load transmission to the primary stage of the mechanism 

Moreover, as we know that for typical millimeter-scale dimensions, the x-direction 

motion would be of the order of a few microns9, we can assume that the angle between 

the strings wouldn’t change significantly when the weights are suspended thereby 

avoiding the need for readjusting the angle every time after applying the load or 

displacing the stage in the y direction. A protractor can be used to measure the angles to 

within a degree. We would later see that this uncertainty wouldn’t significantly affect the 

accuracy of the measurements.  

 

In order to maintain perpendicularity, an alignment plate was used with embedded 

dowels pins. The pivot of the string setup is on a stand resting on a manual xy stage (Thor 

Labs MT1) which has a range of 0.5” in each direction. Thus, whenever the primary stage 

is displaced, the manual stage can also be displaced along with the suspended weight to 

ensure marginal contact with the outer dowel. This scheme imposes the following 

restriction on the mechanism:
 

 
max6.35 | 6.35ymm U mm    (5.9) 
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Direction)Y (Motion 

Direction)

Primary Stage X

Y

W

Fx

Manual Stage

Alignment 
Plate

Alignment 
Pin

 

Figure 48: Top view of the three string junction. The manual stage can be moved in the y direction to keep 

marginal contact with the alignment pin.  

                                                 

9 Later, after all the dimensions are selected, this condition would be checked again to ensure that it is still 

satisfied.  
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Sensing 

Motion (Y) direction force Fy  

A load cell (ELFS- T3E-20L) [56] was sandwiched between the DC-mic and the 

mechanism to measure the force Fy as shown in Figure 49. The range of the load cell was 

20 Lb, much higher than the maximum load that the DC-mic can withstand. As the 

experiment was essentially a quasi-static one, the noise in the measurement could be 

minimized significantly by using strong low-pass filters and/or long sampling windows.  

DC-Mic

Adapter

Load
Cell

AdapterAdapter

Split-Ring
Sleeve

Coupling
block

 

Figure 49: Integration of the load-cell in the DC-mic assembly 

Bearing direction displacements (Ux and θz)  

Two capacitive probes (C23-C Low Resolution [57]) in a configuration shown in Figure 

44 are used for measuring these displacements. These are implemented in the setup as 

shown in Figure 50. These are ideally suited for this application as they are tolerant to 

relatively large Y displacements perpendicular to their measurement axis and have a small 

range (50 microns) with a high achievable resolution (~10nm).  
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Figure 50: Cap-probe assembly 

Each probe was mounted via a bronze bushing that is split along its length and is held in 

place via a radial set-screw as shown in Figure 50. The bushing helps distribute the force 

from the set-screw uniformly over the probe length, thus preventing any damage to the 

probe surface and associated loss of calibration.  

Manufacturing process and material selection 

As the mechanism is planar, it was made from a precision ground Al6061-T651 plate 

using wire electric discharge machining (wire-EDM) which provides very tight 

dimensional, flatness and angular tolerances for the flexure components while keeping 

the residual stresses low. Al6061 was chosen due to its good strength, corrosion 

resistance, machinability and electrical conductivity. The thickness of the plate was 

chosen to be 1” due to availability and to ensure sufficient out-of-plane stiffness. All 

other features and components were machined on a conventional CNC milling machine. 

 

The dimensions of the CDPDP flexure were chosen by imposing the above constraints, 

choosing a large enough effectiveness, keeping the stiffening in the motion direction to 
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be less than 5% and maintaining an adequate safety margin against yielding, and have 

been tabulated in Table 6 along with their justifications. The CDPDP flexure plate is also 

shown in Figure 51. The clamp has been moved inside the outer parallelogram to make 

the mechanism more compact.  

Table 6: Dimensions of the CDPDP mechanism 

Dimension Value Justification 

L 65mm 

Keeping the maximum 

displacement around 0.1L to 

maintain adequate safety 

margin against yielding of 

the beams. 

T 0.8mm 

To ensure that the 

maximum motion direction 

force is less than 40N 

a0 0.3 

Optimum value: Improves 

bearing stiffness 

considerably while not 

significantly increasing the 

y-direction stiffness 

H 25.4 mm 
Standard thickness of the 

plate 

W1 70.52mm Rotational stiffness of the 

DPDP unit >> rotational 

stiffness of the clamp 
W2 24.14mm 

W3 32.5mm 
Large clamp effectiveness 

L2 90.5mm 

L3 32.5mm 
Low stiffening in motion 

direction and large 
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effectiveness 
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Figure 51: The CDPDP flexure plate 

Design of Auxiliary Components and Dimensions  

Actuator Isolator 

The actuator isolator shown in Figure 52, i.e. a single beam positioned along the motion 

direction y, must be significantly more compliant in the x direction compared to the 

CDPDP mechanism. Therefore, its dimensions were chosen such that the stiffness of the 

isolator is almost four orders of magnitude smaller than the lowest x-direction stiffness of 

CDPDP mechanism i.e. 

 
 

410
6

x Isolator

x CDPDP y

k

k U mm








 (5.10) 
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Using equation (4.30) for the bearing stiffness of the CDPDP mechanism with the 

dimensions given in Table 6 and the motion direction stiffness of a single beam given by 

equation (2.11), the length Li of the actuator isolator was chosen to be 50mm (the beam 

cross-section was chosen to be the same as that in the CDPDP mechanism).  

Li

T

X (Bearing 
Direction) Y (Motion 

Direction)  

Figure 52: The actuator isolator with dimension labels 

 

Separation between cap-probes (D) and points of load application (Rsep) 

The sensor and actuation arrangement for the bearing stiffness measurement shown in 

Figure 45 is implemented on the flexure plate as shown in Figure 53. Table 7 shows the 

values of the dimensions involved. 

S1S2

S

12

Fx1Fx2

RsepD*
X

COS

R2 R1

 

Figure 53: Implementation of the measurement scheme shown in Figure 45. D*=D-R2-S/2 
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Table 7: Parameters of the measurement scheme 

Dimension Value 

S 30mm 

Rsep 43mm 

D* 103mm 

 

Fillets at flexure ends 

In the absence of fillets at the ends, the stiffness of the flexure beams can be significantly 

smaller than that predicted by closed form and FEA analysis which assume the support to 

be perfectly rigid. This is due to additional local flexibility at the juncture of a support 

and a flexure beam. Moreover, sharp corners can lead to large stress concentrations 

thereby causing premature static or fatigue failure of the mechanism. Howell et.al. [58] 

have analyzed this configuration and have obtained optimal fillet radii to mitigate these 

effects given below:

 

 

0.64   For half-plane junctures

1.1      For quarter-plane junctures

fillet

fillet

R T

R T




 (5.11) 

These fillet radii have been used in all flexure-support junctions (Figure 54) in the 

mechanism. 
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R=1.1T R=0.64T
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Figure 54: Fillets at flexure supports 

 

Thickness of ‘rigid’ sections and stages 

In all the previous analysis, all the stages were assumed to be perfectly rigid. In order to 

ensure this, the thickness of the stages was chosen to be such that the bending stiffness is 

almost three orders of magnitude larger than the flexure bending stiffness. As exact 

expressions are cumbersome to derive and an overkill for this purpose, we simply use the 

fact that the bending stiffness is proportional to (T/L)
3
. Comparing the bending stiffness 

between the stages and flexure strips and setting the ratio between them at O(10
3
), a 

minimum stage thickness of 14mm was obtained (Figure 55).  

 

For the sections between flexure strips, an order of magnitude difference was set between 

bending stiffness ratio for the compliant and rigid sections leading to a thickness value of 

3T for the rigid sections.   
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TS=14mm
T=0.8mm TR=2.4mm

 

Figure 55: Thickness of rigid sections and stages 

Finally, Figure 56 shows the entire setup with all the components labeled including the 

load-cell and cap-probe amplifiers and the DC-mic driver along with the USB data-

acquisition board connected to a host computer (not shown). The entire setup rests on a 

vibration isolation table to minimize effects of floor vibration (moreover, as mentioned 

before, long sampling windows are also used to further minimize the effects of 

extraneous noise and vibrations).  
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Figure 56:Complete Experimental Setup - 1)Dc-Mic, 2) Flexure Clamp, 3)Load Cell, 4)Actuator Isolator, 

5)Cap-probes, 6)CDPDP mechanism, 7) DC-Mic amplifier, 8)Cap-probe amplifier, 9)NI USB-DAQ, 

10)Alignment plate, 11)String for applying load, 12)Alignment pins, 13)Suspended Weight, 14) Manual 

stage and post 

, 

Error Analysis 

The primary sources of measurement error/uncertainty in this experiment are the 

following: 

1. Cap-Probe Resolution – δUs (m) 
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2. Load-cell Resolution – δFy (N)  

3. DC-Mic Encoder Resolution – δUy (m) 

4. String Angle Resolution – δφ (rad) 

 

All other angle misalignment errors – between the cap-probes and the reference surface 

Figure 50 and between the bearing load (Fx) transmitting string and the horizontal/ground  

Figure 47 or motion direction y Figure 48 can be ignored as they would vary as cosines of 

the error and hence, would be small. Errors in the elastic modulus of the material can be 

assumed to be less than 5% [59].  

 

Errors in Motion direction stiffness 

The motion direction stiffness is given by equation (5.2). Taking the variation on both 

sides: 
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(5.12) 

 

Errors in bearing direction stiffness (Kx and Kθ) 

Referring to Figure 45, the displacement measured by any particular cap-probe ΔUij 

where i indicates the probe number and j corresponds to the pin on which the load fx is 

applied is given by: 

 
0| |

xjij ij load f ij loadU U U     (5.13) 

The error can be obtained by taking variation on both sides: 
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Using equation (5.5), the error in the measurement of the rotation θzj can be obtained: 
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Similarly, the uncertainty in the applied loads Fxj due to errors in measurement of the 

angle φ can also be calculated using equation (5.8): 
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Using equations (5.5) and (5.6), the rotational stiffness can be solved for: 
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Taking the variation of the above on both sides: 
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Where errors in Fx and θz are given by equations (5.16) and (5.15) respectively. The 

location of the center of stiffness is given by: 

 2
2

2

z

x

K
R

F

qq   (5.19) 

Again, taking the variation of the above equation: 
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Next, the error in the axial displacement can be calculated using equation (5.5): 
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Finally, the uncertainty in the x-direction stiffness can be given by: 
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   (5.22) 

Uncertainty in parasitic motions (Ex and Eθ) 

The parasitic motions are given by equation (5.4). Following a procedure similar to one 

shown above, the estimates of uncertainty in these measurements are given below: 
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FEA Validation and predicted results 
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Figure 57: Sign conventions used for the experiment 
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The experimental setup and procedure was simulated using FEA and the predicted 

stiffness and displacement estimates were obtained. Figure shows the sign conventions 

adopted for this experiment. As before, BEAM 4 elements were used to model the 

compliant flexures and a force convergence tolerance of 10
-3

 was used. Figures Figure 58 

to Figure 61 show the motion, rotational, axial stiffness and the distance R2 of the COS 

from Pin 2 (Figure 53) calculated using FEA (solid lines) and closed-form results 

(circles) for the mechanism with dimensions tabulated in Table 6.  Error bars have also 

been added using expressions derived in the last section. The values for measurement 

uncertainties: δUs, δFy, δUy and δφ were chosen to be 5nm, 0.01N, 5 μm and 1 deg 

respectively.  Moreover, Fx1=Fx2=40N and φ1= φ2=0.25π Rad.  

 

Figure 58: Motion direction stiffness for the CDPDP flexure plate 
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Figure 59: X direction stiffness for the CDPDP flexure plate 

 

Figure 60: Rotational stiffness for the CDPDP flexure plate 
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Figure 61: Location of the COS for the CDPDP flexure plate. The closed form expressions are given by 

equation (D.10) 

Significant discrepancy can be seen between the FEA results and closed form results for 

the X-direction stiffness shown in Figure 59. This can be explained by taking into account 

the coupling between the x and θ direction relations. This case has been dealt with in 

Appendix D and this error has been eliminated to some degree. Finally, the expected 

displacements at the cap-probes and the rotations θz1 and θz2 have also been plotted in 

Figure 62 and Figure 63.  
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Figure 62: The expected displacement at the first cap-probe (S1) for loading on pin 1 and pin 2. 

 

Figure 63: The expected rotations of the stage for loading on pin 1 and pin 2.Rotations are in radians. 
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Preliminary Results 

Motion Direction Stiffness 

The motion direction force vs. displacement curve is shown in Figure 64. The force was 

observed to be predominantly linear with non-linearity of less than 3% over the range of 

5mm. Thus, the clamp has negligible influence on the motion direction stiffness which is 

desirable.  

 

Figure 64: Experimentally measured motion direction force vs. displacement curve 
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Chapter 6: Case Study: Comb drive optimization 

The comb drive actuator is an example of a single axis system whose performance is 

directly affected by the quality of the flexure bearing. In this chapter, we use the results 

obtained in chapter 4 to design comb drive actuators employing the CDPDP and DP-TDP 

flexures as motion guides with the objectives of achieving the largest possible stroke with 

minimum possible actuator effort and footprint. A systematic procedure to design comb 

drive actuators with these attributes which are desirable in micro and nano-positioners 

[60, 61] and micro-grippers [62, 63], would also be developed which can be used for 

other flexure guides as well. This procedure also encompasses restrictions imposed by 

fabrication capabilities and system requirements.   
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Figure 65: Pre-Bending in a DPDP flexure 
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Figure 66: Effect of pre-bending on the stroke of a comb drive actuator. At the critical pre-bend, the 

stiffness ratio curve intersects the required stiffness curve at exactly 3 points.  
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We would include certain design variations of the flexures – reinforced beams (Figure 7) 

and pre-bending or pre-tilting [37, 64] (Figure 65) to further boost the performance of the 

devices. Although the multi-beam parallelogram (Figure 12) can easily be incorporated in 

the design process, it has been excluded from this analysis as it offers no obvious 

advantage for this particular application. By pre-bending beams in a particular direction, 

one can shift the stiffness profile of the flexure thereby delaying the onset of snap-in and 

consequently increasing the stroke. This is illustrated in Figure 66 (B). However, there 

exists a limit beyond which additional pre-bending can cause a pre-mature intersection 

with the required stiffness curve (Figure 66 (C)). Thus, in order to maintain an adequate 

safety margin to disturbances and manufacturing imperfections, the actual pre-bend is 

kept sufficiently below this limit which can be easily determined for a flexure mechanism 

based on its stiffness properties.  

 

There are some fundamental differences between the optimization procedures for the 

CDPDP and DP-TDP cases. The CDPDP mechanism has theoretically zero error motions 

whereas the DP-TDP could have non-zero error motions (depending on the tilt angles). 

Moreover, because of asymmetry, the sensitivity to fabrication imperfections would be 

larger in the case of the DP-TDP mechanism which in turn would imply that the safety 

margin given by equation (1.15) must be larger for this flexure. For the CDPDP 

mechanism, we can simply use the snap-in condition given by equation (1.7) along with 

the closed form stiffness expressions derived in chapter 4. Moreover, as its rotational 

stiffness can be increased independent of the axial stiffness by increasing the beam 

separations w1 and w2, we can further assume a purely one dimensional snap-in model 

given by equation (1.6) instead of the two dimensional one (equation (1.7)) and choose 

the separations to ensure that the difference in strokes predicted by (1.7) and (1.6) is 

negligible. Consequently, for the optimization of the CDPDP mechanism for a comb 

drive actuator, we can directly use the objective function given in equation (1.18). Such a 

simplified governing equation for snap-in and hence a closed form objective function for 

optimization does not exist for the DP-TDP case. Moreover, we do not have complete 
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parametric results for the stiffness and error motions of this mechanism yet. Therefore, 

we would merely do a first-pass qualitative optimization for the DP-TDP mechanism here 

and lay out some guidelines for future work. 

CDPDP optimization  

In this section, we present a systematic procedure for holistically designing a CDPDP 

flexure based comb-drive actuator to maximize its actuation stroke while minimizing 

device foot-print and actuation voltage. Given the several constraints and tradeoffs 

involved, the goal here is to obtain a good starting point for the flexure and comb-drive 

dimensions shown in Figure 23 and Figure 3 respectively (L, T, a0, W1, W2, L2, L3, W3, G, 

Lf, and Tf ) based on some simplifying assumptions, and subsequently iterate to further 

refine the overall design.  

 

The following assumptions are made initially and are revisited during later design steps: 

1. Analytical results in the chapter 4 show that the optimization of the external 

clamp is decoupled from the final stiffness of the C-DP-DP flexure, as long as the 

clamp is effective. Since a clamp can be designed to provide near-optimal 

performance i.e. a high  (→ ∞) and low γ (→ 0), corresponding motion and 

bearing stiffness values are assumed at the on-set of this design procedure.  
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Where Izz=HT
3
/12 is the area moment of inertia of the beams in the base DPDP. 
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2. The motion stage, secondary stage, external clamp, ground anchors, and beam 

reinforcements are all assumed to be perfectly rigid.  

 

3. Since the in-plane rotational stiffness (Kq) of the C-DP-DP flexure can be made 

independently high, it is assumed large enough to be ignored in the first iteration. 

  

4. A Stability Margin of S = 1 is assumed to provide robustness against non-

deterministic factors arising due to fabrication imperfections. 

 

5. Silicon is chosen as the flexure and comb-drive material, which sets an upper 

bound for the maximum achievable stroke due to mechanical failure. For the C-

DP-DP flexure, the yield limit is given by equation (3.59) 

 

6. An initial comb-finger engagement Uy0 is needed to overcome fringing effects 

that are important for small Y displacements. The minimum initial engagement 

has been obtained theoretically and for an in-plane comb drive is given by: 

 
0 1.98yU G  (5.23) 

However, Y0 is much smaller than the maximum Y displacement and is therefore dropped 

initially in the design procedure.  

 

We next present a step by step recipe [32] for choosing the dimensions of the CDPDP 

and comb-drive that employs the analytical knowledge compiled so far. The optimal 

device would then be fabricated10 to demonstrate the performance improvements over the 

existing comb drive actuators: 

                                                 

10 Fabrication was done separately and is not a part of this thesis. 
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1. Start with assuming a dimension for the flexure beam length L, which directly 

impacts the device foot-print. In the first iteration, we start with a value of L = 1 

mm. 

 

2. Minimizing the T/L ratio reduces the bending stress in the flexure beams and 

therefore increases the material failure limit of the mechanism (equation (3.59)). 

Equation (1.18) shows that to achieve the best stroke to effort/footprint ratio, we 

must maximize the ratio Kx/Ky
3
. Inspecting equation (5.23), we see that Kx is 

proportional to T at small displacements and T
3
 at large displacements. From 

equation (5.23), Ky is proportional to T
3
 over the entire range of motion. Thus, the 

ratio Kx/Ky
3
 would be proportional to 1/T

8
 at small Ymax and 1/T

6
 at large ones. 

This implies that to maximize the ratio Kx/Ky
3
,
 
T should be kept as small as 

possible. The lower bound is dictated by practical limits of the micro-fabrication 

process. In our case, this limit is 1.7 m and with an adequate safety margin and 

we choose T = 3 m, which corresponds to a T/L ratio of 0.003. 

 

3. Now, the two key remaining design variables are a0 and G. Equation (1.18) can be 

rewritten for the CDPDP mechanism using equations (5.23) and (5.23): 
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The above condition can be plotted on an NV
2

max versus Uy|max graph for multiple fixed 

values of a0. Each solid line, referred to as an iso-a0 line represents a fixed value of a0 and 

varying values of G. Similarly, the above equations are solved to eliminate a0 and the 

resulting condition is plotted on the same plot for fixed values of G. For doing this, we 

first obtain the maximum stroke for a fixed G but varying a0 and then substitute this value 

in equation (5.24) to obtain the corresponding NV
2

max. Using equation (1.16), the stroke is 

given as the root of the following equation: 
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At large displacements, the elastic term can be dropped from the denominator of the x-

direction stiffness of the ideal CDPDP mechanism (η=∞) provided that the thickness is 

small enough. This limit can be obtained by imposing the constraint that the elastic term 

is less than or equal to 5% of the elasto-kinematic term at a displacement of about 0.2L 

i.e. using equation (5.23): 
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For this thickness we can approximately write: 
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Therefore, assuming that Uy0<<Uy|max, for the CDPDP, we can solve equation (5.25) to 

obtain: 
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This can be substituted in equation (5.24) to obtain NV
2

max(a0, Gc) for every value of a0 

and Gc. The plots between Uy|max given by equation (5.28) and NV
2

max for different values 

of a0 but fixed values of the gap size G are called the iso-G lines, shown as dashed lines 

in figure. Moving along an iso-a0 line, it is clear that for a given beam shape (a0), one can 

achieve the highest stroke by increasing the comb-gap G, but this also increases the 

actuation effort NV
2

max. Similarly, moving along the iso-G line, one can achieve greater 

stroke by reducing a0, which once again leads to a higher actuation effort.  



 141 

 

Figure 67: Design and performance space for a C-DP-DP flexure based comb-drive actuators 

From the design and performance space presented in figure, one can graphically choose 

the beam shape a0 and comb gap G to maximize stroke while minimizing the actuation 

effort. There is a lower bound on G dictated by the micro-fabrication process (2 m in 

this case) and obvious upper and lower bounds on a0 (0.5 and 0). These bounds produce a 

feasible design and performance space, indicated by the shaded region in figure.  

 

4. At this point, one can either set a maximum allowable actuation effort and pick 

the corresponding actuation stroke; or alternatively choose the desired actuation 

stroke and pick the actuation effort. We choose a desired actuation stroke greater 

than or equal to 250 m.  

 

5. For a desired stroke, clearly smaller values of ao and G in the feasible design 

space result in the lowest actuation effort. However, one has to be cautious while 

choosing small values of these two design variables. Small ao leads to 

increasingly higher stresses in the flexure beams and the material failure becomes 
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a concern. For a given Uy
|
max, a0 may be chosen to maintain an adequate margin of 

safety against material failure using equation (3.59). This condition could be 

incorporated in figure further shrinking the feasible design space. Separately, the 

snap-in condition becomes highly sensitive to error motions Ex for very small G, 

and the assumed safety margin S of 1 can prove to be inadequate. For our final 

designs, we chose a0 = 0.2 and G values in the range of 3‒6 m. 

 

6. Having chosen ao and G in the previous step, we now have a numerical value of 

the actuation effort from Figure 67. The number of comb-fingers N can be chosen 

next, while keeping the maximum actuation voltage Vmax within relevant practical 

limits. We selected Vmax = 150V based on our existing instrumentation 

capabilities. 

  

7. One can now start to lay out the flexure mechanism and the comb-drive. The 

dimensions W1 and W2 should be chosen such that rotational stiffness Kq given by 

equation (5.23) is adequately high. If it is more than an order of magnitude higher 

than KxLoff
2
 at Uy|max, the contribution of the rotational stiffness can be entirely 

ignored. Here Loff is the distance along Y axis from the center of the flexure 

mechanism to the tip of the comb fingers (Figure 3). If this condition is not met, 

then the rotational stiffness should be taken into account in the next iteration 

using a modified version of the snap-in condition (equation (1.7)). The ratio (γ) 

between the reduced actuation stroke due to finite rotational stiffness and the 

predicted stroke assuming infinite rotational stiffness is graphically illustrated for 

two values of a0 in Figure 68.  
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Figure 68: Reduction in predicted actuation stroke in the presence of finite rotational stiffness 

8. The external clamp is designed next. Using equation (4.24), choose L3 to be large 

enough so that the increase in the motion direction stiffness Ky due to the clamp 

over the above-selected Uy|max is within a few percent (5%, in our designs). The 

sensitivity of the footprint to the dimensions W3 and L3 dictates the choice of T3. 

For example, if the dimension L3 affects the footprint more, then we should 

choose a small value of T3. (according to equation (4.24)). For now, we fix T3=T. 

Next, using equation (4.33), we determine W3. With an effective clamp thus 

designed, it can now be included in the overall device layout. 

 

9. Next choose the in-plane thickness of the reinforced beam section to be at least 5 

times the thickness of the end-segment (T), which ensures more than 125 times 

bending stiffness. Furthermore, choose the in-plane thickness for the motion 

stage, secondary stage, and the external clamp to be at least 40 times T. If these 

dimensions are chosen to be less for whatever reason, then the contribution of 

these stages to the bearing direction stiffness Kx should be estimated, and a 

revised snap-in condition with this reduced effective Kx should be used in the next 

design iteration.  
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10. The initial overlap Uy0 can be chosen based on equation (5.23). The comb finger 

length Lf should subsequently be chosen to be slightly greater than (Uy0+Uy|max). 

For this comb-finger thickness Tf should be chosen to avoid local snap-in of 

individual fingers [65]. This is given by the following condition: 
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 (5.28) 

A margin of safety may be included (1.5, in our case) while using the above 

relation.  

 

11.  The depth of the flexure beams and comb-fingers, Hf does not play a role in the 

overall actuator performance and should be selected to be large enough to avoid 

out-of plane collapse during the fabrication or operation.  

 

This concludes the first iteration of the overall actuator’s dimensional layout including 

the flexure and the comb-drive. If the device foot-print turns out to be too large or too 

small, one can start the process again from Step 1 with a different value of beam length L. 

Once an acceptable foot-print is achieved, a final check on the actuation, snap-in, and 

material failure conditions should be performed while removing the previously listed 

assumptions. Specifically, the choice of Stability Margin (S) should be dictated by the 

selected comb-gap value G and the accuracy of the micro-fabrication process used. 

Accordingly, a higher value of S may be used in subsequent iterations. These iterations 

can lead to further refinement of the flexure and comb-drive dimensions.  
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Figure 69: A CDPDP comb drive actuator layout. All rigid sections are assumed to be of the same 

thickness Rt 

Alternatively, one might pursue a computational approach to optimize the device 

dimensions with the objective of maximizing the stroke Uy|max for a given footprint. Most 

of the constraints listed here have already been discussed in the previous section. When 

the device layout is defined, we can analytically obtain the expression for the footprint of 

the device. For the layout shown in Figure 69, we have: 

     2 max2 2 2 2 0.5 |t f f yA L R N T G T G W U         (5.29) 

It is interesting to see that the footprint of the device also includes the area occupied at 

maximum stroke and therefore, the y dimension of the device footprint is 

(2W2+0.5Uy|max). If the device allowed for bi-directional actuation, this dimension would 

have become (2W2+Uy|max). If the maximum allowable footprint of the device is axa, we 

can impose individual constraints on the dimensions of the device i.e. 
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   2 2 2t f fL R N T G T G a       (5.30) 

  2 max2 0.5 |yW U a   (5.31) 

Fabrication and testing capabilities would impose the following constraints on the 

voltage, gap size and the thickness of the beams: 

 150V   (5.32) 

 , 2G T m  (5.33) 

The beam separations W1 and W2 are related to length of the clamp parallelograms L3 as 

follows: 

 
2 1 32 2 2 tW W L R    (5.34) 

The dimensions of the individual comb fingers are governed by the following relations: 

  max 0|f y yL U U   (5.35) 
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The objective function i.e. the stroke of the device can be numerically obtained by 

solving equation (1.7) with Loff≈Lf and stiffness expressions given by (Assuming H=H3 

and T=T3): 
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 (5.38) 

And the rotational stiffness given by equation (5.23). Finally, the Y direction equilibrium 

relation given by equation (1.17) imposes a constraint on the motion direction stiffness 

Ky. Obviously, the constraints on the thickness of the stages and the rigid sections do not 

directly affect the above problem and hence, can be separately satisfied. Because of the 
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coupled nature of the equations presented above, the problem might be computationally 

very intensive to solve and hence, the application requirements have to be carefully 

considered to warrant the use of this approach. 

 

In most cases, the simplified iterative procedure provided before would suffice and that is 

what we employ for designing devices for testing and validation. However, if we have a 

multi-axis system or additional objectives such as maximizing the resonant frequency as 

well, then we might have to use the more rigorous computational approach.  

 

Figure 70: SEM image of a micro-fabricated comb-drive actuator employing the C-DP-DP flexure[32]. 

The fabrication and testing of the devices designed using the iterative procedure (steps 1 

to 11) was carried out separately and is not a contribution of this thesis [32]. A fabricated 

CDPDP comb drive actuator is shown in Figure 70. Here, we merely present the results 

in Table 8 which validate the analytical predictions. The measured stroke of conventional 

DPDP flexure with these dimensions and a0 = 0.5 was 50 µm. Referring to Table 8, this 

indicates that S = 1 is a reasonable stability margin to use for the DPDP flexure and the 
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micro-fabrication process described above. The measured stroke increases to 119 µm for 

a CDPDP flexure with the same dimensions as the previous DPDP flexure. This stroke 

was further increased to 141 µm by using reinforced beams with a0=0.2, while keeping 

all other dimensions the same. This stroke is 2.82 times higher than the DPDP flexure, 

which highlights the superior performance of the reinforced CDPDP flexure compared to 

the traditional DPDP flexure. In last two cases, Table 8 indicates that S = 1 or 1.5 may 

not be an adequate stability margin when G is small (3 m) and actuation voltage are 

relatively higher (> 90V). 

 

As shown previously, the stroke of comb drive actuator can be further improved by 

increasing the comb gap G. This is also demonstrated in Table 8, where stroke of 215 µm 

was obtained using a CDPDP flexure with beam length of 1 mm, comb gap of 4 µm, and 

a0=0.2. The benefit of beam reinforcement is also evident here. With an identical design, 

the experimentally measured stroke is 170 µm and 157 µm for a0=0.3 and a0=0.4, 

respectively. Finally, a large stroke of 245 µm at 120V was obtained for a CDPDP 

flexure with beam length of 1 mm, a0=0.2, and comb gap of 6 µm.   

 

In the last four designs, given the larger comb-gap, a stability margin of S = 1 or 1.5 

appears to be adequate. In fact, an even smaller stability margin may also be considered 

because, in these cases, the experimentally measured stroke was limited due to a Y 

direction pull-in as opposed to the X direction snap-in considered in the design 

procedure. 
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Table 8: Comb-drive actuators that were designed, fabricated, and tested. All dimensions are in 

micrometers. 

Flexure 

Design 
G Tf N Lf  T L L2 L3 W1 W2 W3 H a0 

Predicted/Designed 

Stroke 
Measured 

Stroke 

Voltage at 

Stroke (V) 
S=0 S=1 S=1.5 

DP-DP 3 6 50 150 4 1000 -- -- 400 250 -- 50 0.5 59 50 47 50 85 

C-DP-DP 3 9 80 210 4 1000 1000 430 790 250 240 50 0.2 228 191 181 141 95 

C-DP-DP 3 7 80 180 4 1000 1000 430 790 250 240 50 0.5 164 138 130 119 90 

C-DP-DP 4 8 70 240 3 1000 1000 430 810 250 240 50 0.2 272 230 218 215 104 

C-DP-DP 4 7 70 210 3 1000 1000 430 790 250 240 50 0.3 224 188 178 170 91 

C-DP-DP 4 7 70 190 3 1000 1000 430 780 250 240 50 0.4 202 169 160 157 91 

C-DP-DP 6 8 100 290 3 1000 1500 430 875 300 360 50 0.2 341 287 271 245 119 

 

The symmetrical Kx/Ky stiffness profile of the CDPDP mechanism allows bi-directional 

actuation, and therefore twice the actuation stroke (~500 m) for approximately the same 

device footprint and actuation voltage. For unidirectional operation, the stroke can further 

be improved by pre-bending the beams of a CDPDP flexure. Compared to the DPDP 

case, here the maximum pre-bend limit is much higher, while maintaining S=1 (Refer to 

Appendix E for the derivation): 
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For typical dimensions (L=1 mm, G=3 µm, a0=0.2), this allowable pre-bend is as large as 

400 µm, which in theory could lead to a Y displacement of approximately 500 µm at 

snap-in. Thus, ultimately the flexure and the comb drive may be designed such that the 

actuation stroke is limited by the material failure criteria or the available actuation 

voltage, instead of sideways snap-in instability.    

Stroke Comparison 

While a direct comparison of the actuation stroke with previously reported comb-drive 

actuators is tricky because of the many variables (beam length, comb gap, maximum 

voltage, device footprint, etc.) and specific application based constraints involved, we 

present a simple analytical basis that provides some level of comparison.  
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At large displacements, we can approximate the bearing direction stiffness of the CDPDP 

mechanism by equation (5.27). With this stiffness, equation (5.24) can be rewritten as: 
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Here S is no longer assumed to be 1 instead, it is retained as a function of the error 

motions Ex, given in (1.16). It can be separately shown that for most flexure mechanisms 

based on the parallelogram module (e.g. P, DP-DP, C-DP-DP, etc.) that are used in 

comb-drive actuation, a relation analogous to the above equation can be derived. 

However, for devices with pre-bend, the above relation has to be revised. We can still 

neglect the elastic stiffness term (1/k33) w.r.t. the elasto-kinematic term to obtain a 

relation similar to that in equation (5.27) (Appendix EAppendix E): 

 

     

2

23 2

11 0

4
2 zz

x

y ypr

EI L
K

L U U k a

 
  
  

 (5.41) 

Thus, equation (5.40) can be rewritten as: 
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The goal is to maximize the left hand side of the equation for a fixed set of device and 

material parameters N, V, L, T, ε and E. This implies comparing the second non-

dimensional term on the right hand side of the above expression which entirely captures 

the flexure stiffness and error motion properties. As all of the devices that we are 

considering are silicon based and operated in air, the permittivity and young’s modulus 

do not vary significantly and hence are included in the second term. Thus, in figure, we 

plot (Uy|max (Uy|max-Uypr)
2
)
1/3

 vs (NV
2

maxL
4
/T

3
)
1/3

 for in-plane comb-drive actuators 

reported in previous literature. The performance of a given device can be estimated by 
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comparing the slope that it makes at the origin of the plot. The Figure 79 shows a 

significant performance improvement offered by the CDPDP mechanism.     

DP-TDP Optimization 

For this device, we would consider a layout shown in Figure 71 similar to that used for 

the CDPDP actuator in the previous section. As before, we can use the rigorous 

numerical optimization method to come up with the dimensions of the device. As 

mentioned before, this mechanism exhibits finite error motions and hence, none of the 

simplified snap-in conditions (equations(1.6), (1.7) and (1.14)) can be used in this case. 

Therefore, we would have to resort to using the numerical solution procedure 

summarized in chapter 1 (equations) to obtain the stroke at snap-in.  Moreover, we would 

have to include finite element analysis in the optimization loop as well to calculate the 

stiffness and error motions of the mechanism for every set of parameters (W1, W2, α, β, T, 

a0, L). Needless to say, this increases the complexity of the problem several fold. A 

closed form parametric solution for the characteristics of the flexure mechanism can 

simplify the solution procedure significantly.     
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Figure 71: The DP-TDP comb drive actuator layout  

We would not pursue the above approach here but use a fairly simplified graphical 

method to arrive at an approximate solution. Only the tilt angles α and β are chosen as 

variables and the rest of the dimensions of the flexure are the same as those considered in 

chapter 4. Thus, we can directly use the FEA plots of stiffness and error motions from the 

same discussion in the design of this actuator. From these results, we previously 

concluded that a value of α close to β would give the best characteristics of the 

mechanism. In this section, we take this a step further and with appropriate 

approximations, converge on values of α and β that give near-optimal performance i.e. a 

large stroke for low actuator effort. To begin, we choose a sector around the α=β line 

such that the x-error motions are less than the gap size. This sector is the shaded region 

shown in the contour plot (Figure 72) of Figure 38 for a gap size of 5 μm. 
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Figure 72: Contour plot of Ex(m) for the DP-TDP mechanism. The tilt angles are in radians. 

Inspecting Figure 72, Figure 73, Figure 74 and Figure 75, we can further narrow down 

the optimal space to α, β>0.1. In this region, Figure 73 shows that Eθ≤0.0005. Assuming 

Lf and hence Loff for the layout shown in Figure 71 to be around 200 μm, we find that Loff 

Eθ≤0.1 μm  which is much smaller (<2%) in comparison to the gap size. Referring to 

equations (1.9) and (1.10), this implies that we can neglect the effect of the rotational 

error motions on the snap-in conditions. Moreover, Figure 76 shows that the ratio 

between Kθ and KxL
2

off is always greater than 5 in the feasible space and hence, for the 

first iteration we can use a purely one dimensional model for snap-in. We can thus, 

directly plot (Figure 77) the metric given in equation (1.18) i.e. Kx/(1+S)K
3

y and choose 

the configuration corresponding to the maxima in the plot. The maximum occurs at 

α=0.14 and β=0.17 radians. For these dimensions, the stroke obtained is     around 154 

microns. 

 

Beyond this point, we can redraw plots for the error motions and stiffness at Uy=154 

microns and obtain new values of the tilt angles and subsequently the updated stroke. We 
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can then repeat the process till we converge on a set of tilt angles and the corresponding 

stroke. Moreover, we can use the one dimensional snap-in model for the subsequent 

iterations as well as none of the assumptions get violated in this displacement range. For 

these dimensions, the optimal tilt angles obtained before do not change significantly in 

the subsequent iterations.   
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Figure 73: Contour plot of Eθ (in radians) for the DP-TDP mechanism. 
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Figure 74: Contour plot of Ky (in N/m) for the DP-TDP mechanism. 
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Figure 75: Contour plot of Kx (in N/m) for the DP-TDP mechanism. 
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Figure 76: Contour plot of Kθ/(KxL
2
off) for the DP-TDP mechanism. 

 

Maximum 

 

Figure 77: Plot of the objective function for Uy=0.2L. The maximum occurs at α=0.14, β=0.17. The(1+ S) 

used here is simply the theoretical factor due to axial error motion (Ex) and does not include the effect of 

imperfections  
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For the actual devices that were fabricated and tested in [36], tilt angles were chosen as 

α=0.11 and β=0.1411 while keeping all other dimensions the same as before. The 

predicted stroke with these dimensions is 141 microns which is not significantly different 

from that obtained with α=0.14 and β=0.17. The measured actuation stroke at snap-in for 

the conventional DP-DP flexure with the above dimensions was 75 µm at 45 volts. The 

actuation stroke for a DP-TDP flexure with the same dimensions was measured to be 125 

µm at 70 volts. As expected, an even higher stroke of 149 µm was measured for a DP-

TDP flexure with the same overall dimensions but using reinforced beams (a0 = 0.2). On 

comparison with the predicted actuation stroke (Table 9), these experimental 

measurements also show that for the DP-DP flexure because of symmetry, a stability 

margin of S = 0 is acceptable. However, because of asymmetry in the DP-TDP 

maintaining a stability margin of S = 1 is necessary. 

Table 9: Comb-drive actuators that were micro-fabricated and tested. Comb-drive dimensions are same in 

all cases: G = 5 m, comb-finger length Lf = 190 m, in-plane thickness Tf = 6 m, out-of-plane thickness 

Hf = 50 m, and N = 70. Flexure beam length L = 1000 m and in-plane thickness T = 3 m in all cases. 

All dimensions are in microns. 

Flexure 

Design 
W1 W2 a0 

Designed 

Stroke 
Measured 

Stroke 

Voltage 

(V) 
S=0 S=1 

DP-DP 450 250 0.5 76.7 54.2 75 45 

DP-

TDP 
525 325 0.5 141 122 125 70 

DP-

TDP 
525 325 0.2 178 156 149 86 

 

                                                 

11 These values were obtained with a coarser mesh of α and β 
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Figure 78:  SEM image of micro-fabricated comb-drive actuators based on the DP-DP and DP-TDP 

flexures. 
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Figure 79: Performance comparison between different comb drive actuators. The references are as follows: 

Legtenberg, 1996 [33], Chen, 2003 [66], Grade, 2003 [34], Grade, 2004 [67], Zhou, 2004 [37], 

 Hou, 2006 [68], Brouwer, 2010 [54], Awtar, CDPDP 2012 [32], Awtar, DP-TDP [36]  
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The performance of these devices is also compared with other comb drive designs in 

Figure 79 which shows the improvement offered by the DP-TDP mechanism. It also 

shows that the CDPDP mechanism performs marginally better than this mechanism. 

However, the DP-TDP mechanism offers some other advantages compared to the 

CDPDP mechanism – a much smaller footprint and bi-directional access to the motion 

stage. With bi-directional actuation, the net range of motion of this mechanism is twice 

that for the unidirectional actuation i.e. about 300 μm. With this stroke, the DP-TDP 

mechanism can perform almost as well as the CDPDP comb drive actuator where it might 

be difficult to do bi-directional actuation. As before, we can improve the stroke in a 

particular direction by pre-bending the beams.  

 

In this section, we looked at how using very simple graphical techniques, we were able to 

optimize the DP-TDP mechanism for obtaining a large stroke. Obviously, this isn’t a 

global optimum but with this approach we could show the relative improvement offered 

by this mechanism over existing designs. It should be noted that this process was also 

assisted by some favorable characteristics of the mechanism like small theta error 

motions and large rotational stiffness in the region of interest. This might not be true for 

other designs in the future and therefore there is a need to devise parametric and compact 

criteria for a generalized snap-in as opposed to the numerical approach described in 

chapter 1. 
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Chapter 7: Conclusions and Future Work 

Contributions  

The specific contributions of this thesis are summarized below: 

1. Development of metrics for comparison of the bearing behavior of single axis 

planar flexure mechanisms. These were the range of motion, error motions, the 

motion direction stiffness and the bearing direction stiffness. These offer 

estimates of only the static or quasi-static performance of the flexure mechanism 

with scope for incorporating additional metrics for the dynamic performance 

without reformulating the existing ones. A bearing is said to perform well if it 

offers a large range of motion, small or negligible error motions, small motion 

direction stiffness and large bearing direction stiffness.  Moreover, some 

applications such as comb drive and voice coil actuators were discussed where 

these quantities directly affect the behavior of the devices.  

 

2. These metrics were then quantified for some existing flexure mechanism i.e. the 

parallelogram (P), double parallelogram (DP) and lever double parallelogram (L-

DP) for which some additional results were derived based on the existing beam 

constraint model. These include expressions for the yield criterion of a flexure 

which limits the range of motion and derivation of the error motion and stiffness 

characteristics from the force displacement relations derived previously. Where 

force-displacement relations were not available like in the case of the L-DP 

mechanism, a qualitative analysis of the performance metrics was done using 

extensive FEA analysis for various configurations and dimensions of the 

mechanism.   
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3.  Some variations of these flexure mechanisms were also discussed which do not 

alter the overall topology of the mechanism like the reinforced beam flexure and 

the multi-beam parallelogram. Wherever necessary, additional results were 

derived for the metrics of the mechanisms which incorporate these variations. 

Moreover, the influence of these modifications on the metrics is also examined to 

come up with criteria that can further boost the performance of the mechanism.  

 

4. The non-linear strain energy formulation for flexure mechanism that is consistent 

with the beam constraint model was also revisited for the existing mechanisms. 

An algorithm was developed to simplify the total strain energy expression for 

these mechanisms based on order of magnitude estimates, which were obtained 

using the BCM model and/or finite element analysis for the displacement and 

dimensional variables involved. This was done in a manner that preserves the 

force displacement relations that one obtains by applying the principle of virtual 

work on the actual strain energy expression. This algorithm was then applied to 

the two-beam and the multi-beam parallelograms to obtain the exact same 

expressions that were derived using the BCM model.  

 

 

5. Force-displacement relations for the CDPDP mechanism were derived using the 

direct BCM model. Appropriate assumptions were made wherever required with 

justifications to simplify the solution procedure. The obtained relations agreed 

with finite element predictions for a wide range of dimensions. The sources for 

any discrepancies were also identified and some measures were suggested which 

could be used to eliminate them. The relations were extended to incorporate beam 

reinforcement and multi-beam parallelograms. Finally, some guidelines were laid 

out for choosing the dimensions of the mechanism in order to obtain optimum 

performance.        
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6. The characteristics of the DP-TDP mechanism were discussed qualitatively using 

finite element analysis in a manner analogous to that for the L-DP mechanism. 

The difficulties that might be encountered while trying to obtain a closed form 

parametric solution were also discussed. Some critical dimensions of the 

mechanism were identified and were used in the parametric FEA. Based on the 

results, some estimates were made for the optimum choice of these dimensions to 

obtain the best possible performance.  

 

7. Detailed design, fabrication, assembly and testing of a low cost, reconfigurable 

and high precision setup to directly measure the properties of the CDPDP 

mechanism in order to validate the force displacement relations derived before 

was discussed. One of the possible configurations is the DPDP mechanism and 

therefore, using the same setup, one could show the performance improvement 

offered by the CDPDP mechanism. A complete error analysis was done to 

examine the effect of fabrication imperfections and measurement uncertainties on 

the stiffness and error motions of the mechanism. 

 

8. As a case study, systematic methods to design a flexure mechanism as a motion 

guide for a comb drive actuator were laid out with the objective of maximizing 

the stroke for given footprint and voltage specifications. With the analytical 

framework for the CDPDP mechanism already presented, the design approach for 

the CDPDP mechanism was more detailed and deterministic. However, for the 

DP-TDP mechanism, due to the lack of parametric results for the stiffness and 

error motions, only a first-pass analysis was done with only a few dimensions 

chosen as the variables while others chosen almost arbitrarily at the onset of the 

procedure.  MEMS comb drive actuators based on the device designs obtained 

from these procedures were then fabricated and tested as a part of a separate 
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project by Dr. Mohammad Olfatnia12. It was found that the CDPDP flexure 

offered a very large stroke of 245 microns and the DP-TDP gave a stroke of 145 

microns which are about 5 and 3 times respectively larger than that given by the 

DPDP mechanism for the same dimensions. 

 

9. A need for a reliable metric for the comparison of the performance of different 

flexure mechanisms in a comb drive actuator was soon identified. Thereafter, a 

metric was defined which offers a good measure of comparison between the 

flexure mechanisms that have been considered in this thesis. Based on this metric, 

it was found that the CDPDP and the DP-TDP mechanisms offer significantly 

improved performance over the previously reported comb drive devices. 

Moreover, the CDPDP mechanism performs marginally better than the DP-TDP 

mechanism. However, the DP-TDP mechanism makes up for this shortcoming by 

offering a lower footprint and bi-directional access to the motion stage, which 

might not be possible in the CDPDP mechanism.  

Future Work 

In this thesis, it was shown how some valuable insights into the nature of a mechanism 

can enable us to make some approximations which can significantly simplify the 

equations describing the characteristics of the mechanism thereby making closed form 

solutions possible in many cases. A theoretical framework has been created which allows 

for a lot of scope for future work in this area. Some of the foreseeable work that can be 

done to improve upon or extend the ideas that have been presented in this thesis is listed 

below: 

 

1. A metric for the dynamic behavior of flexure mechanisms has to be created which 

could incorporate resonant frequencies, modes and structural damping. For comb-

                                                 

12 Department of Mechanical Engineering, University of Michigan, Ann Arbor 
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drive actuators this would give a measure of the bandwidth of the device. 

Obviously, there is a direct tradeoff between bandwidth and stroke, and with this 

metric in place, we could do a multi-objective optimization to maximize the 

stroke and the bandwidth instead of just the stroke like we did in chapter 6. 

 

2. Closed form solutions for the system of equations obtained for the DPDP and the 

CDPDP mechanisms by applying the principle of virtual work could be obtained 

by applying further approximations on the strain energy expressions for each of 

these mechanisms. Also, instead of using the parallelogram as the building block, 

one could use the double parallelogram mechanism as a higher level block for 

more complex mechanisms. Unlike the parallelogram, the double parallelogram 

would be a two input-one output block where the two inputs would be forces at 

the primary and the secondary stages and the output would be the displacement at 

the primary stage. This would mean that the strain energy would be a function of 

the forces at the secondary stage and the displacements at the primary stage. 

Alternatively, one could use the principle of complementary virtual work which 

would simplify the solution for serial configurations significantly. However, for 

parallel systems, as before, the problem would again culminate to solving a 

system of simultaneous multivariate polynomial equations in terms of the force 

variables which might again prove to be difficult to do in closed form. Hence, for 

systems which contain both serial and parallel elements, we have to come up with 

a hybrid solution procedure which combines elements from both the approaches.  

 

3. An approximate closed form solution for the DP-TDP mechanism can be obtained 

for a narrow domain of tilt angles for which the error motions are small. In that 

case, the kinematic conflict between the two halves of the mechanism would be 

minimal and so would the internal forces and moments. This in turn would mean 

that the BCM relations would be valid and can be used to solve for the 

characteristics of the mechanism.  
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4. A setup similar to that used for the CDPDP mechanism can be used to validate the 

stiffness and error motions of the DP-TDP flexure. In fact, one could use the same 

measurement techniques and replace the plate containing the CDPDP mechanism 

with a plate carrying a different design.  
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Appendix A 
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Appendix B 

JUSTIFICATION AND GUIDELINES FOR APPROXIMATIONS USED IN THE DERIVATION OF 

THE STIFFNESS EXPRESSIONS FOR THE CDPDP MECHANISM 

Rotational stiffness of the clamp parallelograms (Equation (4.5)) 

Using equation (3.35), the non-dimensional rotational stiffness for the parallelograms in 

the clamp would be given as: 
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Using equation (4.9) for Ux1 and obtaining the ratio between the elastic and the elasto-

kinematic terms in the denominator: 
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 (B.2) 

Using the estimates given in Table 3, this ratio comes out to be of the O(10
2
) and hence, 

we can neglect the elasto-kinematic component.  

Motion direction stiffness of the clamp parallelograms (equation (4.6)) 

Using equation (3.32), the motion direction stiffness of the clamp parallelograms can be 

written as: 
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The force Fy1 can be obtained using equations (4.11) and (4.20): 
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 (B.4) 

Obviously, this force is largest when η=∞ when its value is given by:  
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Substituting this value in equation (B.3) and comparing the two terms, we get: 
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Using some typical values given in Table 3 and a value of L3=0.6L (which does not cause 

appreciable stiffening in the motion direction of the entire mechanism), this ratio comes 

out to be of O(10
2
) which implies that the stiffening term can be neglected from the 

motion direction stiffness. 
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Appendix C 

UPPER BOUND ON THE CLAMP EFFECTIVENESS IMPOSED BY FINITE ROTATIONAL STIFFNESS 

OF THE DP UNITS IN THE CDPDP MECHANISM 

 

In the derivation for the bearing stiffness of the CDPDP mechanism, we imposed no 

constraints on the maximum value that the effectiveness can take, assuming that we can 

make it arbitrarily large with η→∞. However, this is not true and we would see shortly 

that the maximum effectiveness of the clamp is directly related to the rotational stiffness 

of the DPDP unit that it is meant to constrain.  This effect explains the small 

discrepancies between the stiffness predicted by the model and FEA (Figure 33).  

 

The primary assumption that we made in the closed-form derivation of the bearing 

stiffness was that the rotational stiffness of the DP units is very large, so large that the 

rotation of the secondary stage is negligible compared to that of clamp (θz1, θz2<< θz3). 

This is true for small values of effectiveness but fails for larger values when the rotational 

stiffness of the clamp becomes comparable to that of the DP units. This scenario is 

depicted in Figure 34.  

 

To simplify the analysis, we assume symmetry between the two halves of the mechanism 

i.e. θz1≈ θz2. Moreover, we can say that equation (4.4) still holds approximately. Thus, 

rewriting equation (4.5): 
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 (C.1) 

Now, the moment Mz1 applied on the secondary stage results in a rotation θz1. The 

rotational stiffness of the secondary stage with the primary stage constrained is simply 
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given as the sum of the rotational stiffness of the outer and the inner parallelograms of the 

DP unit i.e. 
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(C.2) 

Assuming that the clamp constrains the Y-displacement of the secondary stages to close 

to half that of the primary stage i.e. Uy1≈0.5Uy, we can rewrite the above equation: 
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 (C.3) 

Substituting this relation in equation (C.1), we get: 
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 (C.4) 

 Finally, using equations (4.3) and (4.4) while neglecting the contribution of Fx1, we get: 
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 (C.5) 

This shows that as we make the rotational stiffness of the clamp very large, the actual 

effectiveness becomes proportional to the ratio 1/κ which is the rotational stiffness of the 

DP units at the secondary stage. Figure 80 shows the comparison between the FEA and 

the theoretical values with the revised expression for effectiveness (equation (C.5)) for 
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the same dimensions used for the case shown in Figure 33. The error between the two is 

less than 5% at a normalized y displacement of 0.15 for different values of effectiveness.  

 

Figure 80: Bearing stiffness of the CDPDP mechanism with a revised value of effectiveness. w1=0.3, 

w2=0.2, l2=0.9, t=1/50, h=h3 
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Appendix D 

NOTES ON THE CENTER OF STIFFNESS OF THE CLAMPED PAIRED DOUBLE 

PARALLELOGRAM MECHANISM 

Location of the COS 

The CDPDP mechanism with a possible offset between the centers of the primary and 

secondary stages, shown in figure is used for this analysis. In order to simplify the 

analysis, we would only consider the case of a near-ideal clamp such that Uy1=Uy2≈0.5Uy. 

With this assumption, we can remove the clamp from figure and replace it with 

appropriate forces (given by equation (3.69) for a DPDP mechanism) and moments given 

by: 
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Figure 81: The simplified model of a near-ideal CDPDP mechanism 

Rewriting equation (3.52) for this configuration: 
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 (D.2) 

Moreover,  

 
1 2| |z DP z DPq q  (D.3) 

In order to calculate the center of stiffness, we would apply a force fx at different 

locations on the primary stage and determine the location at which θz goes to zero. We 

can resolve this force to a force fx and a moment -fxd applied at the center of the stage 

where d is the distance of the force from the center of the primary stage. Thus, using 

results derived in Chapter 4, we have: 
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 Equations (D.1) to (D.4) can be solved to obtain: 

       2
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Using the definition of the COS: 
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Where the functions p and q are given below: 
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This closed form result matches very well with corresponding FEA results as shown in 

Figure 82.  

 

Figure 82: Comparison between theoretical (linear model) and FEA COS for w1=1.0, w2=0.8, 

t=0.0123,woff=0.1,  w3= 0.5, l3=0.3. Almost no sensitivity was observed w.r.t. fx.  
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Figure 83: Special case of the CDPDP design. 

For the case shown in Figure 83, an extra moment would be applied on each double 

parallelogram by the motion direction force Fy and this moment would be given by: 

 
110.5z y LM F C   (D.9) 

Using the same procedure as before, the new center of stiffness would be given by: 
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 (D.10) 

The higher order uy terms were observed to be small enough to be ignorable.  

X-direction displacement at COS 

 

In our derivation of the axial stiffness of the CDPDP mechanism, we neglected the 

contribution of the rotation of the parallelograms in the x-direction relations i.e. 

approximate decoupling between the x,y and θ direction relations. However, for the case 

shown in Figure 83, this might not be true due to the presence of an offset between the 
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COS of outer parallelogram and the location of the COS of the CDPDP mechanism on 

the primary stage. This scenario is shown in Figure 84. 
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Figure 84: Right half of the CDPDP mechanism when a force is applied exactly at the COS 

Using the previous analysis for determining the location of the COS, the rotation θz1 of 

the secondary stage can be easily calculated13. The additional displacement Uxθ would 

then be: 
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 (D.11) 

Where d1cos is the location of the COS of the outer parallelogram. In order to calculate 

this, we can rewrite equation (3.3) for the rotation of the parallelogram and equate it to 

zero: 

                                                 

13 The equation is too long to be listed here. It can be found in ‘’ 
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 Moreover, dcos is COS of the CDPDP mechanism. Using equation (D.11), the new 

theoretical value of the stiffness for an applied force fx is: 
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 (D.13) 

Where kx|uncoupled is given by equation (4.30). For the design shown in Figure 51 the x-

direction stiffness is plotted in Figure 85. The FEA stiffness and the closed-form stiffness 

(given by equation (D.13)) match to within 5%. 

 

Figure 85: Closed form and FEA x-direction stiffness for the CDPDP design used in the experiment (Figure 

51 ) 
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Appendix E 

DERIVATION OF THE LIMIT ON PRE-BENDING FOR COMB DRIVE ACTUATORS 

For the x-direction stiffness of the pre-bent CDPDP configuration (with a pre-bend of 

Uypr), we can use an approximation similar to that given by equation (5.27). However, the 

limit on the thickness would now be lower than that given by equation (5.26). Assuming 

that the thickness is larger than this limit so that the ratio between the elastic and elasto-

kinematic terms is larger than 5% but still lower than 10%, or in other words, the elastic 

term is ε times (where 0.05<ε<0.1) the elasto-kinematic term at the snap in point Uy|max 

i.e. 
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 (E.1) 

Using the above relation along with the motion direction stiffness given by equation 

(5.23) and the axial snap-in criterion given by equation (1.16) with no initial overlap, we 

get: 
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 (E.2) 

The determinant of this quadratic equation is given by: 
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The equation will only have two roots i.e. two intersections only (Figure 66) if one of the 

determinants is imaginary. This implies that: 
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Therefore, the critical pre-bend is given by: 

 
 

       
     2 0 2 0

11 11 11 11

2 1 32
| 2 1 0.25

1 1
ypr critU GL GL

S k k S k k





    

 
 (E.5) 

This shows that for an ε=0.1, the error in the critical pre-bend is less than 2.5%.   

 

For the DPDP mechanism, the critical pre-bend would be exactly similar with the elasto-

kinematic term k11
(2) 

getting replaced by the equivalent term for the DPDP mechanism 

(equation  (3.63)) i.e.: 
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