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ABSTRACT  

 

Beam Constraint Model: Generalized Nonlinear Closed-form modeling of 

Beam Flexures for Flexure Mechanism Design 

By 

Shiladitya Sen 

 

Chair: Shorya Awtar 

 

 

Flexure mechanisms, also known as compliant mechanisms, provide guided motion via 

elastic deformation. Their ability to produce repeatable/precise frictionless motion makes them a 

common choice in precision positioning devices, frictionless bearings, biomedical devices and 

prosthetics. Traditionally, design of flexure mechanisms has been conducted in an intuitive 

manner using simplistic linear models. For flexure mechanisms where nonlinear effects that 

contribute to error motions and stiffness variations are present, designers have had to use 

computational methods such as finite elements modeling, which provides relatively limited 

design insight. This dissertation aims to create an alternative modeling tool that captures 

nonlinear effects in a simple closed form manner, so that the parametric variation of various 

performance attributes in flexure mechanisms can be easily studied. In order to make the design 

process more systematic, this approach breaks down flexure mechanisms to its building blocks 

that are referred to as flexure elements. The deformation mechanics of the two most common 

flexure elements, the flexure strip and the wire flexure, are analyzed in detail and the relations 

between the loads and displacements, applied and measured at the elements’ end points, are 

determined. To ensure accuracy at an elemental level, pertinent geometric nonlinearities are 

captured. The effects of initial alignment errors, which are often present in flexure mechanisms 

in practice, are also studied in detail at the elemental as well as overall mechanism level. 

Furthermore, an analytical framework is provided in this dissertation that illustrates Newtonian 
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and energy methods to analyze flexure mechanisms constructed using multiple flexure elements. 

Overall, the novelty of this modeling technique lies in its ability to represent the relations 

between fully generalized spatial loads and spatial end-displacements (both translational and 

rotational displacement) over a relatively large range in a simple yet accurate manner. As a 

result, several complex mechanisms can be analyzed accurately without resorting to 

computational/numerical techniques or restricting the loading conditions.  

Given the generality of the analytical models of the flexure elements, this formulation can be 

used in the future for optimization of flexure mechanisms in terms of shape/type/number of 

flexure elements as well as their spatial arrangement. Furthermore, this work can provide a 

foundation for a new nonlinear constraint based synthesis approach. 
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Chapter 1  

 

Analysis of Flexure Mechanisms: Needs and Challenges 

 

1.1 Flexure Mechanisms 

Certain applications in Scanning Probe Microscopy (SPM) [1-3], Micro-Electro-

Mechanical Systems (MEMS) [4-6], and semi-conductor wafer inspection/production 

instrumentation [7, 8] require motion guidance systems capable of nanometric 

precision/repeatability, which is difficult to achieve with mechanisms that have traditional 

revolute and prismatic joints (e.g. Figure 1.1(a)). The precision of such traditional motion 

systems, defined as the ability to move to the same commanded position repeatedly, is degraded 

severely by friction and backlash in the sliding joints. In comparison, a flexure mechanism, also 

known as a compliant mechanism, generates the required motion using elastic deformation (e.g. 

Figure 1.1(b)) rather than the using sliding or rolling motion in traditional joints and therefore is 

capable of achieving high precision by eliminating friction. Additionally when flexure 

mechanisms are made from elastic and low-hysteresis metals such as Aluminum (e.g. AL6061-

T6) and Steel (e.g. AST), the generated motion can be highly repeatable allowing the mechanism 

to operate with sub-nanometer precision. Other advantages of using flexure mechanisms include 

minimal requirement of assembly, maintenance, and lubrication. As a result, flexure mechanisms 

enable nanopositioning systems that are used extensively in not only the above-mentioned 

applications but also in Dip-Pen Nanolithography [9, 10], Nano-shaving and Nano-grafting [11], 

nanometrology [2, 12] and memory storage [13]. Other than nanopositioning stages, several 

other application also exist such as micro-robotics [14], micromanipulation [15], micro-grippers 
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[16], force/torque sensors [17], MEMS gyroscopes [18] and accelerometers [19], bio-mimicking 

compliant fingers [20], electrostatic micro-mirrors [4, 21, 22] and energy harvesting [23]. With 

these target applications, this thesis focuses primarily on the ‘analysis’ part of the design process 

of flexure mechanisms. In general, the design process also includes ‘synthesis’ and 

‘optimization’, which are not covered here. 

Flexure 
element

Rigid 
BodiesPin 

Joints

(a) (b)XZ

Y

 

Figure 1.1: Parallelogram mechanism using (a) rigid bodies with pin joints and (b) flexure elements 

Certain other flexible elements such as aircraft wings and live hinges of bottle caps 

require a different type of design approach to achieve their respective specifications. In the case 

of aircraft wings, shape optimization is the primary objective. Such a study would require an in-

depth understanding of the loads due to the air flowing over the wings. In the case of live hinges, 

creating designs that are less susceptible to failure due to fatigue is the primary objective. This 

would require the appropriate use of failure mechanics. Although both these areas of research are 

important and should be included in the design of flexure mechanisms from an overall 

perspective, this dissertation focuses primarily on a different but also important requirement of a 

design process that is in obtaining knowledge of elastic and kinematic behavior of beam-like 

flexure elements. However, as will be shown later, this analysis given in this dissertation also 

provides a foundation of beam shape optimization. 

Analysis of a flexure mechanism entails its mathematical modeling using knowledge 

from solid mechanics. This mathematical model provides estimates of the output motions of the 

flexure mechanism when subjected to actuation loads
1
. The motion of any flexure mechanism at 

a predetermined point of interest on a rigid motion stage may be sufficiently characterized by six 

independent displacements
2
. Each independent motion has an associated stiffness defined as the 

                                                 
1 Throughout this dissertation, ‘loads’ is used in a generalized sense to mean forces and moments. 
2 Throughout this dissertation, ‘displacements’ is used in a generalized sense to mean translations and rotations 
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rate of change of load with respect to displacement along the direction of the load. Depending on 

the relative magnitude of the stiffness values, the independent directions are classified as 

Degrees of Freedom (DoF) and Degrees of Constraint (DoC) [24]. A DoF refers to a direction in 

which motion is intended to occur and hence the associated stiffness is designed to be relatively 

low. In Figure 1.1 motion along the X axis is a DoF. A DoC refers to any direction in which 

motion is undesired and hence the associated stiffness is designed to be relatively high. In Figure 

1.1 translations along Y and Z axis as well as rotations about the X, Y and Z axes are DoCs. A 

quantitative estimate of the stiffness along DoFs and DoCs is of paramount importance in 

designing flexure-based motion guidance systems and is one of the goals of any flexure 

mechanism analysis technique. 

In addition to accurately estimating the stiffness values in various directions, it is also 

important to model motions produced in all other directions in response to a load along one DoF. 

These motions are called error motions and are generally undesired [24]. Error motions may be 

further divided into ‘parasitic motions’ that occur along other DoCs and ‘cross-axis coupling’ 

that occurs along other DoFs.  Typically, the stiffness values and error motions of a flexure 

mechanism together define its constraint characteristics and their accurate modeling over the 

entire load and displacement range of interest forms the primary focus of this dissertation. 

 

1.2 Requirements of Analysis Techniques  

In order to facilitate the analysis of any flexure mechanism, this thesis aims to develop 

suitable analytical models of those flexure elements that are used as building blocks in flexure 

mechanism design. One of the most common flexure elements is a flexure strip, shown in Figure 

1.2(a), and is characterized by a length that is generally at least 20 times the thickness, while the 

width is of the same order of the length. For the flexure strip, the translation along Y direction 

and rotations about X and Z direction of its end point are regarded as DoFs. The flexure strip 

under planar loading, which consists of forces along X and Y and moment along Z, is also 

known as a simple beam flexure or cantilever beam because it deforms primarily in one plane 

(XY plane in Figure 1.2). Another common flexure element is the spatial beam flexure (Figure 

1.2(b)) which is characterized by the length being at least being 20 times larger than both 
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thickness and width. This flexure element, at times known as wire flexure, provides five DoFs: 

two translations along Y and Z axis and three rotations about X, Y and Z axis.  

(a)

X
Z

Y

Width
Thickness

Length

(b)

 

Figure 1.2: (a) Flexure Strip (b) Spatial Beam Flexure 

Although the beam mechanics of either element is described via differential equations of 

load equilibrium and geometric compatibility in literature [25-28], this thesis aims to go a step 

further and obtain  a model of flexure elements that provides load-displacement relations in a 

closed-form manner rather than using differential equations. Typically, such a model 

mathematically relates the resulting displacement due to an applied load using intuitive algebraic 

functions rather than differential equations. Essentially these models alleviate the need to start 

from first principles of beam mechanics and hence are more suited to technical design. However, 

the model should still powerful enough to analyze several complex flexure mechanisms. This can 

be done by combining the individual models of these flexure elements such that analytical 

relations between different variables (loads, displacements, geometry) pertinent to design process 

are derived.  

Other than generality, a model should be easy to derive accurate, physical and analytical 

design insights of any flexure mechanism or a general mechanism topology. These insights 

generally include parametric dependence of constraint characteristics on the topology and 

various dimensions of the flexure mechanism, over a practical range of loads and displacements. 

An analytical model should also allow for an effective optimization of the mechanism’s 

dimensions and provide an understanding of the various performance tradeoffs associated with 

its topology. 

The required properties of an ideal model of a flexure element, namely closed-form load-

displacement relations, accuracy, ability of capture manufacturing defects and compatible 
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closed-form strain energy, are discussed in more detail in the following three sub-sections. 

Furthermore, inadequacies of previous models of flexure elements in each of these criteria are 

also highlighted. 

 

1.2.1 Closed-form Model 

Design insights are most simply understood when the mathematical model of the flexure 

mechanism is closed-form that is the relation can be expressed in terms of a finite number of 

‘well-known’ functions. These functions typically include algebraic functions with finite number 

of terms, n
th

 roots, exponents, logarithmic, trigonometric and inverse trigonometric functions. A 

closed-form function typically does not require computational/iterative methods, infinite series 

solutions or look up tables to determine its value. To gauge the importance of a closed-form 

model let us compare a parallelogram flexure module (Figure 1.3(a)) and a double parallelogram 

flexure module (Figure 1.3(b) and (c)). These two mechanisms are often used to guide straight 

line motion. Although the double parallelogram module generates more accurate straight line 

motion, its X-stiffness X X XK dF dU degrades much faster than that of the parallelogram 

flexure module. A comparison of the X-stiffness values of the two flexure modules is shown in 

Figure 1.3 (d) that is generated using analytical models in Eq. (0.1) based on Euler beam theory
3
 

[29, 30]. Here, the elastic modulus is given by E while the moment of area about the bending 

axis is given by I. The length and in-plane thickness of the flexure beams are given by L and T, 

respectively, while the displacement of the motion stage along the Y direction is given by UY. 

   2 2 2 2 2

24 12
,      

0.0014 0.0014 0.03

P DP

X X

Y Y Y

EI EI
K K

L T U L T U U
 

  
 (0.1) 

The analytical expression in Eq. (0.1) shows the nonlinear variation of axial stiffness in 

the parallelogram and double parallelogram flexure module that occurs due to the presence of 

UY
2
 terms in the denominator. To explain this variation in axial stiffness in the two flexure 

module in detail, we divide the source of X-displacement due to axial force FX in three 

                                                 
3 Euler beam theory assumes ‘plane sections remains plane and perpendicular to the neutral axis’ leads to a 

proportionality relation between curvature and bending moment. This assumption is fairly accurate when beam 

thickness is no more than 1/20 of the beam length. 
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fundamentally different effects, linear elastic stretching, distributed compliance of flexure 

elements and load-equilibrium in the deform configuration.  

The first source is simply the linear elastic stretching of the beams along the X direction. 

This occurs in both the parallelogram and double parallelogram flexure module.  

The second source of the X displacement, represented by the ‘0.0014UY
2
’ term in 

Eq.(0.1), is the distributed compliance of the beam flexures that are the building blocks of the 

two mechanisms. In order to physically understand this effect, we acknowledge the presence of 

an additional bending moment FX×UY when an axial load is applied to a motion stage that has 

already moved in the Y-direction by UY. This additional bending moment ‘uncurls’ the already 

deformed S-shaped beam flexures. If the Y-displacement of the beam flexure end point is kept 

constant, the uncurling effect solely results in an increase of the ‘X-span’ of the beam flexure 

due to conservation of arc-length, thus resulting in additional X-displacement at the end of the 

beam flexure. For the mechanism, the axial load causes an additional X-displacement of the 

motion stage in the presence of UY due to the uncurling of the component beam flexures. Overall, 

this implies a reduction in the x-stiffness of the flexure mechanism. Since this additional X 

displacement requires the presence of both the load FX and the displacement UY, this is known as 

the elasto-kinematic effect [30]. Also, as uncurling is impossible for a flexure element with 

lumped compliance, we note that elasto-kinematic effect is fundamentally property of flexure 

elements with distributed compliance alone.  
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(a) (b)

Motion 
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Figure 1.3: (a) A parallelogram flexure module shown in the deformed and undeformed configurations (b) A 

double parallelogram flexure module in the undeformed and deformed configurations (c) Change in 

deformation of a double parallelogram flexure module due to force along X when the Y-displacement is held 

fixed (d) Variation of axial stiffness of parallelogram and double parallelogram flexure modules with 

displacement along Y 

The third source of X-displacement, represented by the ‘0.03UY
2
’ term in Eq. (0.1), is a 

purely kinematic effect as it results from applying the load-equilibrium in the deformed 

configuration. A convenient way of physically understanding this effect is to first recognize the 

load-stiffening effect [30] which is direct result of load equilibrium applied in the deformed 

configuration. It states that the Y-stiffness of a flexure element is higher when in tension and the 

amount of stiffening is proportional to the axial stretching force. Similarly, the Y-stiffness of a 

flexure element is lower when in compression. This effect is discussed in more detail in section 

1.2.2.1. Using this concept of load-stiffening in the double parallelogram flexure module, we 

find that an application of FX on the motion stage in the positive X direction as shown in Figure 

1.3 (c), causes the inner parallelogram to be in compression while the outer parallelogram to be 

in tension. As a result the Y-stiffness of inner parallelogram is reduced while the Y-stiffness of 

the outer parallelogram is increased.  
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We will now use the understanding of the load-stiffening effect in the following loading 

condition of the double parallelogram flexure module. First a bending force FY is applied to the 

motion stage as shown in Figure 1.3(b). We notice that the motion stage moves by UY. Since the 

Y-stiffness of the inner and outer parallelogram is the same the secondary stage moves by UY/2. 

Additionally the secondary stage also moves in the X-direction due to the conservation of arc-

length of the flexure elements. Next an axial force FX is applied while the Y-displacement of the 

motion stage is held constant. As we discussed earlier, in the presence of the axial force, the Y-

stiffness of inner parallelogram reduces while that of the outer parallelogram increases. This 

implies that the inner parallelogram bends more while the outer parallelogram straightens. The 

net effect is that the secondary stage moves in negative Y direction by an amount YS while the 

motion stage to move further in the positive X direction by X due to arc-length conservation. 

Since the original cause of this additional X-displacement is FX, this effect is another source of 

drop in the axial stiffness. Such an effect is not possible in a parallelogram flexure module due to 

the absence of a secondary stage.  

Now, as an alternative, let’s try to analyze the same problem using finite element analysis 

(FEA). By running multiple simulations and monitoring the displacements of the motion stage, 

one may arrive at the expressions of Eq. (0.1) using regression techniques. However, it is 

impossible to separate the ‘0.0014UY
2
’ and the ‘0.03UY

2
’ terms in such a procedure, and to 

recognize that these two terms arise from two fundamentally different sources. The elasto-

kinematic and kinematic sources that lead to the drop in axial stiffness in this case are 

numerically combined in the data and do not give the reader any insight into ways to deal with 

them individually. The only way to derive insights via FEA is to look at the Y displacement of 

the secondary stage rather than the motion stage. However, this is not obvious and depends on 

the intuition and experience of the designer. Herein lies the advantage of a closed form model, 

which makes finding such insights and associated systematic solutions. For example, the closed-

form eqs (0.1) tell us that although the elastokinematic effect represented by the ‘0.0014UY
2
’ 

term is inherent in any distributed compliance flexure mechanism, the kinematic effect 

represented by the ‘0.03UY
2
’ term is approximately eliminated by constraining the ‘YS’ 

displacement of the secondary stage to be exactly half that of the motion stage. An example of 

such a design can be found in reference [31] where the ‘YS’ displacement of the secondary stage 
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is constrained by additional topological features. The resulting modified double parallelogram 

flexure module obtained the superior stiffness characteristics of the parallelogram flexure 

module while retaining the superior straight line motion characteristics of the double 

parallelogram flexure module. 

Given the clarity in understanding the operation of parallelogram and double 

parallelogram flexure mechanism that is brought by their individual closed form model, we set 

ourselves the goal of closed-form modeling of flexure elements in this dissertation so that we can 

generate closed-form models of other flexure mechanisms as well. It should be noted that 

throughout this dissertation only end loading of flexure elements is considered. Distributed 

loading in flexure elements that may occur, for example, due to its own weight is ignored. This is 

a good approximation in most flexure mechanisms as the mass of the rigid stages are generally 

much higher than the flexure elements. Other types of distributed beam loading, such as inertial 

forces due to dynamics, are also not considered here since we are focusing on quasi-static design 

and performance. 

 

1.2.2 Accuracy versus complexity of the model 

The second critical aspect of any analysis technique is its accuracy. In order to ensure 

accuracy, the nonlinear relations between displacements of flexure elements and the applied 

loads need to be captured. The significance of the nonlinearity can be easily gauged in the 

example of the double parallelogram flexure, in section 1.2.1, in which the DoC stiffness is 

shown to drop by more than 90% with increasing DoF displacements. However, due to 

nonlinearity, obtaining a closed-form model that perfectly describes the deformation of flexure 

elements is generally non-feasible. By restricting the amount of deformation as well as 

considering certain specific beam geometries (listed previously), simplifying assumptions may 

be made in order to model these flexure elements in the simplest way.  

An Euler beam formulation [29] is a classic example of the use of pertinent assumptions 

that lead to useful models of beam-like flexure elements applicable under planar loading 

conditions
4
. Euler beam formulation is a good approximation when the in-plane thickness is 

                                                 
4 Planar loading refers to one bending moment normal to the plane of bending and two mutually perpendicular 

forces in the plane of bending.  
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small with respect to the length of the beam and the out-of-plane width of the beam is either 

small (comparable to the in-plane thickness) or very large with respect to the length of the beam. 

The first case, when out-of-plane width of the beam is small, is an example of plane stress. On 

the other hand the case, when out-of-plane width of the beam is large, is an example of plane 

strain. Both the cases can be well-handled via a 2-D planar model derived from the general 3D 

model by ignoring variations in stress or strain, whichever is applicable, along the width of the 

beam. Under these conditions only bending effects are significant while shearing effects are 

negligible. A Timoshenko beam [32], on the other hand, takes shear effects into account also and 

is therefore applicable to short stubby beams with planar loading. More details on these beam 

formulations will be given in section 1.4. 

 In order to obtain the best tradeoff between closed form representation and accuracy in 

an optimal model for beam flexures, it is important to understand the physical significance of 

various nonlinearities in determining the constraint characteristics of flexure mechanism. The 

geometric nonlinearities of beam deformation are discussed in following four sub-sections. 

1.2.2.1 Nonlinearity due to arc length conservation, equivalent to applying load-

equilibrium in deformed configuration 

The popular Euler beam formulation is capable of capturing nonlinearities due to arc-

length conservation and curvature for planar loading cases. First, let us understand the 

nonlinearities incurred due to arc-length conservation. Figure 1.4(a) shows that the displacement 

UYL resulting from beam bending also causes the beam end-point to move closer to ground in the 

X direction in order to ensure that the arc-length of the beam is equal to its original length plus 

the small extension due to axial load FXL. In terms of constraint characteristics, this means there 

is an unintended and generally undesired X motion at the end of the beam (a parasitic error 

motion) when it is actuated only in the Y direction. Furthermore, the end loads also move along 

the end of the beam causing additional bending moment from FXL. This causes a change in the 

stiffness values YL YLdF dU and XL XLdF dU in the Y and X directions respectively from their 

nominal values
5
. Since variation of YL YLdF dU occurs due to the inclusion of FX in calculating 

load equilibrium, it is called a load-stiffening effect [30, 33]. Since this stiffening affect arises 

                                                 
5 The nominal value of YL YLdF dU and XL XLdF dU of a flexure beam with one fixed end and one free end is 

33EI L  and EA L , respectively, where all symbols have their usual meaning. 
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due to the geometrically finite displacements in the Y direction, it is also sometimes referred to 

geometric stiffening [34].  
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Figure 1.4: (a) Bending of beam causes nonlinear kinematic coupling between UX and UY (b) Nonlinear 

curvature of a beam undergoing bending (c) Rotation of bending planes due to torsion (d) Trapeze effect due 

to torsion (e) Deformation of cross-section of a beam undergoing bending 

It should be noted that the stiffness ZL ZLdM d is also affected by the load stiffening 

effect in a fashion similar to Y YdF dU . On the other hand, a reduction in the XL XLdF dU  

stiffness occurs due to the change in shape of the beam, which is caused by the additional 

bending moment produced by FX and in turn the effect of this change on arc-length conservation. 
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This effect is known as the elasto-kinematic effect. A more detailed explanation was given 

earlier in section 1.2.1 using the comparison of the X-stiffness of parallelogram and double 

parallelogram flexure module.  

1.2.2.2 Nonlinearity due to curvature 

The curvature, the formula for which is given in Figure 1.4(b), is nonlinear when the 

deformation is expressed in terms of the co-ordinates of the deformed beam (X, Y). This 

nonlinearity affects the stiffness values in the X and Y directions as well as error motions in the 

X direction due to Y displacement. If, however, the curvature expressed in terms of the 

undeformed beam co-ordinates, a slightly different formula for the curvature is derived [35]. 

This formula of beam curvature will be discussed in Chapter 2. However in both representations 

of curvature, nonlinearity is present. In order to estimate the effect of this nonlinearity we 

compare UYL for a given FYL, from two Euler beam formulations, one using the accurate formula 

for curvature and the other using a linearized formula of curvature (i.e. approximating the 

denominator of the curvature formula to 1). We find that the discrepancy increases cubically 

with increasing UYL. A discrepancy of 3% occurs in estimating UYL for a given FYL, when UYL of 

approximately 0.1 times the length of the beam flexure, and 5% when UYL is 0.2 times the length 

of the beam flexure (see Figure 1.5). Similar trend is found for θZL. In contrast, end-displacement 

in the X-displacement is related in a quadratic manner to UYL due to arc-length conservation. 

Therefore error in UXL is approximately twice the error in UYL. Although preserving curvature 

nonlinearity helps improve the accuracy in estimating the nominal stiffness values in transverse 

bending direction and associated error motions, it does not result in any new physical effects. 

1.2.2.3 Nonlinearity due to torsion 

When spatial loading (i.e. all six general forces and moments) of beams is considered, in 

addition to the effect of nonlinearities due to arc-length conservation and curvature, there is also 

nonlinearity due to torsional moment MXL. As shown in Figure 1.4(c), the bending of beams can 

be viewed as bending in two planes. In the absence of torsion these bending planes are the XY 

plane and XZ plane. However when torsion is present, these bending planes rotate about the 

centroidal axis
6
. Additionally, the amount of rotation, rather than being constant with X, is 

                                                 
6 Centroidal axis of a beam is the locus of the centroids of all the cross-sectional areas of the beam 
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actually dependent on the applied twisting moment MXL and varies with X. As a result, a portion 

of the displacements in the XY plane, i.e. UY and θZ, is contributed by the bending loads of the 

XZ plane, i.e. FZL and MYL, and vice versa. This is a form of cross-axis coupling error motion 

because displacements occur in DoF directions that are not along the actuating load. 

Additionally, the magnitude of error motion is proportional to the twisting moment MXL. This 

nonlinearity, pertinent only to spatial loading conditions, will be discussed in more detail in 

Chapter 4 and 5. 

1.2.2.4 Nonlinearity due to trapeze effect 

A small nonlinear effect that results in shortening of the beam due to torsion, called the 

trapeze effect, is also present in spatial beam deformation. As shown in Figure 1.4(d), when a 

beam twists, applying arc length conservation to the fibers parallel to the centroidal axis shows 

that the fibers away from the centroidal axis contract more than the ones nearer to it, thus 

producing a tension on the outside fibers and contraction on the centroidal fibers. This results in 

an overall or net compressive axial stress in the beam which results in a slight shortening of the 

beam arc-length. As a corollary effect, it is also seen that a beam in tension has a higher torsional 

stiffness. This complementary relation is further explained in Chapter 4 Section 4.3. Although 

the trapeze effect results in small error motions and small stiffness variations under normal 

circumstances, it may be significant in the presence of large axial loads and/or absence of any 

bending loads.  

1.2.2.5 Nonlinearity due to cross-sectional warping 

Finally, nonlinear relations between loads and displacements may result from initially 

plane cross-sections that do not remain plane after deformation (Figure 1.4 (e)). The cross-

section may dilate in-plane (increase or decrease in area) due to Poisson’s effect, and distort in-

plane (a rectangle becoming a parallelogram) or warp out-of-plane (bulge along the centroidal 

axis) due to shear effects. Cross-sectional deformation gives rise to several complex effects such 

as variations in cross-sectional moment of area and variation in extension stress as well as shear 

stress. However, for slender beams, it has been found that cross-sectional distortion and warp 

does not significantly affect beam bending which may still be analyzed with Euler beam 

assumptions of plane cross-sections remaining plane and perpendicular after deformation. For 
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torsion calculations, cross-sectional deformations need to be considered [36]. However, in 

practice, the torsional analysis incorporating the cross-sectional deformation can be done 

separate from the beam bending analysis and the total effect of warping on beam deformation 

can be captured by using in an effective torsional constant instead of the traditional torsional 

moment of area. This torsion constant is specific to a chosen cross-section and its standard 

formulas for various cross-sections are readily found in several books [25].  

 Since, inclusion of all nonlinearities renders the possibility of a closed form model 

extremely challenging if not inconceivable, only some of nonlinearities can be considered while 

others are approximated or assumed to be negligible. From an analysis stand-point, it is 

challenging to determine which ones to retain and which ones to drop. In the proceeding section 

on literature survey of existing beam modeling approaches we will see that the nonlinearity due 

to arc-length conservation and torsion is given most importance while other sources of 

nonlinearity are generally approximated or ignored. In addition, in Chapters 2 through 5, 

nonlinearities that are relevant to each respective flexure element will be revisited and all 

simplifying assumptions taken to capture them in a closed-form manner will be discussed. 

 

1.2.3 Energy Formulation and Manufacturing Variations 

Other than the fundamental requirement of balancing representation and accuracy, there 

are two other features that are required to make an analytical model of beam flexure elements 

practically useable. Firstly, the model should be such that it enables the study of flexure 

mechanisms that comprise multiple flexure elements. Rather than using free body diagrams and 

load equilibrium for each individual flexure element of a flexure mechanism, it is often easier to 

use an energy based approach such as the principle of virtual work [37] (PVW) given by Eq.(0.2)

, which states that at equilibrium the virtual work done by external forces over a set of 

geometrically compatible but otherwise arbitrary ‘virtual’ displacements is equal to the change in 

the strain energy due to these ‘virtual’ displacements. 

W V   (0.2) 

Mathematical complexity is less for energy methods because the number of unknown 

variables that need to be determined are reduced by eliminating internal forces from 

consideration. Furthermore since the formulation is based on simple mathematical operations 
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like addition of strain energies and variations, it is easy to handle a large number of flexure 

elements. Therefore, in order to facilitate this approach, a model of a beam flexure should also 

include its total strain energy expressed in terms of its end-displacements.  

Secondly, the analytical model should be able to take into account small dimensional 

variations due to inevitable manufacturing defects. The manufacturing defects could be of 

various types, for example: a) Non-straight undeformed configuration of a beam due to initial 

curvature and orientation which can become an important factor in intentionally over-constrained 

designs [38], and b) Small variations in cross-sectional area resulting in a varying moment of 

area along the beam length.  

Formulating a nonlinear closed form models for beam-like flexure elements that satisfies 

all the above mentioned criteria will be helpful in not only improving design methods for flexure 

mechanisms but also in developing optimization tools and understanding their nonlinear 

dynamics. With this goal, we move forward to studying previous analytical models of flexure 

elements. 

 

1.3 Literature Survey on Analytical Models for Slender Beams 

Formulating a closed-form analytical model that satisfies all the requirements given in the 

previous section is challenging primarily due to the presence of nonlinearities associated with the 

deformation of the flexure strip and spatial beam flexure. Instead of finding a perfect solution to 

the problem, we aim to find the best possible tradeoff between retaining accuracy and obtaining 

closed-form representation.  

Research on analysis of deformation of solid continua is said to have started with Galilei 

[39] in the 17
th

 Century, when Galilei tried to find the resistance of a beam from breaking due to 

its own weight when one of its end is fixed to a wall. Since then, there has been much work done 

in order to understand and develop analytical tools to help engineers analyze and design 

mechanisms and structures. In order to get a perspective of where this doctoral dissertation fits in 

the entire body of work of solid mechanics, a brief literature survey is presented next.  

The first step to answer Galilei’s question was taken by Hooke when he presented the 

proportionality between stress and strain in 1678 [40]. This finding was experimentally verified 

by Marriotte in his works published in 1680 [41]. James Bernoulli in 1705 conducted the 
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investigation of the existence of compression and extension of fibers in a bent beam under its 

own weight [42]. In his equations, Bernoulli showed that the stress at a cross-section generates a 

couple proportional to the curvature. This was the key assumption taken by Euler and Daniell 

Bernoulli in 1744 in deriving the equation of vibration of beams [43, 44]. Later in 1776, 

Coulomb determined the equation of equilibrium at a cross-section and defined the neutral line, 

which was also known as the axis of equilibrium. Coulomb was also the first one to look at a 

beam’s resistance to torsion and a beam’s ability to shear without rupturing [45]. In parallel to 

Coulomb’s work, Young found the elastic modulus of solid continua [46]. Young was also the 

first one to consider shear as a type of strain. By the end of the 18
th

 century, one might say that 

the basics of solid mechanics were established. 

In the 19
th

 century the focus shifted on finding a generalized theory of stress-strain 

relations. One of the notable works in this area was presented by Cauchy in 1827 [47-49]. In his 

work, Cauchy described the stress and strain at a point in terms of six independent quantities and 

derived the properties of stress-strain relations. He also found the principle stress and strains. 

Similar results were also independently found by Lamé in 1833 [50]. The finite strain measure, 

which may be used to derive Cauchy’s stress, was presented by Green in 1837 [51]. St. Venant, a 

contemporary mathematician, showed the effects of different but statically equivalent loads 

become indistinguishable at sufficient large distances from the load in 1855 [52, 53]. 

Additionally St. Venant was also first to mathematically derive the exact solution for pure 

torsion of prismatic bars.  

The development of generalized theory of stress-strain relations was aided throughout the 

rest of the 19
th

 century by several scientists. Among them, names worth mentioning are those of 

Navier, Stokes, Poisson, Kirchhoff, Thompson and Maxwell. However, giving details of each of 

these seminal scientists is beyond the scope of this dissertation. It suffices to say that by the end 

of the 19
th

 century, a vigorously verified generalized theory of deformation of solids was 

available. Books by Love [27] and Truesdell [54] give a comprehensive historical account of the 

work done on deformations of solids.  

Based on the generalized theory of stress and strain, several analytical models of relevant 

solids can be derived. The simplest beam model is formulated using a linearized application of 

Euler-Bernoulli beam theory [29]. In this model, the bending and torsional moments are 

calculated assuming that the applied loads do not move with displacement. Additionally 
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curvature is also approximated as a linear function of displacement. Furthermore, X 

displacement of the beam end (Figure 1.4(a)) due to arc length conservation is ignored. These 

assumptions and approximations imply that all geometric nonlinearities are dropped and a simple 

model is obtained, as given in Eq.(0.3). This model predicts a linear relation between the loads 

and displacement and hence will be referred to as the linear model henceforth. It should be noted 

that while shear effects, which are also linear, can be easily added to the linear model as per 

Timoshenko Beam Theory, it is not included here as the beam is assumed to be long with 

respected to its width and thickness. 
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The assumptions and approximations upon which the linear model is based become 

increasingly inaccurate with increasing displacements. To verify this, a case study is shown in 

Figure 1.5 where the beam shown in Figure 1.4(a) is subjected to an end-load FYL and the end-

displacement UYL is studied. The accuracy of the linear model is verified against an exact 

solution of Euler beam theory for this particular loading using elliptic integral that can be found 

in reference [55]. In addition to the prediction of the linear model and the exact model, the 

predictions of a finely meshed Finite Element Model (FEM) with solid elements (ANSYS 

Element # SOLID186), beam column theory and Planar Beam Constraint Model (PBCM) is also 

included in Figure 1.5 for comparison. The beam length, width, thickness, elastic modulus, 

Poisson’s ratio and FXL were 0.1m, 0.005m, 0.0025m, 210GPa, 0.3 and 200N, respectively. 

As can be seen in Figure 1.5, only when deformations are very small (of the order of the 

in-plane thickness of the beam) the linear model captures the displacements at any point on the 
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beam within acceptable errors which is empirically taken as 5% of the actual displacement. The 

error increases significantly when load FXL is also present in addition to FYL. This is expected 

because, for finite displacements, FXL produces additional bending moment which needs to be 

taken into account. Additionally, when end-displacement, UYL, is more that 10% of the length of 

the beam, linearization of curvature is no longer a good approximation.  

It should also be observed that FEM predictions are in good agreement with the exact 

beam solution for the entire range of displacements. This is expected because FEM in ANSYS 

can ‘turn on’ the effect of geometric nonlinearities using the NLGEOM command. By doing so, 

FEM is capable of taking into account bending moments from all loads as well as the 

nonlinearities associated with curvature. Although not shown here, FEM was found to be 

accurate for beams with various other loading conditions as well. This is because FEM beam and 

plate elements (BEAM188, SHELL181) include the fundamental deformations such as 

extensional strain, shear strain and cross-sectional warping. Therefore physical effects that arise 

due to these deformation are accurately captured. Since the behavior of flexure elements that we 

are trying to capture align with the capability of FEM, for the rest of this dissertation, we will use 

FEM as reference for exact displacement predictions to given loading conditions.  

  

Figure 1.5: (a) Comparison of Y end-displacement for various planar beam formulations (b) Comparison of 

X displacement for various planar beam formulations 

Although the exact beam solution using elliptic integrals is of limited use in design due to 

its non-closed-form nature, it may be used to derive a different model that is more suitable for 
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design. One such model is the Pseudo-Rigid body model (PRBM) that represents planar flexure 

beams as equivalent rigid link mechanisms in order to capture some of their constraint 

characteristics.  PRBM was initiated by 1995 by Midha and Howell [56] by identifying that the 

end of a planar beam moves approximately in a circular path when subjected to a force at the end 

of the beam, perpendicular to the tangent of the neutral axis at the same point (Figure 1.6(a)). 

This hypothesis may be shown to be true using the exact beam solution [55]. Using regression 

techniques an optimal choice of rigid link, centered at the proper location with an appropriate 

torsional spring may to chosen to track the displacement of the beam end within a few 

percentage of error as shown in Figure 1.6(b). The length of the rigid link, the center of rotation 

and the torsional spring stiffness about the center of rotation is found to be dependent on the 

length of the planar flexure element as well as the load applied. In effect, this model converts 

distributed compliance of a planar beam flexure into lumped compliance of the torsional spring. 

The model, even though computationally derived, is parametric and therefore helps in 

subsequent analysis of more complex mechanisms. The key advantage of using the equivalent 

rigid body model is that existing analysis and synthesis techniques for rigid body mechanisms 

can be used in flexure mechanism design.  
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One of the drawbacks of PRBM is that the model derivation is specific to a given loading 

condition. Therefore if the loading condition is changed, such as an addition of another moment 

MZL, a new pseudo rigid body model would need to be reformulated by going through the 

optimization process again. Another key drawback of PRBM is that it doesn’t give an accurate 

Figure 1.6: (a) Deformation of cantilever beam subjected to a force perpendicular to 

the neutral axis at the end of the beam (b) An equivalent Pseudo Rigid Body Model 
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estimate of the slope of the beam at the end the represents θZL, a DoF displacement. Thirdly, due 

to the lumped parameter approximation, characteristics that are present due to distributed 

compliance alone, such as the elastic and elasto-kinematic effects in the axial direction, are not 

captured. Fourthly, variations due to the change of the cross-sectional shape of the beam and the 

orientation of its neutral axis are not studied. As discussed earlier, such a formulation will be 

important in gauging the effect of manufacturing defects. Finally, extending PRBM to spatial 

flexure beam is non-trivial because the mechanics of spatial beams leads to a more complicated 

relation between loads and displacement which is difficult to capture with just a rigid link and a 

hinge [57].  

Returning to Figure 1.6, we now change our focus to another model technique, the beam 

column theory [58]. This model is based on a more careful application of Euler beam theory. 

Therefore the displacement predictions of the beam column theory are accurate for a larger range 

of displacement than the range for which the linear model is accurate. The reason why beam 

column theory is more accurate that the linear beam model is that it considers loads to move as 

the beam deforms and hence is able to include bending moments from FXL in addition to FYL. 

This enables the beam column theory to be able to accurately predict beam displacements for 

end-displacement UYL limited to 10% of length L. However beam column theory does not use the 

accurate nonlinear expression for curvature. This is why, for large displacements, its predictions 

are much larger than that predicted by the exact beam solution.  

In the case of flexure mechanisms, it turns out that the maximum displacement range 

specifications are limited to 10-15% of the length of the flexure element due to material failure 

criteria. In this range, a model based on the beam column theory should sufficiently capture all 

constraint characteristics. Such a model is Planar Beam Constraint Model (PBCM), proposed by 

Awtar in 2004 [30] that may be used to analyze slender planar beams. Awtar observed that, for 

intermediate end displacement limited to 10% the length of the beam, the transcendental 

functions generated by the solution of beam column theory can be reduced to simple analytical 

expressions, given in Eq.(0.4) without incurring more than 5% error. The symbols below are in 

accordance to Figure 1.4(a). This model is known as the planar beam constraint model (PBCM) 

as it is applicable to beams with planar loading only. 
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Using this model, estimates of the load stiffening effect (second term on the right hand 

side of Eq.(0.4)(i)), elasto-kinematic effect (third term on the right hand side of Eq.(0.4)(ii)), 

both of which contribute to parasitic error motions in the axial direction, can be accurately found 

within this intermediate displacement range. It should be noted that, since PBCM is intended for 

slender planar beams (see footnote 3, page 18), shear effects in the YZ plane are not significant 

and hence not considered. Using PBCM, the constraint characteristics of common flexure 

modules such as parallelogram flexure module and double parallelogram flexure module can be 

studied more accurately and thoroughly than PRBM [33]. A brief derivation of PBCM is given in 

Chapter 2. 

In spite of its advantages, PBCM also suffers from inadequacies. Firstly, it is nontrivial to 

extend the curvature linearization assumption to spatial beams, where all six independent 

displacements (translations and rotations about X, Y and Z axis) are important. This is because 

while complete linearization of curvature fails to predict the coupling between the two bending 

planes, consideration of the entire curvature nonlinearity leads to complex nonlinear differential 

equations which are very difficult to solve in closed form. Other small effects that are also 

present in spatial beam analysis are the anticlastic effect [29], warping effect [25], and trapeze 

effect [59]. In the case of flexure strips with width comparable to length, shearing effects in the 

XZ plane also need to be considered. 

Secondly, PBCM is limited to beam geometries: planar beams with width of the order of 

thickness (plane stress formulation in the XY plane) and planar beams with width larger than the 

length of the beam (plane strain formulation in the XY plane). In the first case, the beam is 

assumed to be stress free in both the transverse directions Y and Z, while in the second case the 

beam is stress free in Y direction and strain free in Z direction. In spatial loading
7
 and/or for 

                                                 
7 Spatial loading refers to fully generalized end loading with 3 mutually perpendicular forces and moments. 
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intermediate beam width, stress and strains are more complex and need to be considered more 

carefully.  

Finally, the PBCM proposed by Awtar did not account for manufacturing defects such as 

curvatures in undeformed beam and variations in rigidity modulus along the length of the beam. 

In summary, PBCM illustrates the tradeoffs associated with capturing curvature 

nonlinearity in order to increase the range of applicability versus ignoring curvature nonlinearity 

for the sake of simplicity. Identifying that the typical displacement for most metallic high 

precision motion guidance stages is within 10% of the flexure length, limited by material failure 

criteria, PBCM’s approach is found more suitable for the scope of this thesis and will be used as 

a starting point for this dissertation. An ad hoc extension of the PBCM to spatial beams may be 

found in Hao’s work [60] on three-dimensional table - type flexure mechanisms. The limitation 

of this work lies in the inadequate generality of Hao’s model, making it unsuitable for situations 

where beam torsion is present. More details on this will be provided in Chapter 5. 

For spatial beams, where all six loads (FXL, FYL, FZL and MXL, MYL, MZL) need to be 

considered, the mechanics is more involved since the displacements in the two bending planes 

cannot be simply superimposed. For moment loading only (MXL, MYL, MZL) for a spatial beam an 

exact solution was provided by Frisch-Fay. However, the solution involves an infinite series 

summation of elliptic integration which makes it impractical for mechanism design.  

Other models of spatial beams can be found in the work of Hodges [61] and DaSilva [36] 

which study helicopter blades. Starting from the basic stress-strain relations both Hodges and 

DaSilva derive the beam governing differential equations for bending, stretching and twisting, 

which turn out to be nonlinearly coupled. Although some simplification of the differential 

equations in either case was done through order of magnitude based approximations, the final 

differential equation was not solvable to find closed-form load-displacement relations that are 

required for flexure mechanism design.  

Nonlinearities of spatial beam mechanics for large end-displacements have also been 

captured using the Cosserat rod theory, which is capable of capturing the geometric 

nonlinearities for generalized end-loading. Using this theory, the helical solution of spatial beams 

under certain torsional and bending loads was analyzed. Recent development has further 

generalized this theory by using non-linear constitutive relations as well as shear and extensional 

effects [23-25].  It should be noted that although Cosserat theory does not consider in-plane 
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distortion or out-of-plane warping of cross-sections, it is accurate for slender beams. However, 

given the mathematical complexity of the formulation, solutions based on Cosserat’s theory also 

have to be obtained via numerical techniques.  

1.4 Need for a New Approach for Modeling Beams with Spatial Loading 

From the literature survey, while it is clear that the platform for finding analytical models 

of beams has been established using generalized stress-strain relations, a suitable model of 

flexure mechanism design that adequately capture nonlinearities with a simple representation 

does not exist. This is probably because requirements of flexure mechanism design are such that 

traditional approaches of approximating based on order of magnitude or ignoring selective 

nonlinearities either trivializes the beam model or doesn’t make it simple enough.  

To overcome this tradeoff, this dissertation recognizes that by choosing the beam shape 

to be such that either the two principle moments of area of the beam cross-section are equal or 

one is much greater than the other, closed-form load-displacement relations that capture all 

relevant nonlinearities can be assured even for generalized spatial loading. With this approach, 

spatial models of flexure strip and symmetric spatial beam will be formulated in Chapters 4 

through 6. Chapter 2 and 3 generalize the existing PBCM for planar flexure strips by adding the 

effect of manufacturing defects such as a non-straight undeformed beam and varying cross-

section or rigidity modulus with length. In particular, Chapter 2 derives the load-displacement 

relations for planar beam flexures while Chapter 3 derives the corresponding strain energy 

expression. It is observed that the analytical models for the planar as well the spatial beams have 

the same structure. Since planar analysis is easier to understand, it is placed before spatial 

analysis for the convenience of the reader. Using the relatively simpler concepts introduced in 

the planar analysis, understanding the spatial analysis will be easier.  

 

1.5 Summary of Contributions 

The goals and outcomes of this dissertation are listed below.  

 Create analytical closed form models for flexure strip and spatial beam flexure subject to 

generalized end-loading that provide at least 95% accurate displacement and stiffness 
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estimates in a quasi-static equilibrium. A closed form model should express loads in terms of 

displacements or vice versa for six independent directions of the beam end point. 

 Identify and quantify the trade-offs in the constraint characteristics of the flexure elements 

between three design criteria: 1. Make stiffness along DoF as low as possible 2. Make 

stiffness along DoC as high as possible 3. Reduce or eliminate all error motions.  

 For each type of beam considered, formulate strain energy expressions in terms of end-

displacements in closed-form that are compatible with the load-displacement relations for 

each flexure element. This compatible strain energy can be used to easily analyze flexure 

mechanism with multiple flexure elements in parallel using the principle of virtual work. 

Examples of its use with a parallel arrangement of planar beam and the spatial beam flexure 

element are shown. 

 Effects of manufacturing defects in flexure strip and spatial beam flexure due to non-straight 

undeformed configuration and varying cross-section or rigidity modulus with beam length 

are quantified and discussed.  

By quantifying the constraint properties of flexure elements, this work lays an enabling 

foundation for constraint-based synthesis [62] and optimization of flexure mechanisms in the 

future. Furthermore, using the stiffness estimates, preliminary analysis of the resonant 

frequencies associated with the first few modes of a given flexure mechanism can also be carried 

out. However, understanding all the dynamic modes and frequency response of flexure 

mechanism will require a more careful study and is beyond the scope of this dissertation. 
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Chapter 2  

 

Planar Beam Constraint Model for Slender Beams with Planar Loading 

 

 

2.1 Introduction 

In several flexure mechanisms only translations and rotations in one plane are desired. 

Several examples of such mechanisms can be found in MEMS devices. In these mechanisms 

generally all flexure elements are arranged in one plane. Such mechanisms are referred to as 

planar mechanisms and the planar motion at a point or rigid body within the mechanism can be 

uniquely described by three mutually independent displacements. Let us choose the motion plane 

as the XY plane and the in-plane displacement co-ordinates as translation UXL along X, 

translation UYL along Y and rotation θZL about Z as shown in Figure 2.1. 

Flexure strips, which are often used as a building block for designing planar flexure 

mechanisms, have DoFs along planar displacements UYL and θZL and DoC along planar 

displacement UXL when oriented with its centroidal axis along X, thickness measured along Y 

(shown in Figure 2.1) and width measured along Z. Although flexure strips also have a rotational 

DoF about the X axis (twisting), by using two or several flexure strips in parallel, the mechanism 

can be designed such that the out-of-plane motion resulting from this DoF is adequately 

constrained. Additionally if a large width to thickness ratio (or aspect ratio) is chosen, out-of-

plane displacements UZL and θYL are relatively small. Thus, a nonlinear planar analysis of the in-

plane displacements UXL, UYL and θZL may be done ignoring the out-of-plane loads and 

displacements entirely. Furthermore, it will be shown in Chapter 4 and Chapter 5, that when 

torsional displacements are zero, out-of-plane loads and displacements have no significant effect 

on in-plane displacements. This is another case where a nonlinear planar analysis of the in-plane 
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displacements UXL, UYL and θZL may be done ignoring the out-of-plane loads and displacements 

entirely. This is true even for beams when the width of the beam is comparable to the thickness 

of the beam. It should be noted that in either case, if there exists out-of-plane displacements, they 

can be estimate independent of the in-plane loads and displacement using standard theories like 

Euler beam theory or Timoshenko beam theory whichever is applicable.  
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FYL
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ZL
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Y
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FXL
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Y
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f
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Kt

L
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FXL

11

2
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Figure 2.1: Planar Beam Flexure 

A widely accepted approach of analyzing in-plane displacements of slender rectangular 

beams is the Euler beam theory [43]. In this approach, cross-sections initially plane and 

perpendicular to the centroidal axis
8
 are assumed to stay plane and perpendicular to the deformed 

centroidal axis after loads are applied to the beam. For pure moment loading, this deformation 

assumption may be shown using symmetry arguments for cross-sections of a slender
9
 beam away 

from the ends of the beam [29]. In the presence of bending forces, this deformation assumption is 

only approximate. However, it may be shown that the out-of-plane displacements of the points 

on the cross-section, prior to deformation, are proportional to the square of thickness to length 

ratio [25]. Hence, using Euler’s assumption to analyze slender beams loaded with bending 

forces, leads to fairly accurate deformation prediction. 

Further simplification can be done by linearizing strain, defined as rate of change of 

length of a fiber after deformation, in order to obtain compact closed form load-displacement 

relations. However as discussed in Chapter 1, such linearization leads to errors when 

displacements are finite. A second approach to formulate reasonably accurate as well as closed 

form load-displacement relations is to use second order approximations
10

 in an appropriate 

manner. Typically, for planar analysis, the curvature nonlinearity is dropped, but arc-length 

conservation nonlinearity is retained to the second order. Beam column theory [58] uses this 

                                                 
8 Centroidal axis is the locus of the centroids of all beam cross-sections 
9 A slender beam is one where the thickness is less than 1/20th of the length [24]. 
10 By second order approximations, it is meant that terms that contribute less that 1% is an analytical formula are 

dropped 
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approach to capture pertinent geometric nonlinearities in a closed form manner. Although in this 

approach, the relations between loads and displacements are transcendental in nature, they are 

closed-form nonetheless. A simpler closed-form model that is still 95% accurate with respect to 

the original solution can be extracted from the latter by using Taylor series expansion, as shown 

by Awtar [24]. This model is known as the planar beam constraint model (PBCM) as it captures 

the constraint properties of a planar beam. A detailed background of PBCM is given in Section 

2.2. The contribution of this dissertation in the modeling of PRBM lies in the generalization of 

the PBCM by accounting for initial slope, curvature and shape variation of the beam. The 

generalizations are discussed in Sections 2.3, 2.4 and 2.5.  

 

2.2 Background: The Planar Beam Constraint Model (PBCM) 

An overview of the PBCM for a slender beam with planar loading, also known as a 

simple beam flexure (uniform thickness and initially straight) or a cantilever beam, is provided 

below for a better understanding of PBCM for a generalized beam flexure that will be presented 

in the subsequent sections. For a more detailed mathematical derivation the reader is referred to 

the prior literature [24]. 

2.2.1 Approach of PRBM 

Figure 2.1 illustrates a simple beam (length: L, thickness: TY, depth: TZ), interconnecting 

rigid bodies 1 and 2, subjected to generalized end-loads FXL, FYL, and MZL, resulting in end-

displacements UXL (DoC), UYL (DoF), and θZL (DoF), with respect to the coordinate frame XYZ. 

IZZ denotes the second moment of area about the bending axis Y, E denotes the Young’s modulus 

for a state of plane-stress in XY, and plate modulus for a state of plane-strain in XY. A 

‘mechanics of solids’ approach is taken, which is to find the strain based on certain valid 

deformation assumptions, followed by finding the corresponding stress to obtain a force 

equilibrium condition, rather than ‘theory of elasticity’ approach which is solving out the strain 

with a continuum approach assuming a certain stress distribution and using compatibility 

relations. Employing A. the Euler-Bernoulli assumptions for long and slender beams i.e. plane 

sections remain plane and perpendicular to the neutral axis, B. curvature linearization for small 

displacements as given in Chapter 1 Section 3, and C. load equilibrium applied in the beam’s 
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deformed configuration, leads to the following beam governing equation applicable at any given 

cross-section location X along the beam length: 

      1ZZ Y XL YL YEI U X U X U U X      
ZL YL XL

M F F  (2.1) 

It should be noted here that the neutral axis, which is the locus of the point of minimum 

extensional strain of all the cross-sectional areas and is assumed to be the centroidal axis
11

 and 

also assumed to not change with beam deformation. For intermediate deformations 

corresponding to -0.1L < UYL < 0.1L and -0.1 < θZL < 0.1 radians, this assumption is quite 

accurate. This is because for the above displacement ranges the maximum value of strains is of 

order 10
-3

. This implies that by using the undeformed cross-section to calculate the centroid the 

error in position is less than 0.1%. The above equation may be solved in closed-form by 

differentiating twice with respect to X. 

   iv

Y Y

ZZ

U X U X
EI

 XLF
 (2.2) 

and applying the following four boundary conditions: 

       
 

0 0,   0 0,   ,   U
Y

Y Y Y Y

ZZ ZZ

U L
U U U L L

EI EI

 
     

YL XLZL
F FM

 

The importance of applying load equilibrium in the deformed configuration of the beam 

is that contribution of the axial direction load FXL to bending moment, which may be large when 

the flexure element is supporting a large load, is taken into account. However, the differential 

equation itself and associated boundary conditions remain linear in the transverse-direction loads 

(FYL and MZL) and displacements (UY(X) and its derivatives). Consequently, solving this 

equation leads to linear relations between these end-loads and end-displacements (UYL and θZL = 

U′YL). The associated stiffness terms, however, are no longer merely elastic terms, but 

transcendental functions of the axial load FXL. These functions are expanded and truncated to the 

first order in FXL, with minimal error, to yield the following transverse end load-displacement 

relation: 
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   

   

   

   

20 0 1 1 2 22 2 2
11 12 11 12 11 12

0 0 1 1 2 2

12 22 12 22 12 22

YL YL YL
ZZ

ZZ ZZZZ
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U U U
k k k k k kL EI L L
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                                                   

YL XL XL

ZL

F F F

M
 (2.3) 

                                                 
11 Centroidal axis of a beam is the locus of the centroid of all cross-sections of the beam. 
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The truncation of the infinite Taylor series of the transcendental expressions are done at 

the second power of FXL for consistency with the geometric constraint and the strain energy 

relations which are truncated at the first and second power of FXL, respectively, as shown in the 

subsequent paragraph. If this consistency required is not kept in mind, the derivation of Eq. (2.1) 

and (2.2) using principle of virtual work, which will be shown later in Chapter 3, will yield 

inaccurate force-displacement relations. Next, the kinematic constraint imposed by the beam arc 

length may be captured via the following integral, to determine the dependence of the axial 

displacement UXL on the transverse displacements:    

 
 

2 3
2

0

1
1 ( )  

12 2

XLL U

Y

ZZ

T L L
L U X dX

EI



 
   

 


XLF
 (2.4) 

The left hand side is the original beam length plus its axial elastic stretching or 

compression due to the axial force FXL, while the right hand side is a continuous integral of the 

deformed arc of the beam. Both should represent the total beam arc length after the deflection 

and hence should be equal. In this case, it is important to include the second-order term in U′Y(X) 

on the RHS to capture the kinematics associated the beam deflection geometry. Dropping this 

terms makes UXL simply equal to the elastic stretch/extension. Not only is this inadequate for 

constraint characterization, it also proves to be inconsistent with the transverse direction relations 

(2.2)-(2.3), as will be shown via an energy formulation later in Chapter 3.  

Using the UY(X) solution for Eq.(2.2), Eq.(2.4) may also be solved in closed form to 

reveal a quadratic dependence of a portion of UXL on UYL and θZL. As might be expected, the 

coefficients in this quadratic relation are also transcendental functions of the axial load FXL. A 

series expansion and truncation to the first order in FXL  yields: 
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XL XLF F
(2.5) 

For convenience of discussion, the three terms on the RHS above may be individually 

identified as 
 e

XLU , 
 k

XLU , and 
 e k

XLU


, respectively, and will be further described shortly. Equations 

(2.3) and (2.5), which constitute the PBCM, provide accurate, compact, closed-form, and 

parametric relations between the end-loads and end-displacements of a simple beam. Further, in 

this format, all loads, displacements, and stiffness terms are naturally normalized with respect to 
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the beam parameters: displacements and lengths are normalized by the beam length L, forces by 

EIZZ /L
2
, and moments by EIZZ /L. Thus, one may define: 

2 2

;    ;    
ZZ ZZ ZZ

L L L

EI EI EI

XL YL ZL
x1 y1 z1

F F M
f       f m  

1 1 1   ;       ;       ;       ;    XL YL
x y ZL z

U U T X
u u t x

L L L L
   

The convention of representing non-normalized terms and the corresponding normalized terms 

by upper case and lower case letter, respectively, is followed throughout this thesis. 

It will be shown in Section 2.4 that the coefficients k’s and g’s, in general, are non-

dimensional ‘beam characteristic coefficients’ that are solely dependent on the beam shape and 

not its actual size [30]. These coefficients take the following numerical values for a simple beam.  

 
 0

11k  12 
 1

11k  6/5 
 2

11k  -1/700 
 0

11g  3/5 
 1

11g  1/700 

 0

12k  6 
 1

12k  1/10 
 2

12k  1/1400 
 0

12g  1/20 
 1

12g  1/1400 

 0

22k  4 
 1

22k  2/15 
 2

22k  -11/6300 
 0

22g  1/15 
 1

22g  11/6300 

Table 2.1. Characteristic Coefficients for a Simple Beam 

 

The PBCM helps characterize the constraint behavior of a simple beam flexure in terms 

of its stiffness and error motions. The first matrix term on the RHS of Eq.(2.3) provides the 

linear elastic stiffness in the DoF directions, while the second matrix captures load-stiffening, 

which results in a change in the effective stiffness in the DoF directions due to a DoC load. Both 

these matrix terms also capture the cross-axis coupling between the two DoF. Eq.(2.5) shows 

that the DoC direction displacement, which is a parasitic error motion, is comprised of three 

terms: 
 e

XLU is a purely elastic component resulting from the stretching of the beam neutral axis in 

the X direction; 
 k

XLU  represents a purely kinematic component dependent on the two DoF 

displacements, and arises from the constant beam arc-length constraint; and 
 e k

XLU


represents an 

elastokinematic component, called so because of its elastic dependence on the DoC force FXL 

and its kinematic dependence on the two DoF displacements. The elastokinematic component is 

also a consequence of the beam arc-length constraint, and arises due to a change in the beam 

deformation when FXL is applied, even as UYL and θZL are held fixed. The kinematic component 
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 k

XLU  dominates the DoC error motion and increases quadratically with increasing DoF 

displacements. The elastokinematic component of the DoC displacement, while small with 

respect to the purely kinematic component, is comparable to the purely elastic component and 

causes the DoC direction stiffness to drop quadratically from its nominal linear elastic value with 

increasing DoF displacements. 

Thus, the PBCM not only highlights the non-ideal constraint behavior of a beam flexure, 

it also reveals interdependence and fundamental tradeoffs between the DoF quality (large range, 

low stiffness) and DoC quality (high stiffness, low parasitic error). The beam characteristic 

coefficients, k’s and g’s, serve as convenient performance metrics in a design.  

2.2.2 Validation of PRBM 

For validation, we provide a comparison between the PBCM for a simple beam and the 

corresponding non-linear FEA predications. An overview of the FEA procedure and settings 

used in this paper is provided in Appendix 2.A attached to the end of this chapter. Figure 2.2 

plots the elastic stiffness coefficients (
 0

11k ,
 0

12k , and
 0

22k ) and load-stiffening coefficients (
 1

11k ,

 1

12k , and 
 1

22k ) versus the normalized DoF displacement uy1 or θz1. Similarly, Figure 2.3 plots the 

kinematic (
 0

11g ,
 0

12g , and
 0

22g ) and elastokinematic (
 1

11g ,
 1

12g , and
 1

22g ) coefficients. The PBCM 

predictions are found to be within 6% of the FEA results for the DoF end-displacements (uy1 and 

θz1) in the range ±0.1 and the DoC end-load (fx1) in the range ±10. Any discrepancy can be 

entirely accounted for by: A. the non-linearity associated with the beam curvature [19], which is 

not incorporated in the PBCM, and B. the truncation of higher-order terms of fx1 in Eqs. (2.3) 

and (2.5). In general, this displacement and load range covers most practical flexure mechanism 

applications. The maximum error of 6% incurred over this range is a fair price for a greatly 

simplified and insightful closed-form parametric constraint model.  
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Figure 2.2: Elastic Stiffness Coefficients and Load-Stiffening Coefficients for a Simple Beam: PBCM vs. FEA 

 

Figure 2.3: Kinematic and Elastokinematic Coefficients for a Simple Beam: PBCM vs. FEA 
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2.2.3 Comparison of PBCM with Linear Model and PRBM 

In order to gauge the advantages of PBCM over other closed-form modeling techniques 

for planar analysis, we now proceed to compare the three modeling techniques Linear Model, 

PRBM and PBCM from the point of view of analyzing a flexure mechanism. As a case study we 

will use a parallelogram flexure (Figure 2.4), comprised of two identical simple beams, (Length, 

L = 250mm, Thickness, T = 5mm, Depth along Z, D = 50mm, Width, W = 75mm, Elastic 

modulus, E = 210000Nmm2) which is commonly used to generate approximate straight line 

motion. 
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Figure 2.4: Parallelogram Flexure and its Pseudo Rigid Body Model 

Using the normalization convention introduced earlier, the linear model for this flexure 

module may be shown to be [63]: 

; ;
2

y1 x1 z1 2

t
24u       u 0       

24w 2


 
    

 

y1

y1 z1

f
f m  (2.6) 

The non-linear load-displacement results for this flexure module have been derived using 

the PBCM in the past [30]: 

 . ;
2

2 2

y1 x1 y1 y1

t 3 1
24 1 2 u       u u u

24 5 1400
    

y1 x1 x1 x1
f f f f  
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 

 

.

.

22
y1

z1 2

u 12 0 11 t

2w 12 700 24 1 2
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         

x1

z1 y1

x1

f
m f

f
 (2.7) 

A PRBM is also illustrated alongside the parallelogram flexure module in Fig.5. 

Assuming mz1 and fx1 to be zero, the model parameters are given by γ = 0.8517 and normalized 

torsional spring stiffness kθ = KΘL
3
/(EI)= 2.65, and the load-displacement results are given by 

[56]:   

cos sin ; sin ; (cos )y1 x18k     u     u 1  Qf f f g f g f    
y1 x1

f f  (2.8) 

Key constraint behavior predictions made by the above three models along with results 

from a non-linear FEA are plotted in Figure 2.5-7 over a uy1 range of ± 0.15. Figure 2.5 plots the 

non-linear dependence of ux1 (X DoC parasitic error motion) on uy1 (Y DoF displacement) and 

illustrates that both the PRBM and PBCM capture the kinematic effect in beams due to arc 

length conservation very accurately. However the linear model does not capture this effect at all. 

Figure 2.6 plots the variation in the X direction (DoC) stiffness with uy1 (Y DoF displacement).  

While the PRBM does not recognize any compliance in this DoC direction whatsoever, the linear 

model only captures the purely elastic stiffness component. The PBCM is the only model that 

accurately predicts the elastokinematic effects, as verified by the FEA. Figure 2.6 plots θz1 

(rotational DoC parasitic error motion) with increasing fy1 (Y DoF force). The PRBM predicts 

zero yaw rotation of the rigid stage, while the linear model is valid only for small forces and 

displacements. However, the PBCM accurately captures this parasitic error motion, also 

dominated by the elastokinematic effect, even for large values of the DoF force and 

displacement. 
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Figure 2.5: Dependence of ux1 (DoC) on uy1 ( DoF) 

 

Figure 2.6: Dependence of X direction (DoC) Stiffness on uy1 ( DoF) 
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Figure 2.7: Dependence of θz1 (rotational DoC) on fy1 (DoF) 

   

Thus, for planar analysis, the PBCM is the only closed-form model that truly 

characterizes the constraint behavior of flexures in terms of stiffness variation and error motions. 

This demonstrates the importance of PBCM in planar flexure mechanism design. 

2.3 Uniform Thickness Slender Beam with Generalized Boundary Conditions 

and  Initial Curvature  

Having done the FEA verification on previously presented PBCM for a simple beam 

flexure module, we next find the PBCM of more general beam flexure module by considering a 

uniform thickness beam with an arbitrary initial slope and an arbitrary but constant initial 

curvature. Note that choosing an arbitrary initial position simply shifts the coordinate frame of 

the beam by a constant value, and therefore is trivial. The objective is to capture these initial and 

boundary condition generalizations within the PBCM, which so far has only dealt with a simple 

beam. The motivation for doing so is two-fold: 1. Analytically capture the consequence of 

manufacturing variations, e.g. in MEMS devices micro-fabricated beams can often assume an 

initially bent/curved shape to relieve material stresses, and 2. Use initial slope and curvature as 

additional design and optimization variables to achieve desired constraint characteristics.  
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Figure 2.8: Initially Slanted and Curved Beam 

Figure 2.8 illustrates an initially slanted and curved beam with three generalized end-

loads fx1, fy1, and mz1, and three end-displacements ux1, uy1, and z1, along the coordinate frame 

XYZ. All lower-case quantities are normalized with respect to beam parameters, as described 

earlier. The beam is assumed to have an initial slope a and an initial curvature of . For small 

initial slope and curvature (~ 0.1), the Y and QZ directions still serve as DoF, and the X direction 

is a DoC. The initial (unloaded and undeformed) beam configuration is denoted by yi(x), final 

(loaded and deformed) beam configuration is given by y(x), and the beam deformation in the Y 

direction is given by uy(x), where  

2( )
2

iy x x x


a  , and ( ) ( ) ( )i yy x y x u x   (2.9) 

The derivation of the load-displacement relations for this beam flexure is carried out 

along the same lines as in the previous case. Euler-Bernoulli and small curvature assumptions are 

made. The latter implies that the displacement, slope, and curvature of the beam in its deformed 

configuration remain of the order of 0.1, so that the non-linearity associated with the beam 

curvature may be dropped here as well. The normalized bending moment, mz(x), at a given cross 

section is computed by applying load equilibrium in the beam’s deformed configuration: 

   1 1( ) 1 ( )xx u x y y x     z z1 y1 x1m m f f  (2.10) 

The leads to the following normalized beam governing equation:  

   1 1

{Upon Double Differentiation}

( ) 1 ( )

( ) ( )    

x

iv

y x u x y y x

y x y x

      

 

z1 y1 x1

x1

m f f

f
 (2.11) 

For positive values of fx1, the general solution to this fourth-order linear differential 

equation is given by:  
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      2

1 2 3 4sinh cosh ,  where y x c c x c x c x    x1r r r f  (2.12) 

An analogous solution in terms of trigonometric functions, instead of hyperbolic 

functions, exists for negative values of fx1. The beam deflection, uy(x), then becomes: 

     2

1 2 3 4( ) ( ) ( ) sinh cosh
2

y iu x y x y x c c x x c x c x


a       r r  (2.13) 

Displacement boundary conditions at the two beam ends are given by: 

       1 10 0 , 0 0 , 1  , 1y y y y y zu u u u u        (2.14) 

Using Eqs. (2.9) and (2.10), the load boundary conditions at x=1 can be shown to be: 

     11   ,  1y z yu u a       y1 x1 z1f f m  (2.15) 

The above displacement and load boundary conditions are then used to determine the 

coefficients c1, c2, c3, and c4, which ultimately lead to the following relations between the DoF 

direction end-loads and end-displacements. 
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 (2.16) 

As is expected, setting a =  = 0, reduces the above expression to that for a simple beam, 

prior to series expansion and truncation. As earlier, expanding the transcendental functions in the 

above matrices, and truncating fourth-order or higher terms in r (or equivalently second-order or 

higher terms in fx1), provides a great degree of simplification at less than 3% error over a 

comfortably large fx1 range (±5). The simplified DoF direction force-displacement relations may 

thus be expressed as follows.  

1 1

1 1

1
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12 6 12 6 2
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x1 x1
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f
f f

m
 (2.17) 
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Clearly, the first two terms, in the above matrix equation, are identical to the elastic 

stiffness and load-stiffening terms in Eq.(2.3) for a simple beam. The last term is new and arises 

due to the initial slope and curvature. Even though this term might appear similar to the original 

load-stiffening term, it actually does not change the DoF stiffness values. The presence of a and 

 simply shift the DoF load-displacement curves without affecting their slopes. This is 

corroborated to a high degree of accuracy by means of FEA for three different combinations of a 

and  (Figure 2.9). The FEA is carried out over a relatively large uy1 range (± 0.1), with fx1 set to 

5 and mz1 set to 0. This constant shift for given beam geometry is a consequence of the fact that 

the DoC load fx1 produces additional bending moments along the beam length that are 

independent of the DoF displacements. The action of this load in the presence of DoF 

displacements indeed produces load-stiffing, but that is captured as usual by the second term in 

the above expression. 

We next proceed to determine the DoC direction load-displacement expression for this 

flexure beam by imposing the following beam-arc length conservation relation: 

   
( )
1 11 1

22

0 0

1 1
1 ( ) 1 ( ) ( )  

2 2

e
x xu u

i y iy x dx u x y x dx

 

   
        

   
   (2.18) 

The LHS is the total arc length, which is the initial length augmented by the elastic 

elongation of the beam, ( )

1

e

xu . The RHS computes the total arc length after deformation, and 

hence the upper limit of integration changes to (1+ux1). This DoC direction constraint equation 

may be solved using the solution for uy(x) derived earlier in Eq.(2.13), to yield the following 

relation between end-displacements and DoC end-load: 

22
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1 1 1 1 33 1 44

21 22 112 2 2 2
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x1f  (2.19) 

where, 
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Upon setting α and κ to zero, the above DoC direction relation reduces to the one 

obtained for a simple beam, before series expansion and truncation. Next, as done for the DoF 

matrix equation, expanding the transcendental functions (g’s) and dropping higher-order terms in 

fx1, provides a considerably more simple and insightful relation, at less than 3% error over fx1 in 

the range of ±5.  
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 (2.20) 

The first (purely elastic), second (purely kinematic) and third (elastokinematic) terms in 

the above expression are identical to those obtained for the simple beam (Eq.(2.5)). The effects 

of α and  in the DoC direction are expressed via the last four terms. The fourth and fifth terms 

contribute to an extra purely kinematic component. Even though these terms do not exhibit a 

quadratic dependence on the DoF displacement like the previous kinematic terms, they are 

independent of the DoC load. The sixth term, which only depends on the initial curvature and not 

the slant, contributes to an extra elastokinematic effect, which again is not quadratic in the DoF 

displacement. However, this term produces a change in the DoC stiffness with increasing z1 

displacement. The seventh and final term in the above expression is a new purely elastic term. 

Both the sixth and seventh terms arise due to ‘uncurling’ of the initial beam curvature in the 
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presence of a DoC load fx1. In case of an initially slanted beam with no initial curvature ( = 0), 

since this uncurling does not exist, there are no elastic or elastokinematic components when DoF 

displacements are zero. 

These mathematical and physical observations are further verified via FEA for three 

different combinations of α and κ (Figure 2.9, Figure 2.10 and Figure 2.11). Figure 2.9 plots the 

normalized DoF force fy1 vs normalized DoF displacement uy1 in the presence of normalized 

DoC load fx1 set to 5. This figure shows a constant shift in the force displacement curve without 

the change is stiffness (since the slope is the same). Obviously this is because for an initially 

slanted or curved beam fx1 produces a displacement even in the absence of fy1. Figure 2.10 plots 

the parasitic error motion along the X DoC, ux1, against the Y DoF displacement, uy1. The 

corresponding FEA is carried out with fx1 set to 5 and mz1 set to 0. Figure 2.11 plots the X DoC 

stiffness against the Y DoF displacement, uy1, and the FEA is carried out with fx1 set to 5 and z1 

set to 0. The FEA results are all found to be in good match with the generalized BCM developed 

in this section. 

 

 

 

Figure 2.9: DoF force (fy1) vs. DoF displacement (uy1) for initially slanted or curved beams 
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Figure 2.10: DoC Displacement(ux1) vs. DoF displacement (uy1) for initially slanted or curved beams 

 

 

Figure 2.11: DoC Stiffness vs. DoF displacement (uy1) for initially slanted or curved beams 
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Thus, overall, a uniform thickness beam flexure with initial slant and curvature continues 

to behave like a single DoC constraint element. The constraint characteristics along the DoF 

direction do not change considerably, but the DoC error motion as well stiffness is influenced by 

the presence of additional linear, kinematic, and elastokinematic terms. 

 

2.4 Beam Shape Generalization 

While in the previous two sections we have considered uniform thickness beams that may 

be initially straight, initially slanted, and/or initially curved, in this section we attempt a 

systematic process for developing the PBCM for an initially straight beam with any generalized 

beam cross-section variation along its length. Such beam shape variation allows a non-uniform 

distribution of compliance along the beam length, and if the consequence of distributed 

compliance is analytically understood in terms of the beam constraint characteristics, one can 

carry out beam shape optimization.    

Figure 2.12 illustrates an initially straight beam with varying cross-section in its 

undeformed configuration subject to three generalized end-loads fx1, fy1, and mz1 along the 

coordinate frame XYZ. The resulting three end-displacements ux1, uy1, and z1, are not shown but 

are also along the same coordinate frame. As earlier, all lower-case quantities are normalized 

with respect to beam parameters. It is reasonable to assume that the undeformed neutral axis lies 

along the X axis. It is also obvious that the Y and Qz directions still serve as the Degrees of 

Freedom, while the X direction is a Degree of Constraint. 

fy1 mz1X

Y

Z

1
fx1

 

Figure 2.12: Straight Beam with Varying Cross-Section 

The modeling assumptions remain the same as earlier, except for the fact that Izz is no 

longer constant and, instead, may be stated as    0ZZ ZZI x I x . IZZ0, a constant, is the nominal 
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second moment of area and is therefore used in the normalization scheme described earlier. 

Consequently, the beam governing equation (2.1) becomes:  

        11y y yx u x x u u x      z1 y1 x1m f f  (2.21) 

Furthermore, assuming that the thickness change as the    0Z ZT X T X , the constraint 

equation for the x-displacement for a beam with variable cross-section is  

 

 

1

21
1

33 0

2 1

0

33

0

1
 

2

Where 
12

x
x y

Z

f
u u dX

k

T L dX
k

X

 







 (2.22) 

Given the arbitrariness of the function (x) and ζ(x) a solution to this ordinary differential 

equation varying coefficients is no longer as easy as the case of a simple beam flexure. 

Nevertheless,  Eq.(2.21) and the boundary conditions still remain linear in the transverse loads 

(fy1 and mz1) and displacements (  yu x and it derivatives). This implies that the resulting relation 

between the transverse end-loads and displacement has to be linear, of the form: 

   

   
11 12 1

21 22 1

; ( ) ; ( )

; ( ) ; ( )

y

z

k x k x u

k x k x

 

  

    
    

    

y1 x1 x1

z1 x1 x1

f f f

m f f
 (2.23) 

In a similar fashion, since the x-displacement in Eq.(2.22) is quadratic in  yu x  the 

constraint equation is expected to be of the form 

   

   

2
11 121 1

1

21 221 133

; ( ) ; ( )

; ( ) ; ( )12

T

y y

x

z z

g x g xu ut
u

g x g xk

 

  

    
      

    

x1 x1x1

x1 x1

f ff

f f
 (2.24) 

For both equations (2.23) and (2.24), each term in the matrices can be expanded in a 

taylor series of axial load fx1. This would lead us to get models similar to PBCM for a simple 

beam flexure as given in Eq. (2.3) and (2.5). However as will be shown in Chapter 3, there exist 

inherent relations between the ‘k’ matrices and the ‘g’ matrices as shown below. 

( ) ( 1)1
,      0,...,          where 1  or  2,    1  or  2

2

n nn
g k n   

        (2.25) 

In this case we only need to solve for Eq. (2.23) and from that equation the constraint 

equation can be easily derived.  
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There are two approaches that we take to carry out the above strategy in solving 

Eq.(2.21) – analytical and numerical in order to determine Eq. (2.23). These two approaches are 

described below along with their merits and limitations. 

2.4.1 Analytical Approach 

This analytical approach is based on a series solution. Without any loss in generality, the 

beam shape may be expressed as: 

   2

0 1 2 ... ...        where 1n

n ox b b x b x b x b        (2.26) 

Next, Eq. (2.21) is reduced to the following simplified homogenous form by choosing a 

new independent displacement variable        11 y yw x x u u x    z1 y1 x1m f f , 

   
1

1 i

i

i

b x w x w x




 
  

 
 x1f  (2.27) 

Since the variable coefficient in this second order differential equation is an analytic 

function of x over the range of interest 0 to 1 , it may be solved using the power series solution 

method [24]. The variable coefficient of w''(x) is never zero because that would mean the second 

moment of area is zero. That is possible only if the beam cross-section vanishes at that particular 

location, which is physically impractical. Since this coefficient is a polynomial, the solution to 

the above equation can be assumed to be an infinite polynomial series as follows: 

  2

0 1 2

0

... ...n n

n n

n

w x a a x a x a x a x




         (2.28) 

The a’s in this expression will be referred to as the solution coefficients. Substituting this 

assumed solution in the homogenized beam governing equation (Eq.(2.27)) yields 

 
2

1 0 0

2 !
1

!

i n m

i n m

i n m

n
b x a x a x

n

  



  

  
   

  
    (2.29) 

The above equation is true for all values of x and hence the coefficients of similar powers 

of x on the RHS and LHS can be equated. To equate the coefficients of the r
th

 power of x on both 

sides, Eq. (2.29) is differentiated r times and x is set to zero.  

 
2

0 0 0 0
00

2 !

!

l r l rr
r n m p

l n m pl r l r
l n m p
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md d d
c b x a x a x

dx dx m dx

  


   



            
                           
   x1f  
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  

  

  

  

2

0

1

2 1 1

0

! 2 ! !

1

1 2 1 2

r
r

l l r l r

l

r
r

r r i i

i

c l r l b a a r

r i r ia
a a b

r r r r

 





   



     

    
    

     





x1

x1

f

f
  (2.30) 

This equation relates the coefficient ar+2 with all its preceding coefficients, a0 through 

ar+1. The variables l, m, p, and i are dummy indices used for summation only. Using Eq.(2.30), 

the first four coefficients can be calculated to show  

0 0 1 1 0 1

1
2 0 1 3 0 1

1 . 0 .    ,    0 . 1 . 

1 1!
0 .    ,    

2! 3! 3!

a a a a a a

b
a a a a a a

   

    x1 x1 x1f f f
 (2.31) 

From Eq.(2.31), it may be observed that the initial four coefficients can be all expressed 

in term of a0 and a1. By the method of induction, it is next shown that all a’s can be similarly 

expressed as a linear combination of a0 and a1. Let us assume that for some j, each of the 

coefficients a2 through aj is represented in terms of a0 and a1:  

,0 0 ,1 1           2n n na h a h a n j      (2.32) 

Substituting Eq. (2.32) into Eq.(2.30), with r+2 = j+1, one may observe that aj+1 also 

turns out in terms of a0 and a1.  

 
  

  

 

  

 

2
1,0 0 1,1 1

1 ,0 1 0

0

2

,1 1 1

0

1

1 2 1

1
           

1

j
j j

j j i i

i

j

j i i

i

h a h a j i j i
a h b a

r r j j

j i j i
h b a

j j


 

  





 



     
   

    

    
  

  





x1
f

 (2.33) 

Eq.(2.33) confirms that aj+1 can also be expressed in the form of Eq. (2.32). Thus, by the 

principle of induction, it is proven that all subsequent a’s are of the form of Eq. (2.32), where hn,0 

represents the coefficient of a0 in an and hn,1 represents the coefficient of a1 in an. Using 

Eq.(2.30), the following recursion formula for hn,0 and  hn,1 may be obtained for n>2.  

 
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 

 

  

 
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2 1

1 1

2 1
 

1 1

n
n
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n

n n k k
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h h b

n n n n

h n k n k
h h b

n n n n




  






  



     
   

   

     
   

   





x1

x1

f

f
 (2.34) 
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In the above expressions, i and k are dummy variables used simply for summation. Also, 

it becomes evident that the coefficients hn,0 and hn,1 are functions of the beam shape parameters 

b’s and the DoC load fx1. Thus, using Eqs. (2.28), (2.32), and (2.34), the solution for w(x) and 

uy(x) may be stated as follows: 

     

         

2 2

0 2,0 ,0 1 2,1 ,1

1 0 0 1 1

1 .. .. .. ..

1 1
1

n n

n n

y y

w x a h x h x a x h x h x

u x x u a s x a s x

         

       z1 y1

x1 x1

m f
f f

   

   

2

0 2,0 ,0

2

1 2,1 ,1

where, s 1 .. ..

            s .. ..

n

n

n

n

x h x h x

x x h x h x

   

   
 (2.35) 

The series-solution, given by Eq.(2.35), is meaningful only when the series is convergent. 

If the beam shape (x) in Eq.(2.26) is a q
th

 order polynomial, it can be shown that this series-

solution is convergent at x=1, provided the following convergence criterion is met. The reader is 

referred to Appendix 2.B at the end of this chapter for the derivation of this criterion. 

 1 1

1 1 ... 0  1q q

q qroots b b b  

       (2.36) 

The displacement solution given by Eq.(2.35) has two arbitrary constants a0 and a1. This 

is expected since the beam governing equation, Eq.(2.27), is second order. The two arbitrary 

constants are determined by applying the boundary conditions at the fixed end of the beam.  

   

0 1 1

0 0,  0 0

,  

y y

y

u u

a u a

 

     z1 y1 x1 y1m f f f
 (2.37) 

Finally, the DoF direction end-load end-displacement relations are obtained by setting 

x=1 in the Eq.(2.35). 

   

          

        

1 1

1 0 0 1 0

1 0 1 0 1 0
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1 1 1 1 1 ,   and

1 1 1 1 1

y y z y

y

z y

u u u

u s s s s

s u s s s





  

   

       

x1 y1 z1

x1 x1 y1 z1

f f m

f f f m

 (2.38) 

This can be further converted to a matrix format as shown below: 

 
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     

     
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s s s s
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f
f
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  (2.39) 
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The above equation is solved to obtain the end-loads in terms of the end-displacements 

and functions so(x) and s1(x).  

 

      
  

      
    

      

11 12 1 0

11

21 22 1
0 1 0

0 0 1

12 21 22

0 1 0 0 1 0

1
 ,  where      ,

1 1 1 2

1 1 1 1
 ,   

1 1 1 2 1 1 1 2

y

z

k k u s
k

k k s s s

s s s
k k k

s s s s s s



     
     

        

 
  

        

y1 x1

z1

x1 x1

f f

m

f f
 (2.40) 

Maxwell’s reciprocity principle [25], which requires the stiffness matrix to be symmetric, 

has been employed in going from Eq.(2.39) to Eq.(2.40). This principle requires the following 

condition to hold true at all times, and may be used to check the convergence and validity of the 

solution, as explained later. 

       1 0 0 11 1 1 1 1s s s s     (2.41) 

The above relation can be easily verified to be true for the simple case in which the 

variation in cross-section is taken to be zero, i.e.,  b’s = 0. For this case, the expressions for hn,0 

and hn,1, determined using Eq.(2.34), are: 

   
2,0 2,1

,0 ,1

0,0 1,0 0,1 1,1

2,0 2,1
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h h
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h h h h

h h

h h

h h
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 
 

 

   
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 

 

 

x1 x1

x1

x1

x1

x1

f f

f

f

f

f

 (2.42) 

Substituting these values of hn,0 and hn,1 in Eq.(2.35), it is observed that the functions s0(x) 

and s1(x) are simply hyperbolic sine and cosine functions as given below. 

   

   

2
2 4

0

2
3 5

1

1 .. cosh
2! 4!

1
.. sinh

2! 2!

s x x x x

s x x x x x

 
    

 

 
    

 

x1 x1
x1

x1 x1
x1

x1

f f
f

f f
f

f

 (2.43) 
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These values of s0(x) and s1(x) satisfy Eq.(2.41), thus verifying Maxwell’s reciprocity 

principle. One may also check that substituting these hyperbolic functions into the load-

displacement relations of Eq.(2.40) results in the exact transcendental relations for a simple beam 

[30, 58].  

Further, the reciprocity principle may be used to determine the number of solution 

coefficients, a’s, to be used in Eq.(2.28). This is equivalent to choosing the highest power of x in 

s0(x) and s1(x) to be retained such that resulting s0(1) and s1(1) satisfy Eq.(2.41) within an 

acceptable margin of error.  

As expected, Eq. (2.40) confirms the fact that even for a varying cross-section beam the 

DoF end-loads are linearly related to the DoF end-displacements by a stiffness matrix that is a 

function of only the DoC direction force fx1 and the beam shape coefficients b’s. The final step 

now is to expand the stiffness coeffecients k’s in Eq.(2.40) with respect to fx1: the first term 

(zeroth-order) will provide the elastic stiffness coefficients for the PBCM, the second term (first-

order) provides the load-stiffening and kinematic coefficients for the PBCM, and the third term 

(second-order) provides the elastokinematic coefficients for the PBCM. As discussed earlier, an 

explicit solution to constraint equation (2.4) to determine the constraint matrix is not necessary.  

Ultimately, it is seen above that the load-displacement relation format for the variable 

cross-section beam remains the same as that for the simple beam – only the beam characteristic 

coefficient change – thus validating the generality of the PBCM. The procedure is still closed-

form because for a given beam shape, no iterative or numerical methods are required; 

furthermore, the beam shape coefficients show up as parameters in the resulting PBCM, thus 

preserving it parametric nature.  

Recapping the analytical approach presented above: The beam shape is first quantified by 

expressing the second moment of area of the beam as a function of x coordinate and beam shape 

parameters b’s as in Eq.(2.26). The beam shape parameters are then used to check the 

convergence criterion given by Eq.(2.36). Once the convergence criterion is satisfied, the beam 

shape parameters may be used to calculate the solution coefficients a’s in terms of the variables 

hn,0 and hn,1 as per Eq. (2.34), followed by determination of s0(x) and s1(x) as per Eq. (2.35). The 

functions s0(x) and s1(x) are then truncated in powers of x such that Maxwell’s reciprocity 

criterion, given in Eq.(2.41), is satisfied within a certain acceptable error (e.g. 1%) for the given 

range of problem parameters (DoC force fx1 and the beam shape parameters). These functions 
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then provide the stiffness matrix as per Eq.(2.40). Finally, the resulting stiffness coefficients are 

expanded in fx1 to provide the elastic, load-stiffening, kinematic and elasto-kinematic 

coefficients for the BCM.  

 

fy1 mz1X

Y

Z

1
fx1

 

Figure 2.13: Straight Beam with a Sinusoidal Varying Moment of Area 

The above proposed analysis procedure is illustrated by an example. A variable cross-

section beam (Figure 2.13) is described by Eq.(2.44). The resulting shape parameters b’s are 

given in Table 2.2. Without any loss in generality, the area moment of inertia, as opposed to the 

beam thickness, is taken to a sinusoidal function.  

   0 1 sin
100

zzI x I x



 

  
 

 (2.44) 

 

b1 ηπ/100 b5 ηπ
5
/(5!100) b9 ηπ

9
/(9!100) 

b2 0 b6 0 b10 0 

b3 - ηπ
3
/3! b7 - ηπ

7
/(7!100) b11 - ηπ

11
/(11!100) 

b4 0 b8 0 b12 0 
Table 2.2.  Shape parameters for a sinusoidally varying beam cross-section 

The variable η is the highest percentage increase in the area moment of inertia which 

occurs at the middle of the beam. Using the twelve beam shape parameters given above the 

second moment of inertia function can be estimated with 0.01% accuracy for all 0<x<1. Hence, 

the higher order b’s are neglected. It may be shown that the convergence criterion is satisfied by 

the shape parameters b’s for η < 10. Next the h’s and s’s functions are calculated as previously 

described in Eq. (2.34) and Eq. (2.35) but are not presented here for brevity. The expressions for 

the functions s0(x) and s1(x) are truncated after the tenth power of x, satisfying Maxwell’s 

reciprocity principle, Eq.(2.41), with less than 1% error for η < 10 and fx1 in the range ±5. The 

resulting stiffness matrix may be further expanded in terms of fx1, as follows.  
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Eq. (2.45) shows that the stiffness coefficients are function of the beam shape and DoC 

force fx1 only. The relation can be verified to match exactly with that of a simple beam if η is set 

to zero. The first matrix in Eq.(2.45) is the elastic stiffness matrix while the second matrix 

represents the load-stiffening matrix. The stiffness matrix associated with fx1
2
 and higher order 

terms may be neglected with respect to the load-stiffening matrix, at the expense of 1-2% error 

over an fx1 range of ±5.  

The constraint relation obtained for this particular case after similarly truncating matrices 

with second order and higher powers of fx1 is given below. It is interesting to note that the 
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constraint relation has the same form as that for a simple beam, i.e., a summation of purely 

elastic term, a purely kinematic term, and an elastokinematic term. 
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The above example shows that the form of the load-displacement and constraint relations 

remains invariant in the PBCM even for varying beam cross-sections. Thus, it may be concluded 

that PBCM is valid for any generalized beam whose shape parameters are known. The beam 

characteristic coefficients in the PBCM may be determined from the beam shape parameters 

using the above-described procedure. This generalization of the PBCM also provides a useful 

tool for beam shape optimization. Furthermore, the solution obtained for the specific family of 

variable cross-section beam is closed-form in nature. Any change of parameters such end-loads, 

end-displacement, or beam shape (η) does not require a reformulation of the entire model. 

However, it is found that the series solution approach outlined above provides convergence for 

small values of η (< 0.1). Lack of solution convergence for larger variations, relevant for the 

purpose of design and optimization, proves to be a serious limitation of this approach. A 

potential research task, not addressed further in this thesis, is to develop more robust ways for 
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determining and achieving solution convergence. To overcome this problem, we next propose a 

numerical approach which is more effective and powerful, in determining the beam characteristic 

co-efficients for any beam shape. Although, for a single beam of a particular shape, this approach 

is not closed-form, the resulting model can be used in the closed form analysis of flexure 

mechanisms that use one or several of such beam. 

 

2.4.2. Numerical Approach 

Given the limitations recognized above, a numerical procedure is developed to determine 

the elastic, load-stiffening, kinematic, and elastokinematic terms from Eq.(2.23) by numerically 

solving Eq.(2.21). Since this equation contains the end displacement uy1, which is initially 

unknown, the numerical solution requires an iterative process such that uy1 is updated and 

incrementally corrected at each step. 

The algorithm uses numerical values of the beam shape IZZ(x) and the end-loads (fx1, fy1, 

and mz1), along with an initial guess for uy1 (= 0). For a given end-displacement value uy1(i)
in

 at 

iteration i, Eq. (2.21) is solved numerically in MATLAB using ODE45 to output a new value of 

end-displacement uy1(i)
out

. This new value is then used to update the end-displacement in the next 

iteration step using a pre-specified parameter :         1 1 1 11  
in in out in

y y y yu i u i u i u i    . 

This cycle is repeated until an acceptable convergence is achieved in the uy1 value, i.e. the error 

uy1(i)
out

 - uy1(i)
in

 becomes less than a pre-specified parameter  At this point, the final values of 

uy1 and u′y1 (or  z1) constitute the desired solution. Parameter  is chosen optimally so that the 

algorithm converges quickly. Parameter  simply dictates the accuracy of the resulting numerical 

solution, with a small value leading to greater accuracy but also greater convergence time. In our 

case,  = 0.1 and  = 0.00001.  

Next, in order to solve for the various stiffness coefficients (k’s) in Eq.(2.23), we first 

determine the analogous compliance coefficients, which are easier to solve for using the above 

algorithm.  
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The following steps are carried out for several discrete numerical values of the DoC force 

fx1, varied between -5 and +5. By setting mz1 to zero and fy1 to one, end displacement uy1 and θz1 

provide the numerical values for compliance terms, c11 and c21, respectively, for a given value of 

fx1. Similarly by setting mz1 to one and fy1 to zero, end displacement uy1 and θz1 give the 

compliance terms c12 and c22, for the same given value of fx1. Numerical values of the stiffness 

coefficients for this given value fx1 is then simply found by matrix inversion: 

11 12 22 12

21 22 21 1111 22 12 21

1
  

k k c c

k k c cc c c c

   
   

   
 (2.48) 

Having carried out the above step for several discrete values of fx1, each of the stiffness 

coefficients k11, k12= k21, and k22, is expressed as a 7
th

 order polynomial function of fx1, using 

curve fitting techniques as shown in the equation below: 
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x1 x1

x1 x1

f f
f f

f f
 (2.49) 

As per the strategy described in the beginning of this section, only the first three terms in 

the above polynomial are needed for completing the PBCM. The first term (zeroth-order term in 

fx1) provides the elastic stiffness coefficients, the second term provides load-stiffening and 

kinematic coefficients, and third term provides the elastokinematic coefficients. The constraint 

relation can be found using the inherent relations between the ‘k’ coefficients of the load 

displacement relation in Eq.(2.23) and ‘g’ co-efficients in Eq.(2.25). 

Thus, using this numerical procedure, which has been completely automated, the BCM 

for a beam with any type of varying cross-section can be found. The approach is not limited by 

convergence issues and is applicable to considerably large shape variations, as long as Eq.(2.21) 

and its underlying assumptions remain valid. Next, we illustrate the application of this method to 

a specific case of beam shape generalization, shown in Figure 2.14. In this case, the beam shape 

is completely determined by parameter ao: ao=1/2 represents the simple beam with uniformly 

distributed compliance, while ao → 0 corresponds to a lumped-compliance topology. Given the 

relative simplicity of this shape, closed-form parametric BCM can be derived for this beam and 

has been reported previously [30]. These closed-form results are used here to verify the 

effectiveness and accuracy of the proposed numerical approach.  
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Figure 2.14: Variable cross-section beam 

A comparison of the load-displacement relations based on the closed-form PBCM, 

numerically derived PBCM, and non-linear FEA is illustrated in Fig.2.11 (elastic stiffness 

coefficients), Fig.2.12 (load-stiffening stiffness), and Fig.2.13 (elastokinematic coefficients). 

These figures show that the numerically derived BCM lies within a 1% deviation from the FEA 

as well as closed-form PBCM. The numerical PBCM derivation and FEA can be carried out only 

for discrete values of the beam shape parameter a0, which was varied from 0.1 to 0.4 in 

increments of 0.05 in this study.  

 

Figure 2.15: Elastic stiffness coefficients comparison 
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Figure 2.16: Load stiffening coefficients comparison 

 

Figure 2.17: Geometric constraint coefficient (elastokinematic) comparison 
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The proposed numerical approach was also applied to other more complicated beam 

shapes including          21 sin   and  1 sinzz zzo zz zzoI x I x I x I x       , with  as large 

as 2. In each case, the resulting numerical PBCM was found to agree with non-linear FEA, 

within less 2% error. These detailed results are not included here for the sake of brevity.  

Ultimately, the above analysis and examples show that the form of the load-displacement 

and constraint relations remains invariant in the PBCM, even for beams with varying cross-

sections. This highlights the generality of the PBCM and therefore its strength in flexure 

mechanism design and optimization.  

 

2.5 Discussion 

In the chapter, the general framework of PBCM was shown. Although as we will analyze 

spatial loading of flexure strips the equations will get more complicated, the basic methodology 

will remain similar to key steps discussed here. The key understanding that is obtained in this 

chapter is the importance of performing load equilibrium in the deformed configurations 

especially in the presence on non-negligible axial force fx1. In flexure mechanisms, such axial 

forces are often present. This is because one of the primary functions of flexure mechanisms is 

load bearing which is nothing but resisting loads along its DoCs. Furthermore, when the beam 

flexure is not perfectly straight or aligned, the kinematic and elastokinematic characteristic of the 

flexure varies. A initially slant beam or a curved beam may be present due to these common 

manufacturing defects or by intentional design. Using the generalized model presented in section 

2.3 one has the ability to work with loads and displacements in the global co-ordinate frame 

without performing unnecessary co-ordinate frame changes that would be required if the model 

for an initially straight beam is used. An example, when using the generalized model of a simple 

beam is advantageous, is a tilted parallelogram flexure which will be analyzed in Chapter 3 using 

this model.  

Another key contribution of this Chapter is the model for simple beam flexure with 

varying cross-section. Two approaches were taken to generate an equivalent PBCM for this 

problem. The first approach employed a series based solution, in which PBCM was be derived 

analytically in a closed-form such that the beam shape parameter(s) show up in the model, 

without the need for any iterative or numerical procedures. However, this approach poses 
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convergence problems for large beam shape variations. An alternate numerical approach that is 

capable of handling any possible beam shape as well as large variations, without any 

convergence issues was also discuss. Although in this case determining the beam characteristic 

coefficients in the PBCM required numerical as well as iterative procedures, the fundamental 

relations between different beam characteristic coefficients, allowed the formulation of the 

complete PBCM of various beam shapes through the numerical solution of one differential 

equation. The utility of this approach does not lie in the model of one beam shape but in making 

more flexure elements available for closed-form design and analysis of flexure mechanisms. 

With more flexure elements available, optimization of flexure mechanism by changing flexure 

elements is easily possible.  

One case that was not explicitly discussed was the case when the beam is initially slant, 

curved and also has a varying cross-section. However, an appropriate model can be easily 

formulated from our basic understanding of the slant and curved beam in section 2.3 as well as 

the model for straight beam with varying cross-section in section 2.4. We first note that the 

kinematic effect of the initial slant and curvature would remain unchanged because of geometric 

nature. Furthermore we also note that the beam characteristic coefficients are not affected by the 

initial slant and curvature. These coefficients will be solely determined by the beam’s cross-

section along its neutral axis. Finally, we note that the elasto-kinematic terms due to curvature, 

that depend on elastic behavior, kinematic behavior and the curvature of the beam, needs to be 

calculated by considering the initial slant, initial curvature and varying cross-sectional of the 

beam simultaneously. However, it can be shown that the powers of the force, displacements and 

curvature remain the same for these terms and the constant coefficient can be determined using a 

numerical procedure similar to section 2.4.2. There the analytical expressions for a beam that is 

initially slant, curved and also has a varying cross-section will be as follows. 
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Appendix 2.A: Summary of FEA Procedure 

The closed-form analytical expressions for the simple beam, parallelogram flexure 

module, initially slanted/curved beam, and the variable cross-section beams are validated by 

means of non-linear Finite Element Analysis performed in ANSYS. The non-linear formulation 

used in ANSYS is based on reference [64]. BEAM4 elements are used with consistent matrix 

and large displacement options turned on and shear coefficients set to zero. The material 

assumed is Stainless Steel, and typical values for Young’s Modulus (210,000 N.mm
–2

) and 

Poisson’s Ratio (0.3) are used. Beam length (L) = 250mm, thickness (T) = 5mm, and height (W) 

= 50mm, are chosen for the FEA models. The undeformed neutral axis from the simple beam is 

taken along the x-axis. For all the beams, meshing is done at 300 elements per 250mm. The 

convergence criterion for all FEA experiments is set to tolerance limits = 0.001 on the L2 norm. 

The values of DoF force typically used for Figure 2.2-3 and Figure 2.9-7 is 0 and 1kN while for 

Figure 2.15-13 the DoC force vary between 0 and 5kN. Normalized beam characteristic 

coefficients (0)

11k  and (0)

22k in Figure 2.2 and Figure 2.3 are measured one at time by setting uy1 and 

θz1 alternately to 0 at zero DoC force. The corresponding load stiffness coefficients are measure 

by applying a DoC force but keeping the DoF displacements constants. By subtracting the two 

results, (1)

11k  and (1)

22k  is determined. The coupling coefficient (0)

12k  of uy1 and θz1 are determined 

but proper algebraic sum of the displacement measurements from three cases, 1) uy1=0 and 

θz1=known value A, 2) uy1=known value B and θz1=0, 3) uy1=known value 2 and θz1=known 

value 1. The load-stiffening coupling coefficients are similarly calculated by comparing the three 

sets of displacement at zero and non-zero DoC force values. The geometric constraint 

coefficients are calculated using a similar approach. The elastic stiffness is captured by setting 

uy1 and θz1 to zero and applying a known DoC force. The kinematic geometric constraints 

coefficients are captured by the setting DoC force to zero. Finally the elastokinematic geometric 

constraint coefficients are calculated by setting DoF end displacements set to the same values as 

the case when purely kinematic displacement is measured. Using proper algebraic summation 

with purely kinematic and purely elastic case, the elastokinematic effect is isolated.  

For the initially slanted beam in Figure 2.9-7 the base inclination angle is taken as 

0.1radian from the X-axis in the YZ plane. For the initial curved beam in Figure 2.9-7, the base 

inclination angle is 0, while the radius of curvature is in 5mm. The center of curvature is located 
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vertically 5mm from the base of the beam at XY co-ordinates (0, 5). For measuring DoC 

stiffness for Figure 2.11 and Figure 2.17, the DoC force is varied between 1.5kN to 2kN keeping 

DoF end displacements uy1 and θz1 fixed and measuring the DoC displacement ux1.  

To model variable cross-section beam Ansys beam element Beam4 is used with different 

cross-sectional area and moment of area on the two sides of the element. Macros is used to 

define each element individually. After the elements are designed they are meshed as one beam 

upto the force-displacement analysis is done. 
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Appendix 2.B: Convergence Criterion used in Section 2.4.1 

For the power series solution given below to be a valid series, it has to be tested for 

convergence. 

  2

0 1 2 ... ...n

nw x a a x a x a x       (2.52) 

At x=1, the solution w(1) simply becomes a summation of all the coefficients. Thus, for 

the solution to exist at x=1, the magnitude of the coefficients should be decreasing. Let us 

consider the recursion relation for the coefficients, restated here for the convenience of the 

reader. 
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 (2.53) 

As r tends to infinity 1/r tends to zero. In this limiting situation one can derive Eq.(2.54). 

Also assuming that there are q shape parameters, i.e., bi = 0  i > q, the summation takes place 

from 0 to q-1 as given below. 
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Let the ratio between two consecutive solution coefficients be ρ(r). The ratio should be 

less than 1 as r tends to infinity for the series to be convergent. Furthermore, this ratio may either 

be decreasing or constant. If constant, it must be less than 1 for the series to converge. If the ratio 

is less than 1 and decreasing then the series will converge fast. However, if the ratio is less than 1 

but constant then the rate of convergence will be slower. Therefore, if a series is proven to be 

convergent with a constant ratio assumption, this would imply that the series will only converge 

faster if the ratio was decreasing. Hence, a constant ratio assumption represents a worst case 

scenario and is adopted here. 
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The roots of equation are the possible ratios ρ(r) as r tends to infinity. Only in the case 

when magnitudes of all the roots are less than one, can the series be considered convergent at 

x=1. This criterion can be mathematically stated as below.  

 1 1

1 1 ... 0  1q q

q qroots b b b  

       (2.56) 

For practical purposes, it is found that if the highest magnitude of the roots is less than 

0.5, the series converges fast enough to truncate the series solution after 7-10 terms. 
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Chapter 3  

 

Energy Model for PBCM of Slender Beams with Planar Loading 

 

3.1 Introduction 

A model for the strain energy is required for using the Principle of Virtual Work (PVW) 

[37] as explained in Chapter 1. Since Chapter 2 described the modeling of the force-

displacement and geometric constraint relation (Eq.(2.3), (2.5)) of a slender beam with planar 

loading, it makes sense to derive a compatible energy expression to complete the PBCM. With 

this strain energy model designers can use PVW to determine equilibrium conditions without 

working through an explicit Newtonian analytical framework of differential equations which 

tends to get complicated when the problem has a large number of beam components. PVW 

avoids using internal loads which make the procedure for formulation of the force displacement 

relation free from variable elimination which can be non-trivial for non-linear equations. The key 

ingredients required for using the above energy method are accurate geometric constraints and 

strain energy models. 

Typical geometric constraints are expressed purely in terms of displacements. However, 

as illustrated by Chapter 2, the constraint equation predicted by PBCM for a simple beam, given 

by Eq.(3.1), is integrally dependent on the DoC force FXL. This is because of the presence of the 

elastokinematic term (third term in Eq.(3.1)) which prevents a complete separation of the elastic 

and kinematic effects. The effect of the elastokinematic motion is expected to fundamentally 

change the strain energy of the beam flexure. This is why using energy methods for flexure 

analysis is non-trivial. 
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 (3.1) 

The following section formulates in detail the strain energy of initially straight planar 

beam. Energy contributions from DoF displacements and the elastokinematic displacements are 

discussed thoroughly. Section 3.3 covers the effects of an initial angled or an initially curved 

beam flexure on strain energy. Section 3.4 illustrates the use of strain energy for a tilted 

parallelogram flexure module. Section 3.5 discusses the versatility of the use of constraint and 

strain energy relations through the analysis of an multi-beam parallelogram flexure.  

 

3.2 Strain Energy of a Slender Beam with Planar Loading 

The axial strain in a straight slender beam with planar loading in Figure 2.1, also known 

as a simple beam flexure, at location X with large deformation can be written in accordance to 

Euler-Bernoulli assumptions as follows [65] 

2
1

2

X Y Y
XX

U U U

X X




  
   

  
 (3.2) 

The variable UX and UY are the DoC displacement along X-axis and DoF displacement 

along Y-axis while ρ is the curvature of the beam.  The second term in the above equation 

corrects the first term for the kinematic X-displacement due to arc-length conservation to give 

the actual elastic axial strain on the neutral axis at coordinate location ‘X’. This can be simply 

derived from the definition of strain in Eq.(3.3) which is the ratio of the change of length of a 

differential element AB and its initial length. It is assumed here the position of B relative to A 

changes by UX and UY along X and Y axes respectively due to deformation. 

   f f i i

i i

A B A B
,

A B

21
2 22 Y

XX X Y X

U
X 0 1 U U 1 U

2



         
 

 (3.3) 

The third term comes from Euler’s plane cross-section theory and gives the axial strain at 

the point (X, Y) in the beam. The expression of strain energy in an Euler beam as in Fig.3.1 is 

obtained using a volume integral of half of the product of stress and strain. For consistency with 

Chapter 2 the curvature is approximated by UY′′(X). 
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This can be simplified as follows. 
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 (3.5) 

Both UX and UY are functions of variable X alone and hence the area integral can be 

separated as shown above. The square term in the first integral in Eq.(3.5) is the actual elastic 

axial strain at the neutral axis equal to 
( )E

XU

X




. The second integral is zero by the definition of 

neutral axis. The third integral can be simplified by the definition of second moment of area. 

Using these simplifications the strain energy can be written as below. 
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L
   (3.6) 

The virtual work δW is defined as 

XL YL YLW U U U      XL YL ZLF F M  (3.7) 

From Eq.(2.4) we can derive 
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The variable ( )E

XLU is the elastic DoC displacement along X-axis at end of the beam.  For 

equilibrium, the principle of virtual work in Eq.(0.2), Eq.(3.7) and Eq.(3.8) gives us the 

following. 
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Solving the above equation the characteristic beam equation and the natural boundary 

conditions are obtained as below.  
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As expected the characteristic equation derived from energy methods are same as that 

derived from force equilibrium as the key approximations of the curvature and DoC x-end 

displacement are same in both cases. Due to the unusual involvement of DoC force FXL in the 

load-displacement and constraint equation, it is obvious that the strain energy of the beam which 

is a function of the total deformation of the beam will be dependent on FXL. Since there isn’t a 

standard or simple energy or constraint model for this situation, Eq.(3.10) has to be solved to 

determine the strain energy.  

At this point all loads, displacements, energy and stiffness terms are normalized with 

respect to the beam parameters: displacements and lengths are normalized by the beam length L, 

forces by EIZZ /L
2
, and moments by EIZZ /L and strain energy by EIZZ /L as in Chapter 2 and 

represented by corresponding lower case symbols. The new variable t is the normalized thickness 

of the beam flexure TY/L.  

Using the normalized variable definitions the beam strain energy can be rewritten as 

below.  
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The normalized DoF displacement uy(x) in terms of end displacements is solved from 

(3.10). It should be noted that this solution was presented in reference [24]. Furthermore, if θz1 is 

used to represent 
1yu  the solution of uy(x) can be writing as 
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Substituting the Eq. (3.12) into Eq.(3.11), the expression for the normalized strain energy 

can be easily derived in term for end displacements.  
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The strain energy above is expressed in term of hyperbolic sine and cosine functions for 

mathematical convenience. The series expansion of the transcendental expressions, given above, 

followed by a truncation after the second power of fx1 yields the following expression. 
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It is interesting to see that there is no term associated with fx1 term. The coefficients free 

of fx1 are same as obtained from linear analysis. To understand better the significance of the 

absence of fx1 terms and the origin of fx1
2
 terms, the PVW is carried out to obtain the force-

displacement relation. The normalized constraint relation, derived in Chapter 2, is given below. 



69 

 

The coefficients free of fx1 represent the purely kinematic DoC displacement along x-axis while 

the coefficients of fx1 represent the elastokinematic DoC displacement along x-axis. 
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The relevant equation for PVW is given below. The DoC displacement along x-axis is 

broken up in three components, namely the elastic, kinematic and elastokinematic components. 
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Using the strain energy from Eq.(3.14) and the constraint relation from Eq.(3.15) in PVW 

Eq.(3.16) an equation involving the variations of three independent variables, uy1, θz1 and ( )

1

e

xu . 
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Since the variations in these variables are arbitrary, their coefficients on LHS and RHS 

should be identical. Equating the respective coefficients, the force displacement relations are 

obtained. 
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As expected the force-displacement relations are same as that derived by explicit analysis 

in Chapter 2. In fact the force displacement relations match even while working with the 

transcendental functions thus proving the validity of the strain energy expression in Eq.(3.13) 
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and Eq.(3.14). The  fx1
2
 terms in Eq.(3.18) can be dropped as their coefficient is very low but is 

retained for consistency with the strain energy approximation in Eq.(3.14). 

When Eq.(3.18) is observed more closely, it is realized that the coefficients associated 

with fx1 in the stiffness matrix is derived entirely from the kinematic DoC displacement while the 

coefficients of fx1
2
 are a combination of the elastokinematic DoC displacement terms and the 

non-linear strain energy terms. This means that the load stiffening term has no energy associated 

with it and hence is unaffected by the strain energy expression. This is quite expected because 

load stiffening is cause by geometric constraint and not by a force, and hence logically it should 

be derived from the constraint equation. This also explains the absence of the fx1 terms in the 

strain energy expression in Eq.(3.14). The fx1 in the strain energy term can come from two 

sources, either from the fx1 term in the force displacement relation or the fx1 free term from the 

DoC constraint relation. Since both of these are a result of purely geometric constraints, the 

coefficient of fx1 in the strain energy term is zero.  

 

3.3 Fundamental Relations between Beam Characteristic Coefficients for a 

Slender Beam with Planar Loading 

It has been shown in Chapter 2, Section 2.4, that the form of PBCM remains invariant 

even for a straight beam with variable cross-section. Therefore a general expression for the strain 

energy, constraint relations and load-displacement relations may be assumed as below where the 

variables v’s and g’s are functions of the shape of the beam. 
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Using PVW on Eqs. (3.19) and (3.20) and doing similar operations as done in Eqs.(3.16) 

and (3.17) the force displacement relation can be shown as below. 
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Equation (3.22) is an expected result and provides no new information. However, a 

comparison between Eqs.(3.21) and (3.22), both of which should be identical, given the above-

mentioned consistency in the energy formulation, reveals a fundamental relation between the 

stiffness, constraint, and energy coefficients, 
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 (3.23) 

The above relations may be readily verified for the case of a simple beam using the 

known results Eqs.(3.14), (3.15) and (3.18); however, it should be noted that these are valid for 

any general beam shape, as proven above. 

A second argument based on the conservation of energy provides yet another 

fundamental relation between the beam characteristic coefficients. Since a given set of end loads 

fx1, fy1, and mz1 produces a unique set of end displacements ux1, uy1, and θz1, the resulting strain 

energy stored in the deformed beam is also unique, as given by Eq.(3.19). This strain energy 

remains the same irrespective of the order in which the loading is carried out. We consider the 

case when loading in done in two steps (1) fyl and mz1 are applied on the beam to obtain end 

displacements uy1 and θz1 and (2) fxl is applied while holding uy1 and θz1 fixed. The strain energy 

stored in the system due to step 1 is obtained by setting fx1 to zero in Eq.(3.19) and is given 

below. 
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The DoC force fx1 is now applied keeping uy1 and θz1 fixed. This implies that during the 

process of application of fx1 the loads fyl and mz1 adjust themselves to keep a constant uy1 and θz1. 

However, since uy1 and θz1 are constant, fyl and mz1 do not perform any additional work on the 

system. Next, assuming a conservative system, the work done in step 2 is  1 1x xu ux1f
 
where 

1xu  and ux1 are the x-displacement after steps 1 and 2 respectively. Displacement 1xu  can be 

found by setting fx1 to zero in Eq.(3.20). 
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An integral needs to be carried out to calculate the total work done on the beam in this 

step, since the relation between fx1 and ux1 is nonlinear. However, since inverting Eq.(3.20) which 

provides displacement in terms of force, is not trivial, determining the work done in this fashion 

is difficult if not impossible. Therefore, instead we choose to determine the complementary 

work, which can be readily derived from Eq. (3.20) 
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This result is then used to calculate the strain energy stored in the beam due step 2 as 

follows: 
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The strain energy given by v1+v2 is identical by definition to the strain energy in  

Eq.(3.19). By comparing the coefficients of the respective terms we get the following relations. 
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Equation (3.23) and (3.28) can be manipulated to express all v’s and g’s in the strain 

energy and constrain relation. 
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Together, Eqs. (3.28) and (3.29) present the far-reaching conclusion that the stiffness, 

constraint, and energy expressions are all interrelated; any one can be expressed in terms of any 

of the other two. These relations may be readily verified for the known case of a simple beam via 
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Eqs. (3.14), (3.15), and (3.18) but are true for any general beam shape, as proven above. 

Moreover, these relations offer considerable insight into the nature of the nonlinear results for 

variable cross-section beam flexures. Some specific observations are noted below: 

1. Equation (3.29) indicates that no matter what the beam shape is, (1)v  is always zero. This 

simply implies that while all other stiffness coefficients contribute to the strain energy, 

the stiffness coefficient associated with the first power of fx1, which represents a load 

stiffening, does not. 

2. Equation (3.29) also shows that (0) (1)1

2
g k   , irrespective of the beam shape. This 

indicates that the load-stiffening effect seen in the transverse-direction load-displacement 

relation and the kinematic component seen in the axial-direction geometric constraint 

relation are inherently related. In hindsight, this is physically reasonable because both 

these effects arise from the consideration of the beam in a deformed configuration. 

3. The above relations also highlight the fact that the transverse load-displacement 

expression(3.18), the axial geometric constraint expression (3.15), and the strain energy 

expression (3.14) for a generalized beam are not entirely independent. The geometric 

constraint expression captures all the beam characteristic coefficients, except for the 

elastic stiffness (0)k . The strain energy, on the other hand, captures all the beam 

characteristic coefficients except for load stiffening and kinematic ones. However, the 

transverse-direction load-displacement relation is the most complete of the three in that it 

captures all the beam characteristic coefficients. This is reasonable because as per the 

PVW, both the strain energy and geometric constraint relations are used in deriving the 

transverse load-displacement relation. 

This last observation leads to an important practical advantage. It implies that in the 

derivation of the nonlinear transverse stiffness, constraint, and energy relations for a beam, 

which ultimately lead to the BCM, it is no longer necessary to determine all three individually. In 

fact, solving for the constraint and energy relations individually is mathematically more tedious 

because of the integration steps and the quadratic terms in uy1 and θz1 involved. Instead, one may 

simply derive the transverse load-displacement relation and determine the constraint and energy 



74 

 

relations indirectly using Eqs. (3.29). This finding has been employed in deriving the BCM for 

generalized beam shapes discussed in Chapter 2.  

3.4 Strain Energy for Slender Beam with Planar Loading and Generalized 

Boundary Conditions 

We now consider strain energy for a uniform thickness flexure strip (see Figure 3.1) with 

an arbitrary initial angle and an arbitrary but constant curvature. The explicit derivation of this 

flexure module is given in Chapter 2 but for the benefit of the reader the diagram and initial 

beam equation is reiterated here. 
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Figure 3.1: Initially Slanted and Curved Planar Flexure Strip 
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The DoF displacement along y-axis is also restated from Chapter 2. 
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Substituting the constants into Eq.(3.31), an accurate expression of DoF displacement uy1 

is obtained which is used in Eq.(3.11) to obtain the expression for the strain energy.  
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The Taylor series expansion of the transcendental functions is given below. 
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The strain energy expression in Eq.(3.33) shows two new energy terms in addition to 

those that were already present for the simple beam in Eq.(3.14). It is also interesting to notice 

the absence of initial angle α in the strain energy expression in Eq.(3.33). To understand these 

terms better it is important to look at the constraint equation for this model derived in Chapter 2. 
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Since α has no coefficient of fx1, it is a purely kinematic term. Hence it does not show up 

in the strain energy relation, but rather shows up in the force displacement relation as a load 

stiffening term. In addition to the α term there are two other pure kinematic terms associated with 

κ that do not contribute to strain energy but show up as loading stiffening terms.  
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The two new terms associated with κ in the strain energy expression turns out to be 

associated with the elastokinematic terms in the constraint equation. The first of these two term 

is associated with DoF displacement θz1, and comes into the picture due to coupling between 

curvature and angle of rotation. The second term is associated with the ‘unwinding’ of the curved 

beam due to the DoC force fx1 like a torsional spring. This energy is similar to the elastic energy 

stored in the beam due to stretching. 

 

3.5 Application of energy methods 

The strain energy expressions derived for PBCM of a planar slender beam enables the use 

of energy methods for the analysis of flexure mechanisms. Two examples in which energy 

methods provides a distinct advantage in term of reduced mathematical complexity are given 

below. 

3.5.1 Tilted Beam Parallelogram Flexure Solved by Energy Methods 

The utility of having a model for a slanted simple beam flexure can be realized in the 

analysis of tilted beam parallelogram flexure using energy methods. Tilted beam parallelogram 

flexure has a similar arrangement of simple beam flexures as a parallelogram flexure except that 

the simple beam flexures attached to a stage are actually not perfectly parallel. In this 

mechanism, as shown in Figure 3.2, both the beams are at an angle α to the x-axis. With only a 

model for a simple beam, the end displacement of each beam would need to be expressed in their 

local co-ordinate axis which would be rotated by an angle α to the global X-Y-Z co-ordinate 

frame. Furthermore, while summing the individual strain energies, the displacement variables 

will have to be reconverted to the global co-ordinate frame. The additional complexity of 

transformation of co-ordinate frame is avoided using the model for a slanted simple beam flexure 

in which all end-load and end-displacements are expressed in the global co-ordinate frame.  
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Figure 3.2: Tilted Parallelogram flexure 

Previously reported explicit analysis [30] shows that the stage DoF displacements, uy1 

and the θz1 are kinematically strongly related for α ~ 0.1. This results in a one DoF system. Such 

a system can result from improper alignment that often occurs due to manufacturing defects. It 

may also be an intentional design as the tilted parallelogram flexure may rotate the stage by 

small angles about a predefined remote center of rotation c1 as shown in Figure 3.2. This section 

reformulates the load-displacement results using energy methods and compares its computational 

complexity with explicit analysis.  

Using geometric considerations the end displacements can be related to the stage 

displacements as below.  The displacements in each beam are denoted by a superscript (b1) or 

(b2) for beam 1 and beam 2 respectively. The stage rotation θz1 is found experimentally to be of 

the order of 10
-2

 for -5< fy1 < +5 and -5< fx1 < +5 and hence sine and cosine term of θz1 can be 

linearized as θz1 and 1 respectively. 
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 (3.35) 

The two beams in this case have initial angles of +α or – α and radius of curvature of 0. 

The total strain energy stored in the flexure module is the algebraic sum of the strain energy 

stored in either of the beams. Eq.(3.33) is used to find the individual strain energies and 
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Eq.(3.35) is used to obtain the total strain energy of the system in terms of stage end 

displacement variables uy1, θz1 and ux1. 
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In Eq.(3.36) the strain energy expression has the DoC forces and the elastic DoC end 

displacements of both the beams. The axial DoC forces in the two beams can be expressed in 

terms of their respective axial DoC elastic displacements as below. 
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 (3.37) 

Using the above equation the DoC force variables of the individual beams in the strain 

energy expression in Eq.(3.36) is eliminated and the strain energy in terms of displacements only 

is formulated as below. 
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The constraint equations for the two beams can be formulated using Eq.(3.34) and by simple 

manipulation ( 1)( )
1
b e

xu  and ( 2)( )
1
b e

xu  can be expressed in terms of stage DoC end displacement 1xu .
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The expressions in the equation above are substituted in Eq.(3.38) to eliminate the 

individual elastic DoC displacements and obtain the strain energy in terms of stage displacement 

variables only. 
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The PVW for the present problem is stated below in terms of stage displacement 

variables. 

1 1 1y x zv u u     y1 x1 z1f f m  (3.41) 

Substituting the strain energy expression, given in Eq.(3.40), in the above equation, and 

equating the coefficients of independent variation quantities δux1, δuy1 and δθz1 on L.H.S. and 

R.H.S. the following relations are obtained. 
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The tilted parallelogram flexure for small deflections rotated the stage about the center 

located at c1 as shown in Fig.3. This implies that uy1 and θz1 are related by a geometric relation. 

In order to find this relation let us assume that only fy1 is applied and mz1 and fx1 are zero. 

Furthermore, let us consider the case when both uy1 and θz1 are small, that is of the order of -2. 

Under these conditions Eq.(3.42)(ii) can be rearranged to obtain the approximate relation given 

below. 
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It is observed that the coefficients of the fx1
2
 terms in Eq.(3.42) are small w.r.t. other term 

and hence are dropped. Using the approximation for θz1, given in Eq.(3.43), in the moment 

equation in Eq.(3.42), the following expression for θz1 is obtained. The expression for uy1 and ux1 

is obtained from the DoF force equation and DoC force equation respectively in Eq.(3.42) using 

similar approximations. 
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The end-displacement expressions given by Eq.(3.44) are same as previously derived 

using explicit analysis in reference [30]. However, the mathematical complexity in this case is 

significantly lower because the entire formulation was done using linear operations. It should be 

noted using linear operation is simply a mathematical step and does not imply dropping 

geometric nonlinearities. 



81 

 

 

3.5.2 Multiple-Beam Parallelogram Flexure 

Parallelogram mechanisms are widely used because of its ability to produce 

approximately straight-line motion in a direction perpendicular to the orientation of the beams, 

while providing a high degree of constraint towards rotation and translation parallel to the 

beams.  

Beam 1

uys

uxs1

fxs

θzs
Beam n

Beam 3

wn

w3

w1

Y

X

fys

mzs

≈

Beam n-1

Beam 2

w2

wn-1

Ground

Motion 

Stage

 

Figure 3.3: Multi-Beam Parallelogram flexure 

A multi-beam parallelogram flexure mechanism is shown in Figure 3.3. The motion stage 

is connected to ground via parallel and identical beams, not necessarily uniform in thickness, 

numbered 1 through n. External loads fxs, fys, and mzs, normalized as per the previously described 

scheme, act at point O on the motion stage. A reference line, passing through O and parallel to 

the undeformed beams, is used to specify the location of the i
th

 beam via the geometric parameter 

wi measured along the positive Y axis. The spacing between the beams is arbitrary. The 

normalized displacements of point O, under the given loads, are denoted by uxs, uys, and zs. It is 
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physically obvious that the Y direction represents a DoF, while the axial direction X and 

transverse rotational direction Q represent DoC given their high stiffness. 

The multi-beam parallelogram flexure module allows the use of thinner beams that leads 

to a low DoF stiffness without compromising DoC stiffness. This ensures a larger DoF motion 

range along with good DoC load bearing capacity [38, 66]. Consequently, one would like to 

study the effect of the number of beams and their spacing on stiffness and error motion behavior. 

This necessitates the determination of the stage displacements in terms of the three externally 

applied loads. A direct analysis of this system would require the creation of Free Body Diagrams 

for each beam, explicitly identifying its end-loads. The end load-displacement relations for each 

beam provide 3n constitutive relations, while another 3 equations are obtained from the load 

equilibrium of the stage in its displaced configuration. These 3(n+1) equations have to be solved 

simultaneously for the 3n unknown internal end-loads and the three displacements of the motion 

stage (uxs, uys, and zs). Even though the 3n internal end-loads are of no interest, they have to be 

determined in this direct analysis. Obviously, the complexity associated with solving 3(n+1) 

equations grows with increasing number of beams. 

Instead, an energy based approach for determining the load-displacement relations for the 

multi-beam parallelogram flexure turns out to be far more efficient. We first identify the 

geometric compatibility conditions in this case by expressing the end displacements of each 

beam in terms of the stage displacements. Since a physical understanding of the system as well 

as previous analytical results show that the stage angle zs is very small (~10 
-3

), the small angle 

approximations coszs = 1 and sinzs = zs are well-justified. Thus, the end displacements for the 

i
th

 beam are given by: 

( ) ( )

( )

( )

x1 i xs i zs

y1 i ys

z1 i zs

u u w

u u



 

 





 (3.45) 

Next, using Eq.(3.14), the strain energy for the i
th

 beam is given by: 
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Instead of numerical values, the beam characteristic coefficients in the above equation are 

left as symbols so that this analysis is valid for simple beam flexures with varying cross-section. 

The total strain energy of the system is simply the sum of the strain energies of all the beams: 
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Applying the PVW, the variation of strain energy in response to virtual displacements 

uxs, uys, and zs may be equated to the virtual work done by external forces. In the resulting 

equation, the coefficients of each of these mutually independent virtual displacements may be 

identically set to zero. This results in the following three relations, where the first one is used to 

simplify the subsequent two:  

 

  

( ) ( ) ( )

( )

( ) ( ) ( )

n
1 2 1 1 2

xs 11 ys 12 ys zs 22 zs i zs

i 1

33 2 2 2 2 2

33 11 ys 12 ys zs 22 zs

1 1
u k u 2k u k w

2 n
 =  nk

1 k k u 2k u k

  

 



  
      

   

  


xs

f   (3.48)

 

  
 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

n

i i zsn
i 1 1 1

33 11 ys 12 zs2 2 2 2 2
i 1 33 33 11 ys 12 ys zs 22 zs

n

i i zs

i 12

33 2 2 2
33 33 11 ys 12 ys zs

1
w w

n
   k k u k

nk 1 k k u 2k u k

1
w w

n
          k

nk 1 k k u 2k u




 











  
  

     
   

  

 
 

  
 






xs

ys

xs

f
f

f

  
 

 

( ) ( )

( )

( ) ( )

2

n
2 2

11 ys 12 zs2 2
i 1 22 zs

0 0

11 ys 12 zs

k u k
k

          n k u k








 
 
 

 
 

  

 

   (3.49) 



84 

 

  
 

( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( )

( )

n

i i zsn
i 1 1 1

33 i 12 ys 22 zs2 2 2 2 2
i 1 33 33 11 ys 12 ys zs 22 zs

n

i i zs

i 12

33 2
33 33 11

1
w w

n
   k w k u k

nk 1 k k u 2k u k

1
w w

n
          k

nk 1 k k




 









   
   

        
    
    

 
 

  







xs

zs

xs

f
m

f

  
 

 

( ) ( )

( ) ( )

( ) ( )

2

n
2 2

12 ys 22 zs2 2 2 2
i 1 ys 12 ys zs 22 zs

0 0

12 ys 22 zs

k u k
u 2k u k

          n k u k


 





 
 
 

 
  

  

 

  (3.50)

 

For a DoF motion range uys ~ 0.1, Eq.(3.48) may be simplified by recognizing that θzs << 

uys to yield the axial direction displacement: 
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Clearly, the first term above is a purely elastic term arising from an axial stretching of the 

beams. The second term is a kinematic term, which is independent of the number of beams. The 

final term is an elastokinematic term. Similarly, Eq.(3.49) may be simplified to the following 

form:  
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Here, the first term may be identified to be the elastic stiffness term and the second term 

is a load-stiffening term, which is seen to be independent of the number of beams. The 

consistency of the energy formulation, described above, dictates that if the elastokinematic term 

is captured in Eq.(3.51), the third term (second power in fxs) will appear in Eq.(3.52). At this 

final stage, one may choose to drop this second power term because its contribution is practically 

negligible for typical beam shapes and load ranges of interest.  

Similarly, Eq.(3.50) may be simplified as follows: 
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Furthermore, recognizing that k33 is several orders of magnitude larger than all the other 

stiffness coefficients and that the second power terms in fxs may be neglected, the above relation 

reduces to:  

 ( ) ( ) ( )

( )

( ) ( )

n
0 1 2 2

i 12 12 ys 11 ys

i 1 33

zs 2
n n

2

i i

i 1 i 1

1
w nk  k u k u

n k
  

1
w w

n




 

   
      

    
    

   
     



 

xs
zs xs

f
m f

 (3.53) 

Next, the accuracy of the above closed-form parametric analytical results is corroborated 

via non-linear FEA carried out in ANSYS. A 7-beam parallelogram flexure is selected for this 

FEA study, with the beam locations wi arbitrarily chosen with respect to a reference X axis that 

passes through the center of the stage. Each simple beam (initially straight and uniform in 

thickness) is 5mm in thickness, 50mm in height, and 250mm in the length; the latter serves to 

normalize all other displacements and length dimensions. The normalized values of the wi’s 

selected are: – 0.6, – 0.45, – 0.25, – 0.1, 0.2, 0.35 and 0.6. BEAM4 elements are used for 

meshing, and the consistent matrix and large displacement (NLGEOM) options are turned on to 

capture all non-linearities in the problem. A Young’s modulus of 210,000 N/mm
2
 and Poisson’s 

ratio of 0.3 are used assuming the material to be Steel. The normalized DoF displacement uy is 

varied from – 0.12 to 0.12. The parasitic axial displacement of the stage ux (Figure 3.4) is 

determined while keeping fxs = mxs = 0. The parasitic rotation of the stage θz (Figure 3.5) and the 

X direction stiffness (Figure 3.6) are determined while setting the normalized axial force fxs to 1 

and mxs and to 0.  

These FEA results for the 7-beam parallelogram are in agreement with the BCM 

predictions (Eqs. (3.51), (3.52), and (3.53)), within 5% error. In general, this flexure module 

exhibits constraint characteristics very similar to the 2-beam parallelogram flexure module. Its 

key advantage is a 3.5 times greater X DoC stiffness (and therefore load bearing capacity) 

without compromising the motion Y DoF motion range and adversely affecting the X and QZ 

DoC parasitic errors.  

This example shows that once a consistent BCM energy formulation has been derived, 

the use of energy methods considerably reduces the mathematical complexity in the analysis of 

increasingly sophisticated flexure mechanisms. The above procedure is relatively independent of 



86 

 

the number of beams chosen or the shapes of the individual beams, as long as the strain energy 

associated with each beam is accounted for correctly. 

 

 

Figure 3.4: Parasitic axial displacement ux (DoC) vs. transverse displacement uy (DoF) 

 

 

Figure 3.5: Parasitic stage rotation θz (DoC) vs. transverse displacement uy (DoF) 
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Figure 3.6: Axial stiffness (DoC) vs. transverse displacement uy (DoF) 

Equations (3.51), (3.52) and (3.53) are the load-displacement relations for the multi-beam 

parallelogram flexure. Using energy methods the relations are not only derived quickly but the 

complexity of the analysis is independent of the number of beams in the mechanism or their 

relative spacing. Therefore the model for the n-beam parallelogram can be used for optimizing 

the number of flexure beams, the beam cross-section as well as the spacing between the beams.  

It should be noted that the above derivation can be easily extended to cases where the 

beams are not perfectly parallel. Since the strain energy of tilted flexure beams are available to 

us in the global co-ordinate system, one may simple use it in place of the strain energy for simple 

(non-tilted) beam flexure and obtain an accurate model for the mechanism. 

 

3.6 Discussion 

The strain energy and constraint equation of a planar beam flexure are unusual as they are 

dependent not only on displacement but also on forces. This nonlinear behavior is difficult to 

capture and are not present in traditional linear analysis or Pseudo-Rigid Body Model. However, 

this chapter models the strain energy and constraint equation energy methods for a generalized 

planar beam flexure more accurately and points out additional contribution of axial force fx1 in 

both strain energy and the constraint equation. Through the example of the tilted beam 
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parallelogram beam flexure and multi-beam parallelogram flexure module, the accuracy of the 

analysis performed using the new strain energy are demonstrated. 

Misalignments due to manufacturing defects are often seen in flexure mechanisms. 

Analyzing these situations using the PBCM for straight flexure strip can be complicated due to 

the local co-ordinate systems of the flexure elements being different from the global co-ordinate 

system. However, by using the PBCM for slanted flexure strip, these situations can be analyzed 

as easily as working with straight beams. This was demonstrated in the tilted beam parallelogram 

flexure example. 

Additionally, this chapter also showed the existence of fundamental relations between 

beam characteristic coefficients which paves a simple way of extracting the strain energy and 

constraint relations from the DoF load-displacement relations. Using these relations in 

conjunction with the approaches discussed in Chapter 2, Section 4 to find the DoF load-

displacement relations a simple beam flexure with varying cross-section, PBCM for other flexure 

beams with various varying cross-sections can be generated and added to a library of flexure 

elements. These new flexure elements can then be used to design various flexure mechanisms. 
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Chapter 4  

 

Spatial Beam Constraint Model for Flexure Strip with Generalized 

Loading 

 

4.1 Introduction 

The Planar Beam Constraint Model (PBCM), developed in Chapter 2 and Chapter 3, 

cannot be adequately used for modeling, analysis, and constraint based design [62] of flexure 

mechanisms where the pertinent loads as well as displacements do not lie in one plane. This is 

the case whenever the flexure mechanism is such that fully generalized loads are required to be 

considered. Such loading can be divided into three mutually perpendicular forces and three 

mutually perpendicular moments as shown in Figure 4.1 and will be referred to as spatial 

loading. In these cases several additional nonlinear effects become significant, particularly in the 

presence of axial torsion. These nonlinearities will be captured in a spatial beam constraint 

model (SBCM), presented in this and subsequent chapters. 
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Figure 4.1: A flexure strip with spatial loads and displacements 

In addition to capturing nonlinearities, the SBCM also aims to capture the effect of εZZ 

strain that originates from the Poisson Effect and results in the anticlastic curvature [29] of a 

beam while bending. This effect, at times known as the anticlastic effect, results in Z 

displacements even in the absence of loads in the Z direction. Instead of Z loads, εZZ arises due 

to the stress along X through the Poisson’s ratio, ν as stated in the constitutive relations. During 

bending, this strain in Z direction leads to expansion of the width (TZ) where there is 

compressive stress along X while contraction of the width where there is tension along X These 

deformations physically imply that the beam assumes a curvature in the XZ plane as shown in 

Figure 4.2. This curvature is known as the anticlastic curvature. The magnitude of the anticlastic 

curvature is at its maximum at the edges and close to zero away from the edges. This is because, 

except at the edges, everywhere else the material tries to resist this deformation. Since strain 

along X and Z are related through constitutive relations, this implies an increase in the resistance 

to bending as well. When the width, TZ, is infinite, the additional resistance to bending due to 

anticlastic curvature can be easily captured by replacing elastic modulus, E, by E
*
 = E / (1-ν

2
), in 

the linear beam model as well as in PBCM. On the other hand when the beam width, TZ, is of the 

order of beam thickness, TY, then additional resistance to bending due to anticlastic curvature is 

very small and can be neglected. If only planar loading is considered, then for this case as well 

the PBCM can be used to estimate displacements. However for any intermediate width, the effect 

of the anticlastic curvature is non-trivial.  
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Figure 4.2: Anticlastic curving of plates 

It should be noted here one common approach of modeling flexure strips is to assume 

that the flexure strip is relatively much stiffer in the XZ plane and hence all displacements in the 

XZ plane are very small compared to displacements in the XY plane. Therefore displacements in 

the XZ plane may be estimated independent of displacements in the XY plane using 

Timoshenko’s linear beam theory. Furthermore, PBCM may be used to estimate the 

displacements in the XY while ignoring loads and displacements in the XZ planes. The validity 

and utility of this approach depends on the particular flexure mechanism. For example, in MEMS 

devices where parallelogram flexure modules are used as a building block, the out-of-plane 

stiffness is relatively high and the out-of-plane loads are relatively low. This is a suitable 

scenario where PBCM can accurately estimate the performance of the flexure mechanism. 

However from a generalized point of view where out-of-plane loads are present and out-of-plane 

displacement are not constrained, this approach is not appropriate. 

4.2 Motivation for a Spatial Beam Constraint Model (SBCM) of a flexure 

strips 

There are several flexure mechanisms where consideration of spatial loading is necessary 

for estimating the relevant constraint characteristics. One such flexure mechanism is shown in 

Figure 4.3(a). In this mechanism, the four component flexure strips are arranged in an ‘cross’ 

formation in the YZ plane [67] with their centroidal axis parallel to X axis. The only degree of 

freedom of the motion stage supported by this mechanism is a rotation about an axis parallel to 

the X axis passing through the point of intersection of the flexure strips as seen in the YZ plane. 
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Since all other displacements of the motion stage are constrained, this flexure mechanism is 

appropriate for mounting rotary actuators such as limit-stroke DC motors which require rotary 

bearing for supporting its rotor. Another use of this flexure mechanism could be building a 

flexural universal joint by attaching three of these mechanisms such that the rotational axis of 

each individual mechanism is perpendicular to the other two. Such a mechanism will be useful in 

designing micro/nano-manipulators. In either application the component flexure strips 

experience torsion in addition to bending during rotation of the motion stage about X. As a 

result, PBCM cannot be used to analyze this flexure mechanism.  

X

Z

Y

ΘX

Ground

Motion 
Stage

Flexure 
Strip

 

Figure 4.3: (a) 1 rotational DoF flexure mechanism, (b) Flexure Strips used for transmission 

Rather than allowing torsional rotation, flexure strips can also be arranged in order to 

transmit rotation. An example of such a mechanism,  shown in Figure 4.3(b), is used in a medical 

device design [68]. In this mechanism, the rotation of the hand about the wrist is required to be 

transmitted to an end effector. This is accomplished by two flexure strips which transmit the 

rotary motion of the hand about the wrist to a wire hub while absorbing all other motions of the 

hand. Through the wire hub, the motion is transmitted to the end effector. In order to function 

properly, the torsion stiffness of the flexure strips should be maximized while the bending 

stiffness in the primary bending direction should be minimized. Here too we find of the need to 

analyze the effect of spatial loads rather than planar loads.  
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In several other mechanisms [69, 70], actuator forces or the weight of the motion stages 

can produce significant moments on the flexure elements when the point of application in 

general is not at the center of torsional stiffness (dMXL/dθXL) or XZ bending stiffness (dMYL/dθYL 

and dFZL/dUZL).  In order to reduce the dependence on the point of application of loads, the 

torsional stiffness and the XZ bending stiffness of the flexure elements are generally designed to 

be high. However, even a small angular displacement can be significant if it is connected to the 

motion/output stage by a long lever arm since the resulting displacement at the motion/output 

stage is amplified by the length of the lever arm. Additionally, as will be shown at the end of this 

chapter, the torsional stiffness and the XZ bending stiffness of a flexure strip drops in a quadratic 

manner as it is bent in the XY plane. Therefore, for a better analysis of both these situations, a 

generalized model of a flexure strip that considers all possible end-loads is required.  

4.3 Additional Nonlinearities captured in the SBCM 

When generalized loading of a flexure strip is considered, several new nonlinear effects 

arise in addition to those discussed for PBCM in Chapter 2. Let us first identify the nonlinearities 

associated with torsion. By considering load equilibrium being applied in the deformed state, we 

can easily see that the torsional displacement may be caused by a nonlinear combination of XY 

and XZ bending loads in addition to torsional load MXL. This effect can be visualized in Figure 

4.1, by first applying a positive FYL to displace the beam end in the Y direction by UYL followed 

by applying positive FZL. The torsional moment at any point is equal to the Y displacement at 

that point multiplied by FZL. The maximum torsional moment on the flexure strip is at its base 

and is equal to FZL×UYL. It should be noted that a torsional moment in an opposite sense will also 

be generated by a positive FYL due to positive UZ displacement of the flexure strip. However as 

UZ displacements are much smaller than UY displacements, torsional moment due to FYL may be 

ignored in comparison to torsional moment due to FZL. Using the beam characteristic differential 

equations we will see that this nonlinearity not only results in torsional displacement but also 

results in a reduction of torsional stiffness, dMXL/dθXL. 

Another source of nonlinearity is the fact that initially planar cross-sections do not 

nominally remain planar after deformation. This warping of the cross-section takes place during 

bending as well as torsion. When bending is only consider this deformation may be ignored as it 

does not result in significant variation of stresses. However, when torsion is present, the variation 
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in stresses due by warping is significant and needs to be considered. For getting a better 

understanding the reader is encouraged to review Figure 4.4 which shows a fiber at distance R 

away from the centroid of the cross-section needing to be stretched if the cross-section is to 

remain a plane. This creates an extensional force in the fiber. If, no external axial force along X 

is applied then, in order to establish force equilibrium for the entire cross-section, some fibers 

(closer to the centroid) will also develop a compressive stress. However, due to the constitutive 

relations, the stress translates into strain which is nothing but the warping of the cross-section.  

When a beam is slender in thickness and width and subjected to moderately spatial loads, 

only the torsional displacement is affected by the warping of cross-sections, which displacement 

due to bending and extension is relatively unaffected. One may easily capture this effect by using 

torsional constant instead of the polar are moment of inertia. For beams that are still slender but 

subjected to humungous axial tensile loads, an additional nonlinear coupling between the axial 

extension direction and torsional direction becomes important. The nonlinear coupling results in 

the stiffening of the torsional direction due to axial tensile force.  It is also known as the trapeze 

effect [59]. Next, when the beams become wider (more like flexure strips), then the torsional 

stiffness increases even more than what is predicted by the trapeze effect or by using torsion 

constant in place of polar area moment of inertia. Depending on the width of the beam relative to 

its length and thickness, the torsional stiffness increase linearly or in a quadratic manner. This 

additional stiffening of the torsional direction is called the Wagner’s effect [71]. 

R×dθXd

F

dX

R

Before Deformation

After Deformation

 

Figure 4.4: Development of extensional and compressive force in axial fibers due to torsion 



95 

 

A nonlinear effect that is seen while estimating bending displacements due to torsional 

angle is the kinematic coupling between the displacements in the XY and XZ planes. As shown 

in Figure 4.5, when the beam is twisted, the bending plane changes from the XY and XZ plane to 

deformed planes, the XdYd and XdZd plane. Here the Xd axis is defined along the tangent to the 

deformed centroidal axis at location P′ and the axes Yd and Zd complete the deformed coordinate 

frame. The orientation of Yd and Zd with respected to the deformed cross-section is determined to 

be the same as the position that Y and Z would have reached if it was fixed to the undeformed 

cross-section and the beam deformed such that the warping of the cross-sections was zero. As the 

displacements of the beam need to be expressed in the X-Y-Z co-ordinate frame, the bending 

displacements in the Xd -Yd -Zd coordinate frame are vectorially added and split into displacement 

components in the XY and XZ planes. Due to this transformation, the total value of bending 

displacement of the XZ plane (UZL and θYL) is kinematically dependent on the bending 

displacement of the XY plane (UYL and θZL) in the presence of torsion. It should be noted that 

since bending stiffness values in XZ plane is relatively high, bending displacements of the XY 

plane is relatively less affected by the bending displacements of the XZ plane. However, as 

bending stiffness values in XY plane is relatively low, bending displacements of the XZ plane is 

relatively more affected by the bending displacements of the XY plane. 
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Figure 4.5: Spatial deformation of flexure strip prior to shear 
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There are also linear and nonlinear effects associated with the presence of the anticlastic 

curvature as discussed earlier in section 4.1. Capturing the nonlinear effects of the anticlastic 

effects requires the use of nonlinear plate theory which does not easily lead to closed-form 

solutions. Instead we attempt to capture the linear effect of anticlastic curvature using beam 

theory by finding an equivalent elastic modulus, E , that results in the accurate estimation of the 

constraint characteristics of the flexure strip. 

4.4 Prior Art and Approach 

In spite of our extensive literature survey, a closed-form model for a flexure strip with 

arbitrary width could not be found. However, several scholarly articles that derived nonlinear 

differential equation of similar problems were studied. Using nonlinear plate theory, Reissner 

derived differential equations for finite twisting and bending of thin rectangular plates in 1957 

[72]. The loading considered was a bending and a torsional couple applied simultaneous on 

opposite sides of the plate. Since, loading due to axial force is not considered; nonlinear effects 

such as load stiffening effect and elasto-kinematic effect are not captured. Additionally, the 

Wagner’s effect is also not considered. Even though these nonlinearities were not considered, the 

resulting differential equations were partial differential equations with two independent variables 

that still needed to be numerically solved. As partial differential equations are unavoidable in 

plate mechanics, we turn our attention to beam based solutions of flexure strip with the hope of 

finding analysis that result ordinary differential equations which are generally more easily 

solvable. 

For width comparable to thickness, beam governing equations that capture most of the 

nonlinearities in Section 4.3 as well as the nonlinearities discussed in Chapter 2 was derived by 

Hodges [61] and Da Silva [36]. The only nonlinearity that was not required to be considered was 

the effect of anticlastic curvature. However, in either formulation, the final four beam 

characteristic differential equations (for XY bending, XZ bending, twisting and stretching) are 

highly nonlinear even when second order approximations based on the assumption that the 

maximum values of translational and rotational displacements are of the order of 0.1L and 0.1 

radians were taken. As a result, a closed form model could not be formulated from these 

equations.  
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More recent work that derives closed form model of parallelogram flexure module built 

using two flexure strips is based on regression curve fitting of FEA simulations [73].  Although, 

through FEA, this approach has the potential of capturing all nonlinearities discussed, it is 

susceptible to numerical errors in the FEA itself. Additionally, since this approach finds models 

using displacement solution only, the effects that are significant only when calculating stiffness 

rather than displacement can potentially be completely missed in this process. Furthermore, 

because of the numerical nature of this approach, a physical understanding of the origin of each 

term of the model is not always evident. 

Instead of the above approaches, an alternate approach is taken in this dissertation where 

a specific range of beam geometry is chosen such that additional approximations become 

applicable, making the nonlinear beam characteristic differential equations solvable for 

generalized loading and generalized displacements. We consider flexure strips in which the 

indices of aspect ratio defined by TZ
2
/(TYL), TY/TZ and TY/L are less than 15, 0.1 and 0.05 

respectively. By restricting TZ
2
/(TYL) to less than 15, the nonlinear Wagner’s effect becomes 

negligible for torsional angle ΘXd within -0.1 and 0.1 radians as will be shown in Section 4.7. 

Additionally by restricting TY/TZ to less than 0.1 we ensure that loading stiffening effect in the 

XZ bending plane is negligible. Finally as flexure strips are typically slender, TY/L is assumed to 

be less than 0.05.  

For the chosen beam geometry, we observe the presence of significant anticlastic curving 

of the flexure strips which imply that neither εZZ nor σZZ are close to being zero (plane strain and 

plane stress conditions respectively). This is because TZ
2
/(TY×L) has to be of the order of 100 or 

more, in order to ensure that the magnitude of the anticlastic curvature is insignificant 

everywhere other than near the lateral edges [29, 74]. Even though the flexure strip is assumed to 

be rigidly clamped at both the ends as in flexure mechanisms, which generally helps in reducing 

the magnitude of anticlastic curvature, significant anticlastic curvature was still found for 

TZ
2
/(TYL) = 15. Therefore we assume the stress σZZ to be somewhere in between 0 and ν×σXX 

which are the plane stress and plane strain conditions respectively and empirically propose that 

σZZ is equal to p×ν×σXX where p is a function of TY, TZ, L and ν (i.e. geometric, material 

properties and boundary conditions) but independent of displacement or load variables. Clearly 

as p varies from 0 to 1, the equivalent E  that is used in the governing differential equations 

varies from elastic modulus, E (plane stress condition) to plate modulus, E/(1-ν
2
) (Plane strain 
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condition). We will estimate E  in Section 4.7 by using regression curve fitting of infinitesimal 

displacements of beams of various dimensions and material properties subjected to a simple 

bending moment about direction. By verifying that the estimation of all beam displacements 

(bending displacements in XY and XZ plane, axial displacement and torsional displacement) 

over a finite range for generalized loads can be accurately done by only changing the elastic 

modulus to E , that is estimated using a single loading condition, we will show the validity of the 

assumption of σZZ taken here.  

Using the above beam geometry we next formulate the beam deformation and resulting 

strain in Section 4.5. The strain will then be used to derive the strain energy in the beam in 

Section 4.6. The strain energy is used to derive the beam characteristic differential equations 

using principle of virtual work for generalized loads in the same section. The validity of the 

beam characteristic differential equations is shown in Section 4.7 by comparing it with FEA. 

Finally a discussion of the contribution of this model is given in Section 4.8. 

4.5 Beam Deformation and Strain 

In order to determine the non-linear strain in a slender spatial beam with any general 

cross-section and general end-loading, the first step is to mathematically characterize its spatial 

deformation. The beam deformation may be completely defined in terms of five deformation 

components associated with each cross-sectional plane of the beam that is perpendicular to the 

beam centroidal axis prior to deformation: (i) Translation and rotation of this cross-section to 

remain plane and perpendicular to deformed centroidal axis, (ii) In-plane distortion of the cross-

section, (iii) in-plane shape dilation of the cross-section while preserving the angles at the 

vertices, (iv) Out-of-plane warping of the cross-section, and (v) Translation along Yd and Zd axis 

of the deformed cross-sections from the previous state while preserving the orientation of the 

cross-section. 

Deformation (i) corresponds to the Euler’s assumption of plane section initially 

perpendicular to the neutral axis remain plane and perpendicular to the deformed neutral axis and 

is central to beam bending. The in-plane distortion (ii) is associated with torsion of the beam. St. 

Venant formulated the exact solution for slender beams with any general cross-section in pure 

torsion and demonstrated that the in-plane distortion is exactly zero for a compatible torsional 

load distribution at the end surface [25]. For slender prismatic beams under combined end-loads, 
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this deformation can be non-zero but is still negligible [36]. Therefore, contribution of this 

deformation to displacements is dropped where appropriate. In the absence of any loads on the 

lateral surfaces of the beam, the change of shape of the cross-section (iii) arises solely due to 

Poisson’s effect in the Y and Z directions. Although the dilation or contraction of the sides of the 

cross-section is negligible, the cross-section can be curved in the YdZd plane due to the anticlastic 

effect. This deformation is included in the analysis and is captured via an equivalent elastic 

modulus that has a value in between the actual elastic modulus and plate modulus. The out-of-

plane cross-sectional warping (iv) is exactly zero for a circular cross-section beam under pure 

torsion as will be proved by symmetry arguments in Chapter 5. However it does exist in a 

general cross-section beam and affects the torsional constant, and is therefore included in this 

analysis. Deformation (v) is associated with shear deformation in the plane of bending and was 

captured by Timoshenko [25] in his exact solution of cantilever beams subjected to a transverse 

end force. The translation of the cross-section along the Yd and Zd axis is due to shear and is 

shown to be of the order of (TY/L)
2
 and (TZ/L)

2
 times the displacement of the centroid of the 

cross-section along Y and Z. Since (TY/L)
2
 is of the order of 10 

‒3
 or smaller for the considered 

flexure strips, the translation along Yd of deformation is negligible and ignored while the 

translation along Zd  is considered in this analysis. 

An analytical expression of the deformation of a point P (X,0,0) on the neutral axis is 

shown, in terms of translational displacements UX, UY, UZb and orientation given by the Euler 

angles α, β and ΘXd. The order of rotation is illustrated in Figure 4.5. It should be noted that 

displacement UZb along Z axis occurs due to bending alone and is recorded prior to shear 

deformation. Since shear deformation cannot change the orientation of the cross-section, it is 

sufficient to use UZb rather than the Z-displacement due to shear, UZ-Shear, to express the rotations 

α and β in terms of the displacement variables UX, UY, UZb. The deformed element, dRn, 

corresponding to the undeformed fiber dX, is along Xd which is tangential to the deformed 

centroidal axis of the beam prior to shearing. It should be noted here that the centroid of a cross-

section practically does not change relative to the cross-section after deformation. This is 

because in-plane distortion, dilation/contraction for the flexure strips is negligible while the 

curving of the beam cross-section in the YdZd plane due to anticlastic effect is localized to a 

relatively small area near the lateral edges of the beam.  
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A coordinate transformation matrix [T] is determined by considering the differential 

beam element, originally along the neutral axis at P (X,0,0), in its undeformed (dX) and deformed 

(dRn) configurations. A mathematical expression of [T] that relates the unit vectors ˆˆ ˆ,   and d d di j k

along the deformed coordinate frame Xd–Yd–Zd to the unit vectors ˆˆ ˆ,   and i j k  along the 

undeformed coordinate frame X–Y–Z, is calculated in terms of the displacements UX, UY, UZb and 

θxd below.  
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ZbY Y
YZ Y

n n n

n X Y Zb xd xd xd xd

R

dUdU dU

dR dR dR

dR dX dU dU dU

 

Q Q Q Q



     
       

     

   
 

Using physical insight from St. Venant solution of prismatic beams with any cross-

section as well other studies of beam [36], the function λ(Y,Z)×κXd will be used to represent the 

out-of-plane warping causing displacement parallel to the deformed neutral axis [75]. Here 

λ(Y,Z) is a small warping function independent of coordinate X that is, in general, different from 

what was derived by St. Venant as there is stretching and bending in addition to torsion in this 

case. It should be noted that since warping would disappear if the beam was reduced to a line 

therefore we can say λ(0,0)=0. κXd is the rate of torsion and is calculated by taking the derivative 

of the transformation matrix. 
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 (4.2) 
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
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    

 

 




 

It may be noted that the skew-symmetric matrix [κ] is analogous to the angular velocity 

matrix [ω] associated with the rigid-body rotation transformation. Upon further simplification, 

shown later in this section, it will become obvious that κYd and κZd are related to the beam 

curvature in the XdYd and XdZd planes while κXd is rate of torsion. 

With the deformation field thus defined, we can now define the strains using the Green’s 

strain measure given in (5.7). 

 0 0 2

XX XY XZ

d d YX YY YZ

ZX ZY ZZ

dX

dR dR dR dR dX dY dZ dY

dZ

  

  

  

   
  

      
     

 (4.3) 

The above is also sometimes referred to as finite strain or large rotation strain. Here 0R  

and dR  is the position vector of a general point before and after deformation. In order to relate 

the Green’s strain measure to infinitesimal strain, let us consider the co-ordinates of the general 

point to be (X, Y, Z)  and (X+U, Y+V, Z+W) before and after deformations, respectively. Here U, 

V and W represent displacement along the three co-ordinate axis X,Y and Z and, in general, are 

dependent on the all of X, Y and Z co-ordinates. Starting with a differential fiber starting at (X, Y, 

Z) and ending at (X+dX, Y+dY, Z+dZ) we find 0dR  as follows.  
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0

dX

dR dY

dZ

 
 

  
 
 

 (4.4) 

After deformation, assuming the line is still straight (since it is an infinitesimal 

differential element), its two end points will be (X+U, Y+V, Z+W) and (

U U U
X dX U dX dY dZ

X Y Z

  
    

  
,

V V V
Y dY V dX dY dZ

X Y Z

  
    

  
, 

W W W
Z dZ W dX dY dZ

X Y Z

  
    

  
). Using these coordinates ddR  can be written as 

follows. 

d

u u u
dX dX dY dZ

X Y Z

v v v
dR dY dX dY dZ

X Y Z

w w w
dZ dX dY dZ

X Y Z

   
     

 
   

    
   
   

      

 (4.5) 

Using Eq.(4.3), (4.4) and (4.5) the six strains can be calculated as below. 

2 2 2
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2 2 2
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        
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        
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        
      
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 
   

 

U U V V W W
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      
  

       (4.6)
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It is easy to see that dropping the nonlinear terms in the strain expressions gives the well-

known definition of infinitesimal strains. By retaining the nonlinear terms in the strain 

expression we can capture all geometric nonlinearities other than the error due to truncation in 

Eq.(4.5). 

Direct use of the strain expressions of Eq.(4.6) is inconvenient and hence, we will use Eq. 

(4.3) and re-derive the expression for ddR  using the transformation matrix in (4.1). First we may 

write dR  as 

   ˆˆ ˆ
X xd

T

d Y n d

Z d Z Shear

X U

R i j k U dR T Y

U Z U

 



    
    

     
       

 (4.7) 

It should be noted that UZ-Shear is assumed to be a variable of dRn alone and is directed 

along . Also Yd and Zd are the dilated co-ordinates in the YdZd plane of the point initially at (X, 

Y, Z) before deformation. This dilation is due to the Poisson effect. Using the expression in 

Eq.(4.7) ddR  can be simplified as shown in the following steps. 
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(4.8) 

From the above equation, we note that 

  

However, the LHS above is also the definition of . This knowledge may be used to simplify 

Eq.(4.8), as follows: 
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 (4.9) 

Now the definition of 0 and ddr dr  from Eqs.(4.4) and (4.9) can be applied in Eq.(4.4) to 

obtain the  strains.  
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 (4.10) 

At this point the strains for the assumed deformation field are exact. The axial strain εXX 

is a metric for estimating the change in length of a fiber initially along X. The first bracket in the 

expression of εXX is the square of the deformed length of a fiber along the centroidal axis. Clearly 

as one looks at fibers away from the centroidal axis, the deformed length is also affected by 

bending, captured by κYd and κZd, torsion, captured by κXd, and warping captured by λ(Y,Z). The 

strain expressions for εYY and εZZ capture the contraction along Y and Z axis due to the Poisson 

effect. However, given that the typical strain in slender metallic beam are of the order of 10
-3

, the 

net difference between Yd and Y  due to εYY and εZZ is very small. 

The strain expression can be approximated to the second order based on a magnitude 

analysis of the displacement variables. Firstly the geometry dictates that co-ordinates Y and Yd 

are of the order of 0.01L while Z and Zd are of the order of 0.1L. Secondly, in the displacement 

range of interest UY is limited to the order of 0.1L. This implies that UX is of the order of 0.01L. 

The shear displacement UZ-Shear, which is calculated as FZLL/GA, is of the order of 10
-4

L for the 

current beam geometry. This was calculated assuming the force FZL, which is a DoC force to be 

one order higher that FYL which is of the order of EIZZ/ L
2
. For the same magnitude of FZL, the 

order of bending displacement along Z direction, UZb, which is equal to FZLL
3
/3EIYY in the 

absence of any other load, is determined to be of the order of 10
-4

L. Curvatures κXd and κZd are of 
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the order on 0.1/L while κYd is of the order of 0.0001/L. The warping function λ is of the order of 

TYTZ which is of the order of 10
-3

L
2
. The differential dYd/dY-1 is due to the Poisson effect mainly 

and therefore is of the order of ν×εXX which is of the order of 10
-4

. Therefore, dRn, dYd and dZd 

may be equated to dX, dY and dZ, respectively, within this second order approximation.  

Using the above order of magnitude analysis, the strains approximated to the second 

order can be written as 

 
22

2 2 2

2 22 2

2

1 1 1

2 2 2

1 1
1 ,    1 ,  

2 2

2 ,    

Zb XdX Y
XX Zd Yd Xd

d d
YY Xd ZZ Xd

YZ YZ Xd XY Xd

dU ddU dU
Y Z Y Z

dX dX dX dX

dY dZd d

dY dY dZ dZ

d d d
Z

dY dZ dY


    

 
   

  
g   g 

  
          

   

         
              

            

    ,   Z Shear
Xd XZ Xd Xd

dUd
Y

dZ dX


 g     

 (4.11) 

The first three terms in the axial strain, given by Eq.(4.11), collectively represent the 

elastic extension in the axial direction, corrected for the kinematic effect of rotation due to 

bending. This captures the non-linearity associated with beam arc-length conservation. The 

remaining terms depend on κXd, κYd, κZd, and warping function λ which arise from the combined 

effect of bending and torsion. The first term represents the additional axial strain due to warping 

of the cross-section. In Section 4.6 we find that this term finally leads to an additional torsional 

moment other the torsional moment due to shears γXY and γXZ that oppose the external applied 

twisting moment. The next two terms capture the axial strain in X due to bending in the XY and 

XZ planes. These effects are commonly seen in Euler beam formulations. Finally the last term 

captures the Wagner’s effect or the trapeze effect of elastic coupling between the axial and 

torsional directions. The shear strain, γXY, depends only on the torsion rate κXd and warping 

function  while shear strain, γXZ has an additional term due to shearing force FZL represented as 

dUZ-Shear/dX. It should be noted that the simplified non-linear strain expressions given by 

Eq.(4.11) is in agreement with Hodges [61] and DaSilva  [36]. 

The curvatures can also be approximated to the second order as 

   

   

sin cos

cos sin

Xd Xd Y Zb Xd

Yd Xd Y Xd Zb

Zd Xd Y Xd Zb

U U

U U

U U

 Q Q

 Q Q

 Q Q

     

  

  

 (4.12) 
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The first equation in Eq.(4.12) shows the presence of a kinematic component of rate of 

torsion κXd that depends on the bending displacements UY and UZb. However, as this kinematic 

term is of the order of 10
-3

 or 10
-4

, it is dropped at this point. Since UY" and UZ" are the linearized 

curvature of the beam in the XY and XZ planes, respectively, the latter two relations in Eq.(4.12) 

imply that, κYd and κZd are representative of  curvatures of the beam in the  XdYd and XdZd planes, 

respectively, which agrees with the physical understanding of the deformed geometry. The 

significance of Eq.(4.12) is that while it partially linearizes the three curvature expressions, 

which is critical to reducing mathematical complexity and ultimately enabling closed-form 

results, it still captures the coupling between the torsional and bending directions. Full 

linearization of curvatures at this stage would lead to complete decoupling between the torsional 

and two bending directions, which is an over-simplification as discussed earlier. 

Thus, a careful choice of deformation components, use of Green’s strain measure, partial 

linearization of curvatures, and the second order approximation in the strain components, all help 

capture the relevant physical effects and non-linearities in a slender beam over an intermediate 

displacement range, while limiting the mathematical complexity of the strain formulation.  

4.6 Non-linear Strain Energy and Beam Governing Differential Equations 

In order to find the beam governing differential equations of a flexure strip, the strain 

energy is first determined as 

0 0 0 0 0 0

( )
XX YY ZZ XY YZ ZX

XX XX YY YY ZZ ZZ XY XY YZ YZ ZX ZX

vol

V d d d d d d d vol

   g g g

       g  g  g
  

      
  

       (4.13) 

Since the flexure strip is thin in the Y direction and also free from loads on the lateral 

surfaces, it can be reasonably assumed that 0YY  . Additionally since the order of γYZ is 10
-6

 as 

compared to other strains that are of the order of 10
-3

, YZ is assumed to be zero as well. Finally, 

by the assumption made is Section 4.4 ZZ is assumed to be XXp . Under these conditions the 

constitutive relations can be simplified as: 

   2 1 11
;      ;     

;     0;         

XX XX YY XX ZZ XX

XY ZX
XY YZ ZX

p pp

E E E

G G

  
     

 
  

 
   

  

 (4.14) 
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Using Eq.(4.14) the strain energy can be simplified to 

 
 

2 2 2
2 2 2

2
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1 2
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Using the expressions of strain from Eq.(4.11), V can be written as 
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where    ,   ZW W

d d
Y

dZ dY

 
    

The order of magnitude of I3 is determined to be of the order of 10
-10

L
2
 as calculated from 

Eq.(4.15) and is two orders smaller than I1 and I2. 

 3

0 0

1
L L

ZL
Xd Xd ZL

A A

Fd d
o I o Y dA o F dA dX

dZ A A dZ

 
 

       
                   

     (4.15) 

Although, I3 is only one order smaller than I4, for the sake of simplicity I3 is dropped. By 

approximating I3 equal to zero, we are physically assuming that bending or torsion has no effect 

on shear in the XdZd plane. As a result, the displacement due to shear is approximated by the 

linear relation Z Shear ZddU F

dX kGA

  . The constant k determines how much of the area actually 

participates in shear and is    10 1 12 11   for rectangular cross-section [25, 32]. 

Once the total strain energy for the spatial beam has been obtained, the Principle of 

Virtual Work (PVW) may be applied to generate the beam differential equations and boundary 

conditions. According to the PVW, the virtual work done by external forces over a set of 

geometrically compatible but otherwise arbitrary ‘virtual’ displacements is equal to the change in 

the strain energy due to these ‘virtual’ displacements:  

W V   (4.16) 
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The variation to the strain energy is found first as follows: 
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 (4.17) 

The variation of strain energy can be simplified by expanding and using the symmetry of 

rectangular cross-section. 
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Substituting the values of curvatures from Eq.(4.12) and simplifying we get 
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 (4.19) 

In order to express δV in terms of the variation of the displacements UX, UY, UZ and ΘXd, 

integration by part is carried out to generate the following expression. 
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 (4.20) 

We now proceed to express δW of Eq.(4.16) in terms of the six generalized displacement 

co-ordinates ,  ,  ,  ,  ,   and XL YL ZbL Z Shear L XdL YL ZLU U U U U UQ 
  . Typically δW is expressed in terms 

of displacement that are along the direction of the loads as shown in Eq.(4.21).  

XL YL ZL XL YL ZLW U U U    Q Q Q     XL YL ZL XL YL ZLF F F M M M  (4.21) 

In order to compare coefficients using the PVW equation, ,  ,  ,XL YL ZbLU U U  

,  ,   and Z Shear L XdL YL ZLU U U Q   
   are required to be related to ,  ,  ,  ,  XL YL ZL XLU U U   Q

,  YL ZLQ Q . The translational displacements of former displacement sets can be vectorially 

separated ˆˆ ˆ,   and i j k component to get the translational displacements of the latter displacement 

set. 
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 (4.22) 

Relating the rotational displacements of the two displacement sets are more difficult 

because two of the three rotational displacements are finite rotations that cannot be represented 

by vectors. However the variation of the rotational displacements can be assumed to be 

infinitesimally small without any loss of generality. Specifically, we choose to express virtual 

rotations ,   and XL YL ZLQ Q Q  as functions of ,  ,  ,  ,  XL YL ZL XdL YLU U U U   Q   and ZLU  . The 

virtual rotations at the beam end may be expressed as variations of the corresponding Euler 

angles (Figure 4.5): 
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   
   

     

  (4.23) 
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    

         
 

  

Using second order approximations, we get 

 

 

XL XdL ZbL YL ZL YL XL ZbL ZbL

YL ZbL ZbL XL YL XdL
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U U U U

U U U U U U

Q Q   

Q   Q

Q    Q

         

      

        

 (4.24) 

Using Eqs.(4.22) and (4.24), the left hand side of PVW in Eq. (4.16) can be expressed in 

terms of , , , , ,  and XL YL ZL XdL XL YL ZLU U U U U U   Q      . The only remaining dependent 

displacement variable now is XLU  . Although its dependence on the other virtual displacements 

is not known at this stage, we know that it is mathematically independent of XLU . Therefore, 

the coefficients of δUXL and δUX on both sides of Eq. (4.16) can be respectively compared and 

equated. 

,     0X XV V  XLF   

The two relations imply that 

2
2 21 1

  for  X
2 2 2

X Xd
X X Y Zb

EI
V EA U U U

Q 
        

 
XLF  (4.25) 

This relation may now be used to derive the geometric dependence of XLU   on the other 

displacement variables. 

0XL YL YL ZbL ZbLU U U U U          (4.26) 

Here, XdLQ is equal to zero since at X=L the flexure strip is connected to a rigid body. 

Therefore, using Eqs.(4.22), (4.24) and (4.26) δW can be expressed as  

XL YL ZbL Z Shear L XdL ZbL YLW U U U U U U     Q   
       XL YL ZL ZL XdL YL ZLF F F F M M M (4.27) 

where  YL ZLU U  XdL XL YL ZLM M M M  
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It should be noted that an additional moment component equal to ZbLU 
XdLM along the 

direction of MZL is ignored because of the order of magnitude of ZbLU   is 10
-3

 to 10
-4

. This 

approximation is consistent with dropping the kinematic torsional rotation in Eq.(4.12). 

We, next, move on to comparing the coefficients of ,  ,  ,  ,Y Zb YL ZbLU U U U   

 ,  and YL ZbLU U    terms from which we get two beam governing equations  

      

      

cos sin 0

sin cos 0

Zd Xd Yd Xd Y

Zd Xd Yd Xd Zb
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Q Q

Q Q

   

   

XL

XL

F

F

 (4.28) 

and four natural boundary conditions.  

    

    
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Zd Xd Yd Xd Zb X L
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Zd Xd Yd Xd
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Zd Xd Yd Xd
X L

M M U

M M U

M M

M M

Q Q

Q Q
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Q Q






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


   


   

  

 

XL YL

XL ZL

YL

ZL

F F

F F

M

M

 (4.29) 

Using the values of MYd and MZd from Eq.(4.20) and recognizing the IYY is at least two 

orders of magnitude higher than IZZ, the beam governing differential equations and natural 

boundary condition in Eqs.(4.28) and (4.29) can be simplified as below. 

Beam governing differential equations are: 

  

  

0

0

ZZ Y YY Xd Y Zb Xd Y

YY Xd Y Zb Zb

EI U EI U U U

EI U U U

Q Q

Q


       


    

XL

XL

F

F

 (4.30) 

Natural boundary conditions are: 
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F F

F F
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 (4.31) 

Finally for the torsion direction, comparing the coefficients of XdLQ  and XdQ , we get 

         

,

cos sin sin cos 0

X X X L

X X Zd Xd Yd Xd Zb Zd Xd Yd Xd Y

T P

T P M M U M M UQ Q Q Q


 

        

XdLM
 (4.32) 

In order to simplify the second relation in (4.32), the differential equations in Eq.(4.28) is 

integrated twice and its constants of integration are solved using boundary conditions in 

Eg.(4.29). 

         

          

cos sin
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Zd Xd Yd Xd YL Y

Zd Xd Yd Xd ZbL Zb

M M L X U U X

M M L X U U X

Q Q

Q Q

      

       

ZL YL XL Z

YL ZL XL Y

M F F M

M F F M
 (4.33) 

Therefore, physically    cos sinZd Xd Yd XdM MQ Q  and     sin cosZd Xd Yd XdM MQ Q  

are nothing but the total bending moments MZ(X) and -MY(X). Using the relations in Eqs.(4.20), 

(4.25) and (4.33), the natural boundary condition and beam governing differential equation in 

Eq.(4.32) can be simplified to 

 

       
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  

               
  

XL XdL

XL Z Y

F M

F M M

(4.34) 

In Eq.(4.34) (a), we notice the cubic term due to Wagner’s effect, a nonlinear term that is 

non-zero in the presence of FXL commonly referred to as the trapeze effect and a new linear term 

in addition to the linear term associated with shear. The new linear term is the additional internal 

torsional moment developed in the beam even for small twists and zero FXL. This term is 

consistent with literature on torsional-lateral buckling and was first identified by Saint Venant in 

his work on torsion of beams [76]. In Eq.(4.34) (b), torsional load due to bending loads appears 
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that couple the torsion angle to the bending displacements. As explained in Section 4.3, this term 

captures the torsional moment produced by bending loads in one bending plane (XY or XZ 

plane) in the presence of bending displacement present in the other bending plane.   

Finally let us compare the co-efficients of δUZ-Shear and δUZ-Shear-L. 

2

2
,      0Z Shear Z Shear

X L

dU d U
GA GA

dX dX

 



 ZLF  (4.35) 

Using Eq.(4.35) differential equation in the shear direction can be written as 

  for  XZ SheardU
GA

dX

  ZLF  (4.36) 

Equation (4.36) can be easily solve for UZ-Shear-L as below 

Z Shear L

L
U

kGA
   ZLF

 (4.37) 

It should be noted the Timoshenko shear co-efficient k is included in Eq.(4.37) since the 

entire area does not take part in shearing.  

The geometric boundary conditions for the flexure strip are summarized below. 

0          at       0

0       at      

X Y Zb Z Shear Xd Zb Y Xd

Xd

U U U U U U X

X L

Q Q

Q


          

  
 (4.38) 

At this point in the analysis, all the loads and displacements are normalized per the 

following scheme to make the equations and results compact: 

 
 2 2 2

, , , , , ,
ZZ ZZ ZZ ZZ ZZ ZZ ZZ

X LLL L L L L
x
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z1 y1 xd1 z1 y1 x1 z

MMM M F F F
m m m f f f m

  

 
 

1 1 1, , , , , , , ,Y Z YL ZL
y y z y z xd Xd xd XdL

ZZ

X L U U U UVL X
x v u u u u x

EI EI L L L L L
 Q  QY

M
m

 

Using this normalization scheme, the beam governing differential equations can be 

restated as 



116 

 

 
 

    

 

2

2 2
11 1

                                                    
2 2 2

 0                                                      

xd

x y zb

y Xd y Zb Xd y

Xd y Zb

a
d u u u i

u a u u u ii

a u u



 



 
      

 


      

  

x1

x1

f

f

 

         3

1 21 22 3

0                                                                     

1
0              

2

zb

iv

xd xd xd zb y

u iii

c c c c x u x u iv  

 

        

x1

x1 z y

f

f m m
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Similarly the boundary condition can be restated as 
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 (4.40) 

At this point we observe that the beam governing differential equations are nonlinearly 

coupled and non-trivial to solve in a closed-form manner. Therefore, to facilitate a simple yet 

fairly accurate solution, we make some important observations. First for TY/TZ < 0.1, we observe 

that the load-stiffening effect captured by the  1zb zbu u
a

x1f
term in Eq.(4.41) does not 

contribute significantly to displacement or stiffness estimation. Hence this term can be ignored. 

Using this approach, we next estimate 
zbu by integrating Eq.(4.39)(iii) and using boundary 

conditions in Eqs.(4.40)(ii) and (iii) to determine the constants of integration. 

  
1

1zb xd yu u x
a

    y1 z1m f  (4.41) 

Using the relation obtained from Eq.(4.41), the differential equation Eq.(4.39) (ii) can be 

decoupled from uzb as shown below. 
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In order to simplify the differential equation for torsion we restrict ourselves to flexure 

strips with 2   15Z YT T L  . In this case, the nonlinear term 3

1

1

2
xdc   is at least two orders smaller 

than the linear terms for θxd1 within -0.1 radians and 0.1 radians. Furthermore, since both mz1 and 

uz1 are one and two order smaller than my1 and uy1 respectively,   zbx u
zm may be dropped with 

respect to   yx u
ym  in Eq.(4.39)(iv). In order to decouple the torsion relation with displacements 

uy and uz,   yx u
ym is estimated using Eq.(4.41) and (4.42) as   

          11 1 1y y xdx x u u x         y1 z1 z1 y1 x1 y1 z1m f m f f m f  

Therefore the torsion differential equation becomes  
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 (4.43) 

Using the simplifications brought about by the geometry of the flexure strip, we now 

have two linearly coupled equations in (4.42) and (4.43). Using the solution of uy and θxd 

equations (4.41) and (4.39)(i) can be solved. 

 Since the beam governing differential equations are linear equations with variable 

coefficients, we require more sophisticated mathematical techniques than simple linear algebra. 

One viable option is the use of perturbation methods in which a simple function that obeys the 

boundary conditions of the problem is used to find an asymptotic solution of the problem. 

Among various types of perturbation methods available in the literature, the homotopy 

perturbation method [77] was used to find an approximate solution. Unfortunately, this method 

led to transcendental solutions which resulted in extremely large expressions. Using Maple 
TM

 

2011, we were unable to extract load-displacement or energy expressions from these. An 

alternate method is using neural networks [78] that can output approximate closed form solution 

of system of differential equation. However, this is a vast topic and out of scope of this thesis. 

Instead we proceed to validating the differential equations by comparing its numerical solution to 

FEA, thus proving that plates of certain geometry under certain loading condition can be 
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modeled accurately as beams by simply using an equivalent elastic modulus i.e. using only one 

independent variable rather than two. 

4.7 Numerical Validation of Beam Governing Differential Equations 

The entire analysis in Section 4.5 and 4.6 hinges on the assumption of the existance of a 

equivalent elastic modulus free of load or displacement variables as given in Section 4.4. This is 

because without this assumption we would be forced use two independent variable X and Y. In 

this section we will find and validate the appropriate equivalent elastic modulus. Finding this 

quantity from differential equations derived from plate theory is challenging. Therefore a simple 

numerical procedure was set up to estimate the equivalent elastic modulus. Using linear FEA, a 

small bending load was applied to a flexure strip model with plate/shell elements (SHELL181) 

and an identically shaped flexure strip model with beam elements (BEAM188). In the case of the 

flexure strip model with plate/shell elements, boundard conditions of the ends of the flexure strip 

being rigid and straight was taken into account. Starting with the same material properties and 

bending load FYL, the output displacement UYL for either model was recorded. Next, the ratio of 

the output displacement of the flexure strip model with plate elements and the output 

displacement of flexure strip model with beam elements was recorded. This ratio was found to be 

constant as the applied loads was varied while keeping the beam shape the same. This means that 

if the product of this ratio and the elastic modulus was used in place of the actual elastic modulus 

in the BEAM188 FEA experiments we would the same result as the SHELL181 FEA 

experiments elements for all values of the FYL loads. Therefore, this new elastic modulus is the 

equivalent elastic modulus that maybe used to simulate plate/shell like elements with beam 

analysis for simple bending for very small displacements. Next, by running the same experiment 

for various value of L, TY, TZ and ν such that 2   15Z YT T L   and  < 0.1Y ZT T  a regression curve 

fit of the second order was used to find the the equivalent elastic modulus in terms of the 

geometric and material properties. It should be noted that for the SHELL 181 FEA experiments, 

the edges on which load was applied was constrained to remain in a straight line as is the case in 

typical flexure mechanisms. 

0.454
2

2
1

1

ZT

L
E

E e


 
  

  
 (4.44) 
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In order to validity the applicability of the equivalent elastic modulus to generalized 

spatial loading over a finite range of displacements, we next compare the numerical solutions of 

the beam governing differential equations (Eqs. (4.39)(i), (4.41)-(4.43)) using the above 

equivalent elastic modulus and to nonlinear FEA for generalized loading in 6 mutually 

independent directions. 

 

4.7.1 Linear Behavior of Spatial Flexure Strips 

Since the equivalent elastic stiffness was calculated based on the comparison of UYL 

displacement in response to FYL loads using linear formulation which is very well captured in the 

this analysis, the displacement results of the beam governing equation is certain to match that of 

the finite element model of the flexure strip when FYL is the only end-load present. Since, this 

does not guarantee the agreement of the beam governing differential equations when the flexure 

strip is under other bending, shearing, twisting and stretching loads, tests that can compare those 

loading conditions need to be carried out. In this section, we will be comparing the solution of 

the beam governing differential equations (Eqs. (4.39)(i), (4.41)-(4.43)) to the FEA plate model 

of the flexure strip due to pure bending, simple shearing and twisting separately. These effects, 

when studied individually, constitute the linear behavior of the flexure strip. For these tests, we 

have arbitrarily chosen three geometries of flexure strip that are of equal length and thickness but 

varying depth/width. The length and thickness are 0.1m and 0.001m, respectively, while the 

depth is either 0.01m or 0.025m or 0.4m. The nominal elastic modulus and Poisson’s ratio are 

taken to be 210GPa and 0.3, respectively. It should be noted that although all the verification is 

done with these parameters, because of the normalized form of the differential equation, the 

verification is valid for all geometries when 2   15Z YT T L   and  < 0.1Y ZT T . Shell 181 is used to 

model the flexure strip in ANSYS with element size of 0.0005m. Furthermore, geometrical 

nonlinearities are turned on in the FEA by using the command NLGEOM, 1. Rigid beam 

element MPC184 is used to prevent the ends of the flexure strips from deforming. 
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Figure 4.6: Pure Bending of Flexure Strip with varying depth 

In Figure 4.6, variation of the primary bending angle ΘZL with bending moment MZL is 

verified. Since the bending action of MZL is very similar to FYL this agreement between the 

differential equations and FEA is expected. However, it would be noted that while the equivalent 

elastic modulus was calculated for very small displacements (<L/100), the error is less that 3% of 

the measure quantity even for intermediate displacement of ΘZL well above 0.1 radians. 

 

Figure 4.7: DoC displacement UZL due to shear and bending the XZ plane 
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While, there is excellent agreement between the differential equation and FEA in Figure 

4.7 for flexure strip with TZ/L equal to 0.1 and 0.25, the numerical solving errors affect the z-

displacement of the flexure strip with TZ/L equal to 0.4 and these errors are approximately 15%. 

Since the displacement of the flexure strip is very small, such errors originate from the numerical 

error of FEA. 

 

Figure 4.8: DoC Displacement ΘYL due to DOC bending load FZL 

Since shearing cannot create any rotations in the flexure strip, it is the bending action of 

the DoC load FZL give rise to the DoC displacement ΘYL. Again in Figure 4.8 there is agreement 

within 4% between all the results from the differential equation and FEA. 
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Figure 4.9: Pure twisting of the flexure strip 

Finally the last of the linear deformations of the flexure strip is twisting which is verified 

in Figure 4.9. Although the twisting stiffness changes with width due to the variation of the 

torsion constant, the load-displacement in twist itself is linear for all the beam geometry. It 

should be note that for wider flexure strips, a cubic stiffening of the twisting direction occurs due 

to differential contraction of fiber close to and far away from the neutral axis. However as long 

as 2   15Z YT T L  , this nonlinearity is not significant. For flexure strip with TZ/L = 0.4, the error 

is 2%. 

4.7.2 Nonlinear Behavior of Spatial Flexure Strips 

Several new nonlinear behaviors of spatial flexure strips are identified from the 

governing differential equation in addition to those that arise from FXL and are seen for planar 

flexure strips. First of all, let us study the nonlinearities in the twisting direction. Firstly as 

discussed in Section 4.3, twisting can occur when loads in both XY and XZ bending planes are 

presented even if no twisting moment is applied. This is shown in Figure 4.10. It should be noted 

that the large values of the loads FYL and FZL are chosen for which the displacements UYL and 

UZL are of the order of 0.1L and 0.001L respectively. 
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Figure 4.10: Twisting due the combination of XY and XZ plane's bending loads 

The trapeze effect results in a change of twisting angle when an axial force FXL is applied 

in the presence of a twisting moment MXL. As was mentioned earlier, the trapeze effect 

originates from fibers parallel to the centroidal axis being stretched or compressed due to torsion. 

Since after torsion these fibers are no longer perpendicular to the cross-sectional plane, the 

tensile or compressive force along these wires is not parallel to the X axis. Hence the 

combination of the tensile and compressive force from all the fibers produces a net resisting 

torque that resists the twisting moment. A more detailed explanation of the trapeze effect is given 

in Section 4.4. The net effect is an increase in torsional stiffness or decrease of twist at constant 

torsional load, either of which grows with increasing the width of the flexure strip or increasing 

axial force FXL. As shown in Figure 4.11, the twisting angle changes approximately by 5% for 

TZ/L = 0.25. 
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Figure 4.11: Change in twisting due to FXL (Trapeze effect) 

 

 

Figure 4.12: Kinematic coupling between twisting and axial extension 
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the relationship between ΘXL and UXL denotes that only negative axial displacement is possible 

due to twisting. This is logical because as the undeformed flexure strip is straight, the arc-length 

conservation of the undeformed fibers along the x axis in the undeformed state can only shorten 

deformation. 

We next move on to the effects on the XZ plane displacements due to DoF loads. In the 

presence of XZ bending load, if XY bending load FYL is applied, then a net twist is obtained as 

shown in Figure 4.10. Due to this twist some of the Y- displacement is rotated towards the XZ 

plane. As a result additional UZL displacement is observed as shown in Figure 4.13.  

 

Figure 4.13: Displacement in XZ plane due to bending force in XY planes 
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Figure 4.14: Displacement in XZ plane due to twisting moment 

Instead of the twist being caused by the FYL, the twist can also be caused by a twisting 

moment MXL itself. In both case, the relationship between XZ plane displacements UZL and ΘYL 

is quadratic for TZ/L = 0.1, 0.25 and 0.4 which implies the direction of the twisting is immaterial. 

In either case, the twist on the flexure strip reduces its stiffness in the XZ plane. 

Although several other loading conditions including the simultaneous application of all 

six loads were validated again FEA results, they are not shown here since they do not represent a 

different type of nonlinearity. For most of the comparisons the discrepancy between the 

displacements predicted between SBCM and FEA was less that 3% for translational and 

rotational displacements of 0.1L and 0.1 radians respectively. In the case of estimating axial 

displacement UXL the maximum discrepancy was 5% for FXL five times the maximum allowed 

bending force FYL. The other DoC loads FZL and MYL were also limited to five times their 

corresponding DoF loads. Overall, the comparison with numerical solution of the beam 

governing equations determines the validity of the beam equation with a certain level of 

confidence.  

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

0

2

4

6

8

10

12

14
x 10

-3

DoF Load M
XL

D
o

C
 D

is
p

la
ce

m
en

t 
Q

Y
L

T
Z
 / L = 0.4,  M

YL
 = 1

T
Z
 / L = 0.25

M
YL

 = 1

T
Z
 / L = 0.1

M
YL

 = 1

       SBCM
       FEA



127 

 

4.8 Discussion 

Although a final closed form model for the spatial flexure strip could not be formulated, 

several important observations can be made. First of all, this chapter showed that a plate with 

generalized loading can be analyzed as a beam with the same generalized loading for the same 

displacement range as long as inequalities 2   15Z YT T L   and   0.1Y ZT T  are satisfied. This 

understanding show that for a sufficiently large family of flexure strips, relatively simplified 

beam characteristic differential equations may be derived which preserve accuracy as well.  

Secondly, the numerical solution of the derived beam characteristic differential equations 

brought forth several new nonlinearities due to spatial loading of a flexure strip. A more 

complete picture of the spatial flexure strip can be found via a closed form solution of the beam 

governing differential equations. Since traditional perturbation methods as well as homotopy 

perturbation method did not yield such a closed form solution, non-traditional approaches to 

solve the differential equations such as neural networks may be considered in future work. 
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Chapter 5  

 

Spatial Beam Constraint Model for symmetric Spatial Beam Flexure 

with Generalized Loading 

 

5.1 Introduction  

A spatial beam flexure is another common flexure element used to design flexure 

mechanism. In the past, it has been used to make precision positioning systems [79], compliant 

assembly device [80], vibratory bowl feeder [81] and a minimally invasive surgical tool [68]. 

Additionally several MEMS devices such as micro-mirror applications [21], micro-grippers, 

displacement amplifier, micro-leverage systems are also known to use the spatial beam flexure. 

Furthermore it is extensively used in constraint based synthesis techniques based on screw theory 

[82] as the primary building block.  

In order to study constraint properties, the spatial beam flexure is compared with a ball 

bearing in Figure 5.1. A ball bearing is in some sense an ideal constraint that it provides close to 

infinite stiffness for any vertical motion between bodies (1) and (2) and close to zero resistance, 

if there are no frictional losses, along the other five independent directions of motion between 

bodies (1) and (2). In comparison a spatial beam flexure behaves as a non-ideal constraint by 

providing high but not infinite stiffness in the vertical direction and low but not zero stiffness in 

the other five directions of relative motion between bodies (1) and (2). In spite of its non-ideal 

behavior, spatial beam flexures have been often modeled as constraint elements in the past [60]. 
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Figure 5.1: Comparison of the Degrees of Freedom and Degrees of Constraint of a Spatial Beam Flexure and 

a Ball Bearing 

Most closed-form force displacements equations of the spatial beam flexure available in 

the literature are linear and valid over an infinitesimal displacement range. This is because when 

a finite range for translational and rotational displacements are considered, for example of 0.1L 

and 0.1 radians, respectively, four major nonlinear geometric effects become significant. These 

nonlinearities force the differential equations relating loads and displacements of the spatial 

beam in equilibrium to be nonlinear and hence are difficult to solve in closed-form. These 

nonlinear geometric effects are as follows: 

1. The spatial beam flexure has finite stiffness values along each DoF directions that is not 

constant. They vary with the magnitude of an axial stretching or compressive force. 

2. The relative motion of body (2) with respect to body (1) in Figure 5.1 along any of the DoF 

directions of spatial beam flexure is accompanied with an error motion along a DoC direction 

[24].  

3. In the presence of a torsional moment, bending loads in any one plane, say the XY plane, 

causes displacements in the other bending plane, which in this case will be the XZ plane. 

This effect, called cross-axis coupling between the bending planes, is another type of error 

motion. 

4. The relative motion of rigid body (2) with respect to body (1) along any of the DoF 

directions of spatial beam flexure also causes a drop in stiffness along the DoC direction.  

5. Torsional rotation of rigid body (2) with respect to body (1) causes a small contraction in the 

length of the spatial beam flexure.  

These effects, which collectively represent the non-ideal constraint behavior of a spatial 

beam flexure, in terms of stiffness values and error motion, need to be quantified in order to 
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understand performance limitations and tradeoffs as well as generate physical insight and enable 

design optimization on the elemental as well as on the mechanism level. In the absence of a 

convenient closed form model that is applicable of the mentioned finite displacement value, 

designers generally use numerical methods such FEA software to analyze flexure models that 

involve spatial beam flexures. Given the merits of closed form analysis, discussed in Chapter 1, 

we aim to formulate a closed form model in this chapter. 

Previous analysis of slender prismatic spatial beam with arbitrary cross-section [61] show 

that beam governing bending equations for bending, stretching and torsion are in general 

nonlinear and coupled. However, in the special case when the beam cross-section is symmetric 

such that its two primary moment of area are equal, the bending equations become linear with 

respect to bending loads and displacements. Although, the twisting and stretching loads terms 

that are present in the bending differential equations, represent geometric nonlinearities, one may 

treat these two loads as constants in a mathematical sense while solving the bending differential 

equations. Using the displacement solution in the bending direction, the nonlinear twisting and 

stretching differential equations may be solved. A detailed derivation of the assumptions, beam 

governing differential equations, displacement solution and the constraint model is given in 

sections 5.2 to 5.5. 

5.2 Spatial Beam Deformation 

In order to determine the nonlinear strain as well as the end-displacements UXL, UYL, UZL, 

ΘXL, ΘYL, and ΘZL, the deformation at each point interior to the spatial beam, shown in Figure 

5.2, needs to be mathematically characterized.  



131 

 

UXL

UYL

ΘZL

ΘYL

ΘXL

UZL

TZ

TY

X
Z

Y L

XY 

Bending

XZ 

Bending

Twisting

Stretching

Ground

 

Figure 5.2: Spatial Beam Flexure: Undeformed and Deformed 

When a long, slender12, circular cross-section beam is subjected to pure torsion, 

symmetry implies that the Euler-Bernoulli assumptions hold true [29], i.e. plane sections remain 

plane and perpendicular to the neutral axis after deformation. For a physical argument, we study 

a slender circular beam in Figure 5.3 that is subjected to pure torsion. Given that the beam is 

slender, any cross-section away from either end should experience the same warping. Let us 

assume the warped cross-section to an arbitrary shape as shown in Figure 5.3. If the beam is 

rotated about the Y axis or the Z axis by 180
o
 the warped cross-section gets flipped about the Y 

or Z axis. However as the loading after the rotation remains identical, any cross-section away 

from the ends in a long beam should have the same warping along X before and after rotation. 

For this condition to be true, the out-of-plane component of warping along X has to symmetrical 

about the Y axis as well as the Z axis. The only possible solution of the out-of-plane warping 

along X that satisfies this condition is zero over the entire YZ plane. To eliminate in-plane cross-

sectional distortion we consider any amount of rotation about X-axis and again find that the 

loading is same in each case and hence conclude that in plane cross-sectional distortion should 

also be zero as well. Furthermore this symmetry argument also implies in-plane dilation, due to 

non-zero Poisson’s ratio, should be rotationally symmetric about the X-axis. Therefore, we can 

safely say that the neutral axis after deformation is the same as the centroidal axis. A similar 

argument based on symmetry considerations can be made for pure bending to show that plane 

section that are not near the ends of the beam, remain plane and perpendicular to the centroidal 

axis after deformation. 

                                                 
12 Slender generally implies a length to thickness ratio greater than 20 [24, 35] 



132 

 

X
Z

Y

 

Figure 5.3: A beam under pure torsion  

 Using the deformation characteristics of any cross-sectional plane perpendicular to the 

centroidal axis, the shear at any point on a cross-section of a beam in the YZ plane under pure 

torsion can be calculated as follows.  
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Figure 5.4: Shear due to torsion in beam with circular cross-section 

Using Figure 5.4, the shear at a general point on a cross-section at an arbitrary location x is.

 
1tanx

d d
r r

dx dx


 
g   

  
 

 (5.1) 

The approximation in Eq.(5.1) assumes deformation/strains to very small (at most of the 

order of 10
-3

) with respect to unity. Using Hooke’s constitutive relations the shear stress is 

calculated as: 

X

d
Gr

dx



   (5.2) 

Since there is no in-plane distortion the quantity dθ/dx should be constant throughout the 

cross-section. Therefore for moment balance the following equation should be satisfied.  
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2 2                      where  polar moment of areaX X

A A

d d d
T Gr dA G r dA GI I

dx dx dx

  
      (5.3) 

Given that the torsional moment as well as the shear modulus is constant throughout the 

beam, the shear strain at any point can be restated as in Eq.(5.4) which says that under the 

assumption of isotropic material, plane sections remaining plane, undistorted and perpendicular 

to neutral axis and small strains, the shear component τxθ can be derived to be proportional to the 

radial distance from the neutral axis.  

X

X

T
r

GI
g   (5.4) 

Eq.(5.4) further implies that shear stress τXθ are maximum as the outer most boundary. 

Equilibrium of forces and moments on a differential element at the boundary dictates the 

presence of τθX as well. This is shown in Figure 5.5 (A). These shear stresses do not violate the 

boundary condition as the lateral (or exterior) surface remains free of any external stresses.  

However, for pure torsion of long, slender rectangular cross-section beams, the maximum 

shear stress is not necessarily along the boundary as a similar argument cannot be made in this 

case. A physical reasoning can be understood from Figure 5.5 (B). 
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Figure 5.5: Spatial Beam with circular and rectangular cross-section under torsion  

If the shear stress at any point on a cross-section was proportional to its distance from the 

neutral axis then a finite shear stress τ will exist at the differential boundary element of the beam 

perpendicular to the radial line from the neutral axis as shown in Figure 5.5. This shear strain τ 

can be resolved into its component τXZ and τXZ. This would mean, for equilibrium, non-zero τYX 

and τZX will exist on lateral surfaces. This is in violation of the boundary condition that the lateral 
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surfaces are free of forces and therefore by contradiction we conclude that shear stresses are not 

proportional to their radial distance from the neutral axis.  This, in turn, implies that plane 

sections do not remain plane after torsion for beams with rectangular cross-sections and non-

circular cross-sections in general. This was shown experimentally by A. Duleau by 1820 [83] 

that small warping of cross-section does take place in order to satisfy boundary conditions for 

shearing stresses. The first exact solution of prismatic beam with any general cross-section under 

pure torsion was first formulated by St. Venant in 1850 [25]. He showed that the warping 

redistributes the shear stress such that the maximum shear stress is located at the middle of the 

lateral edges of the cross-section, while zero shear stress is present at the corners. 

Given that all the above observations about deformation of a beam were made when the 

beam is undergoing bending or torsion separately, the same observations will not strictly hold 

when a beam undergoes bending, stretching and torsion simultaneously. In spite of this, for 

displacement (UY and UZ) in the range of 0.1L
13

, where L is the length of the spatial beam, and 

rotations (ΘX, ΘY, and ΘZ) in the range of 0.1 radians
14

, several previous articles [36, 61] use the 

above assumptions of zero in-plane distortion and constant warping along X, in order to study 

the static and dynamic behavior of slender prismatic beams. It should be noted that out-of-plane 

warping and in-plane dilation are not ignored as that would violate boundary conditions and 

geometric compatibility conditions respectively. This assumption is appropriate when length is at 

least an order of magnitude higher than thickness and width of the beam. This is because the 

difference between the slope of local tangent at any point on a cross-section and the average 

slope of the cross-section of the order of (thickness×width)/(length
2
) for the given range of 

displacements. This estimation can be easily developed from the exact beam solutions given in 

references [25, 74].  

By ignoring in-plane distortion, this approach implicitly implies that the displacements 

corresponding to extensional strains due to bending and warping effects arising from torsion are 

algebraically added when both are expressed in a non-physical co-ordinate frame Xd-Yd-Zd 

defined below (Figure 5.6). This is because displacements of any point on a cross-section due by 

bending and out-of-plane warping occur along the same direction Xd. Therefore one may 

algebraically add deformations due to bending and torsion alone to obtain the combined effect of 

                                                 
13 ±10% of the length of the beams is used as intermediate range for translational end-displacement of the beam 
14 ±0.1 radians is used as intermediate range for rotational end-displacement of the beam 
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both in a beam. A proof of this method leading to the correct estimates of deformation would 

require rigorous experimentation. In spite of the unavailability of such experiments in literature 

the above assumption is quite common [4, 36, 61, 65, 84-86] and is known to lead to useful 

expressions for design and analysis of beams. 

Now we process to explicitly derive the strain at any point based on the preceding 

discussion. First, a reference X-Y-Z co-ordinate frame is defined such that its X axis is along the 

centroidal axis (locus of the centroid of all cross-sections) of the undeformed prismatic beam, 

while its Y and Z axis represent the primary directions of cross-sectional moment of area. Using 

the ideal case of circular cross-section, very long beam, small strains, pure bending or torsion, 

plane sections remain plane and perpendicular to the centroidal axis even after deformation, we 

define the co-ordinate frame Xd-Yd-Zd as the transformed X-Y-Z co-ordinate frame resulting 

from rigid body translations and rotations (Euler angles) of a cross-section of the beam 

undergoing deformation with the X-Y-Z axis stuck to its centroid. It should be noted that the 

third rigid body rotation which will occur about the Xd axis is what we define as the angle of 

twist. This is not a unique definition of twist because for any change of orientation in space 24 

different sets of Euler angles can be found to relation in the initial and final orientation. 

As discussed earlier, although in finitely long beams undergoing finite bending and 

torsion, plane section doesn’t exactly remain plane, undistorted and perpendicular to the 

centroidal axis, these variations from ideal behavior are small when the end-displacement is 

restricted to intermediate values.  
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Figure 5.6: Spatial Kinematics of Beam Deformation 

Similar to the analysis of the deformation of the flexure strip in Chapter 4, deformation of 

a differential fiber of a slender beam at point P (X,0,0) on the neutral axis is shown, in terms of 

translational displacements UX, UY, UZ and orientation given by the Euler angles α, β and ΘXd. 

The order of rotation is illustrated in Figure 5.6. However it should be noted that there is no 

significant shear effects in this case. The deformed element, dRn, corresponding to the 

undeformed fiber dX, is along Xd which is tangential to the deformed centroidal axis of the 

beam. For small strains the deformed centroidal axis also turns out to be approximately the 

deformed neutral axis. This is because in plane distortion, dilation/contraction is negligible for 

slender beams.  

 Similar to Chapter 4, the coordinate transformation matrix [T] is determined by 

considering the differential beam element, originally along the neutral axis at P (X,0,0), in its 

undeformed (dX) and deformed (dRn) configurations. A mathematical expression of [T] that 

relates the unit vectors ˆˆ ˆ,   and d d di j k along the deformed coordinate frame Xd–Yd–Zd to the unit 

vectors ˆˆ ˆ,   and i j k  along the undeformed coordinate frame X–Y–Z, is calculated in terms of the 

three Euler angles -α, β and θxd below. 

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

d

d

d

i i

j T j

k k

   
   

   
   

  

 (5.5) 



137 

 

 
   

 
   

   
 

   

c s c s
c

s c s c
s

YZ Y Z

xd Y YZ xd Z xd Y Z xd YZ

xd Y

Y Y Y Y

xd Y YZ xd Z xd Y Z xd YZ

xd Y

Y Y Y Y

U U

U U U U
T

U U U U



Q  Q Q Q 
Q 

   

Q  Q Q Q 
Q 

   

 

   

   

 
 
 
 
     
 
 
   
  

 

         

2 2 2

2 2 2

where,  the superscript  refers to derivative with respect to ,

1   ,   1    , 

and          ,   c cos     ;   s sin

n

Y Z Y
YZ Y

n n n

n X Y Z xd xd xd xd

R

dU dU dU

dR dR dR

dR dX dU dU dU

 

Q Q Q Q



     
       

     

   

 

  Since we would finally want to state the final load-displacement results for the spatial 

beam in the undeformed coordinate frame, it is desirable to express the [T] matrix in term of 

variables defined in the undeformed coordinate frame XYZ. 

Similarly the beam curvatures in the XdYd and XdZd planes, κYd and κZd, and the rate of 

torsion, κXd,  can be defined by studying the its rate of change of the transformation matrix [T] 

with Rn.  
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Furthermore, using the physical insight from St. Venant solution of prismatic beams with 

any cross-section as well other studies of beam, the function λ(Y,Z)κXd will also be used to 
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represent the out-of-plane warping causing displacement parallel to the deformed neutral axis 

[75]. It should be noted that λ(Y,Z) which is generally of the order of the cross-sectional area is 

small for slender beams compared to its value for flexure strips.  

With the deformation field thus defined, we can now define the strains using the Green’s 

Strain measure given in (5.7). 
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 (5.7) 

Using a similar analysis to Chapter 4, 0 and ddr dr  can be calculated and applied in 

Eq.(5.7) to obtain the  strains.  
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 (5.8) 

The only difference between the strain expressions given here, in Eq.(5.8) and the strain 

expressions given in Eq.(4.10), is the displacement in the Zd direction. At this point the strains 

for the assumed deformation field are exact. For a qualitative understanding of the various terms 

in the strain expression the reader is referred to section 4.2 in Chapter 4.  

For intermediate displacements, which means UXL/L, UYL/L, UZL/L, ΘXL, ΘYL, and ΘZL is 

limited to ±0.1, we can determine that the slopes and curvatures are limited to 0.1 and 0.1/L 

respectively. Under these assumptions, a simplified strain expression can be determined by 

approximated the strains in (5.8) to the second order. It is expected that the error due to this 

approximation will be less than 1% with the specified displacement range. 



139 

 

 

 

 

2 2 2 2 21 1 1

2 2 2

                  where 

                  where Z

,     ,     0

XX X Y Z Zd Yd Xd

XY Xd W W

XZ Xd W W

YY XX ZZ XX YZ

U U U Y Z Y Z

d
Y Y Y

dZ

d
Z Z

dY

   


g 


g 

    g

        

 

 

    
 (5.9)

 

It should be noted here that although finite end displacements are considered, the strains 

are still small because the beam is assumed to be slender. The first three terms in the axial strain, 

εXX, collectively represent the elastic stretching in the axial direction, while correcting for 

kinematic effects. The next three terms depend on the beam curvatures κXd, κYd and κZd, which are 

defined in the deformed coordinate axis Xd–Yd–Zd. These terms arise from the combined effect 

of torsion and bending and depend only on X. Although the last of these three terms is 

significantly smaller than the other terms, it is retained because it becomes significant in the 

absence of axial stretching and bending loads. The approximate value of the three beam 

curvatures, accurate to the second order are given below.  

   

   

  

sin cos

cos sin

Xd Xd Z Y

Yd Xd Y Xd Z

Zd Xd Y Xd Z

U U

U U

U U

 Q

 Q Q

 Q Q

   

  

  

 (5.10) 

The shear strains given in Eq.(5.9) depend on curvature κXd and warping. However, since 

the warping is captured by λ(Y,Z)κXd where λ(Y,Z) does not depend on loading, its effect can be 

represented using the correction terms YW and ZW. Strains εYY and εZZ caused due to Poisson’s 

effect are small and are included in this discussion. However they do not affect strain energy as 

σYY and σZZ are approximately zero and thus does not affect the calculation of the end-

displacements. Other nonlinear terms in strain expressions reported in the previous literature [36, 

61, 65] are at most of the order of 10
-5

 and contribute negligibly to the strains, which are 

generally of the order of 10
-2

 for the given maximum loading conditions. Therefore, these 

nonlinear terms have been dropped in Eq.(5.9). It should be noted here that infinitesimal strain 

theory does not capture the nonlinearities in the curvatures κXd, κYd and κXd in Eq.(5.10), the 

kinematic correction terms 
2 21 1

2 2
Y ZU U  , the 

2

Xd  term in εXX , or warping effect in the shear 

strains γXY and γXZ . Since infinitesimal theory does not capture these multiple important physical 
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effects that are critical for constraint characterization of spatial beams, it proves to be inadequate 

in our modeling effort. 

 

5.3 Non-linear Strain Energy and Beam Governing Differential Equations 

As the first step in deriving the beam governing equation using energy methods, the 

strain energy for the spatial beam flexure is expressed below by assuming linear material 

properties.   

 2 2 2

2 2
xx xy xz

vol vol

E G
V dAdX dAdX g g     (5.11) 

Due to the slenderness of the beam, the variation of stresses σYY and σZZ is close to zero. 

However, since there are no externally applied stresses on the lateral surfaces of the beam, σYY 

and σZZ remain zero throughout the beam. Therefore, the εYY and εZZ strain components do not 

contribute to the strain energy.  

There are two components of the strain energy: the first integral above is the strain 

energy due to axial strain that arises from transverse bending and axial extension, and the second 

term represents the energy due to the shear strains that arise due to torsion. This strain energy 

expression may be expanded using the strain expressions from Eq.(5.9). 
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The seven individual integrals in V are denoted by I1 through I7, in the order that they are 

listed. Of these, the integrals I2 and I3 are identically zero by the definition of the centroidal axis. 

For a slender beam with twisting angle ΘXd limited to ±0.1, it may be shown that integral I6 is at 

least four orders of magnitude smaller than integral I1, and is therefore dropped. Next, the strain 

energy expression is simplified by recognizing that the beam curvatures, given in Eq.(5.10), are 
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only dependent on the axial coordinate X. Thus, each volume integral can be decomposed into a 

double integral over the cross-section and a single integral over X.  
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 (5.13) 

The first integral I1 above describes energy associated with axial extension. Through UY’ 

and UZ’, it also captures the geometric coupling between the bending and axial directions. The 

second term, I4, captures the strain energy associated with bending. The third term, I5, captures 

the coupling between the torsion and axial extension directions. Finally, the last term I7 captures 

the energy solely from torsion. In the last step of deriving Eq.(5.13), a symmetric beam cross-

section is assumed, which implies that the two principal bending moments of area (IYY and IZZ) 

are identical and equal to I. Due to this symmetry, the polar moment of area is equal to 2I. The 

torsion constant J is, in general, different from the polar moment of area due to warping [25], as 

shown below. 
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 (5.14) 

Once the total strain energy for the spatial beam has been obtained, the Principle of 

Virtual Work (PVW) [20] may be applied to generate the beam differential equations and 

boundary conditions. According to the PVW, the virtual work done by external forces over a set 

of geometrically compatible but otherwise arbitrary ‘virtual’ displacements is equal to the change 

in the strain energy due to these ‘virtual’ displacements:  

W V   (5.15) 

,  ,  ,  ,   and X Y Z Xd Y ZU U U U UQ    may be chosen as the six generalized coordinates which, 

along with their boundary conditions, completely define the deformation and strain energy of the 

beam. The variation of the beam strain energy expression (5.13) with respect to these generalized 

coordinates is given by:  

1 4 5 7V I I I I        (5.16) 

where, 



142 

 

    

 

1
0

0 0

0

      

L LL

X X Y Y Z Z X X X Y Y

L

X Z Z

I EA U U U U U U EA U U dX EA U U U dX

EA U U U dX

     




         


 

 



 

   4 0
0

L
L iv iv

Y Y Z Z Y Y Z Z Y Y Z ZI EI U U U U U U U U EI U U U U dX                
 

      

     

   

2 2 2

5
0

0 0

2

0 0

   

          2 Θ

          2

L LL

Xd X Y Y Z Z Xd X Xd Y Y

LL

Xd Z Z X Xd Xd X Xd Y Z Z Y X Xd Y Z

X Xd Y Z X Xd Z Y

I EI U U U U U EI U dX EI U U dX

EI U U dX EI U U U U U U U U U

EI U U U U U U

        

        

   

 
      

  
            

 

  
    



 



 
0 0

2 Θ

L L

Xd X XddX EI U dX 
   

 
 

 

   

   

7

0

0 0

Θ

          Θ

L

Xd Xd Xd Y Z Z Y Xd Y Z

L L

Xd Y Z Xd Z Y Xd Xd

I GJ U U U U U U

GJ U U U U dX GJ dX

       

     

  
        

  

   
      

  
 

  

This variation of the strain energy is expressed in terms of the six generalized virtual 

displacements ,  ,  ,  ,   and X Y Z Xd Y ZU U U U U   Q    , all variables in the X coordinate, and 

their boundary values at the fixed and free ends of the beam. 

At the fixed end, i.e., X = 0 

0;  0;  0;  Θ 0;  Θ 0;  Θ 0X Y Z Xd Y ZU U U            (5.17) 

At the free end i.e. X = L 

;  ;  ;   Θ Θ ; Θ Θ ;  Θ ΘX XL Y YL Z ZL Xd XdL Y YL Z ZLU U U U U U                  (5.18) 

Next, the virtual work done by external loads FXL, FYL, FZL, MXL, MYL and MZL may be 

expressed as: 

XL YL ZL XL YL ZLW U U U    Q Q Q     XL YL ZL XL YL ZLF F F M M M  (5.19) 

where ,  ,  ,  ,   and XL YL ZL XL YL ZLU U U   Q Q Q  represent a slightly different set of six 

independent virtual displacements at the beam end in the respective directions of the six external 

loads. These six virtual end-displacements have to be expressed in terms of the previous set of 
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six virtual end-displacements that are used in the variation of the strain energy in Eq.(5.16) so 

that coefficients of the same virtual end-displacements on both sides of Eq. (5.15) may be 

equated. Specifically, this requires expressing virtual rotations ,   and XL YL ZLQ Q Q  as 

functions of ,  ,  ,  ,  XL YL ZL XdL YLU U U U   Q   and ZLU  . Since virtual rotations can be chosen to 

be arbitrarily small, they can be represented as vectors. Therefore, the virtual rotations at the 

beam end may be expressed as variations of the corresponding Euler angles (Fig.2): 
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For the range of end displacements considered, ,  ,  ,  and XL XL YL ZLU U U U    are of the order 

of 10
‒3

, 10
 ‒2

, 10
 ‒1

 and 10
 ‒1

, respectively. Therefore, second order approximations are made to 

simplify Eq.(5.20) to yield:  
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 (5.21) 

Using Eq.(5.21), the left hand side of PVW in Eq. (5.15) can be expressed in terms of 

, , , , ,  and XL YL ZL XdL XL YL ZLU U U U U U   Q      . The only remaining dependent displacement 

variable now is XLU  . Although its dependence on the other virtual displacements is not known 

at this stage, we know that it is mathematically independent of XLU . Therefore, the coefficients 

of δUXL and δUX on both sides of Eq. (5.15) can be respectively compared and equated.  

   2 2,  and   0X Xd X Xd
L

EAU EI EAU EI      XLF   

These two relations imply that 

2 constantX XdEAU EI    XLF  (5.22) 
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This relation may now be used to derive the geometric dependence of XLU   on the other 

displacement variables. Since YY

Y




 and YZ

Z




 are approximately zero due to the absence of 

lateral forces and in-plane distortion, respectively, XY

X




turns out to be zero from the elemental 

equilibrium condition in the Y direction:  

0    0YX YY YZ YX

X Y Z X

      
    

   
 (5.23) 

This result, along with Eq.(5.9), implies that κXd remains constant with X. This, along 

with Eq.(5.22), implies that XU   remains constant with X. This knowledge, along with the 

definition of XU   in Eq.(5.13), yields the following relation:  

X Y Y Z ZU U U U U          (5.24) 

The value of XLU   is now substituted back in Eq.(5.21), which reduces to: 

XL XdL ZL YL

YL ZL YL ZL YL YL XdL

ZL YL ZL XdL

U U

U U U U U

U U

Q Q 

Q   Q

Q  Q

  

       

  

 (5.25) 

This allows one to express all the terms on the right and left hand sides of Eq. (5.15) 

using the same set of six virtual end-displacements. Now, the respective coefficients of all the 

virtual displacements on both sides of this equation are compared and equated.  

Comparing the coefficients of XdLQ  and XdQ , we get 

2 2
1  and    1 0

where  

X Xd X Xd

L

YL ZL

EI EI
GJ U U

GJ GJ

U U

 
      

          
      

  

XdL

XdL XL YL ZL

M

M M M M

 

 
1

2
Θ constant 1Xd Xd Z Y X

EI
U U U

GJ GJ




 
         

 

XdL
M

 (5.26) 

Since YLU   and ZLU   are equal to ZLQ  and YLQ  respectively, XdLM  is simply the 

equivalent torsional moment expressed along the deformed centroidal axis at the free end of the 

beam. Equations (5.22) and (5.26) can now be solved simultaneously for XU 
 
and QXd. Since 
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these two quantities are of the order of 10
‒2

 and 10
‒1

, respectively, second order approximations 

are made in arriving at the following two simplified relations.  

2 2

2 2

1 1

2 2
XL YL ZL

I
U U U

EA A G J
      

2

XdLXL
MF

 (5.27) 

2 2

2
ΘXd Z Y

I
U U

GJ G J A
    XdL XdL XLM M F

 (5.28) 

Equations (5.27) and (5.28) are the governing differential equations associated with 

extension and torsion, respectively. Eq. (5.27) clearly captures beam arc-length conservation, 

which leads geometric coupling between the axial and two bending directions. Additionally, it 

also captures the weak coupling between axial and torsional directions, also known as the trapeze 

effect [59]. This coupling is also evident in the torsion Eq.(5.28), which additionally captures the 

geometric dependence of twisting angle on the two bending displacements.  

Equating the coefficients of the remaining virtual displacements,

,  ,   ,   ,YL Y ZL ZU U U U    ,  and  YL ZLU U   , two more governing differential equations 

associated with bending in the XY and XZ planes are obtained, along with four natural boundary 

conditions at the beam end. 

0;              0iv iv

Y Y Z Z Z YEIU U U EIU U U        XL XdL XL XdLF M F M  (5.29) 

 21     

YL YL ZL

ZL ZL YL

ZL YL

ZL YL ZL YL ZL

U EIU U

U EIU U

EIU U

U EIU U EIU U

    

    

   

         

YL XL XdL

ZL XL XdL

YL XdL

ZL XdL ZL XdL

F F M

F F M

M M

M M M M

 (5.30) 

Eq. (5.29) captures the stiffening effect of axial force on the bending displacements and 

the coupling between the two bending directions due to the axial moment. The final 

approximation in the natural boundary condition, although not necessary, is made to maintain 

consistency with previous second order approximations. The beam governing differential 

equations (5.27)‒(5.29) derived here are in agreement with previously derived non-linear beam 

models [36, 61] that contain more terms and are therefore mathematically more complex. When 

subjected to the same assumptions and second order approximations that have been made here, 

these previous models reduce to the results presented here. However, we have taken a more basic 

approach of deriving the governing equations from first principles, recognizing every assumption 
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and approximation made in the process, and highlighting the physical implications of these 

mathematical steps to avoid accidental elimination of relevant non-linear effects.  

Although capturing the various non-linear coupling effects renders the governing 

equations of extension and torsion to be non-linear, the bending equations are still linear and 

coupled in UY and UZ. This allows Eq.(5.29), along with associated boundary conditions (5.30), 

to be solved using linear algebra and then the results can be substituted in Eq. (5.27) and (5.28) 

to solve for UX and θXd, which provide the two geometric constraint conditions. The results may 

also be substituted in the strain energy term. This procedure is employed in the next section to 

obtain closed-form load-displacement relations, geometric constraint conditions, and strain 

energy expression for the slender, symmetric, spatial beam in terms of it end-displacements and 

end-loads. 

  

5.4 Spatial Beam Constraint Model (SBCM) for a Symmetric Spatial Beam 

At this point in the analysis, all the loads and displacements are normalized per the 

following scheme to make the equations and results compact: 

2 2 2

,    ,    ,    ,   , ,
LL L L L L

EI EI EI EI EI EI

XdLZL YL ZL YL XL
z1 y1 xd1 z1 y1 x1

MM M F F F
m m m f f f   

1 1 1,   ,   ,   ,   ,   ,   Θ ,  ΘY Z YL ZL
y z y z xd Xd xd XdL

U U U UVL X
v u u u u x

EI L L L L L
   

Based on this, the beam governing differential equations (5.27)‒(5.29), can be 

normalized as follows. 

0;             0iv iv

y Y z z Z yu u u u u u        x1 xd1 x1 xd1f m f m  (5.31) 

2 2

1 1 1 2

33 33 44

21 1

2 2
x y zu u u

k k k
     

2

x1 xd1f m
 (5.32) 

  2

44 33 44

2
xd z yu u

k k k
    xd1 xd1 x1m m f

 (5.33) 

2

33 44 1 12

12
where,      ,    ,    y z

Y

L GJ
k k u u

T EI
  xd1 x1 y1 z1m m m m   
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In spite of the non-linearity associated with 
xd1m , the two coupled bending equations 

(5.31) are linear with respect to the bending displacements uy and uz, and therefore can be readily 

solved for end loads and displacements using standard linear algebra and ordinary differential 

equation techniques [29].  

Upon double differentiation, Eq.(5.31) may be expressed as a first order ordinary 

differential matrix equation:  

0 0

1 0 0 0

0 0

0 0 1 0

y y

y y

z z

z z

u u

u u

u u

u u

     
            

     
         

x1 x1

x1 x1

f m

m f
 (5.34) 

The four scalar equations represented above can be solved by first decoupling them. This 

may be done via the eigen-values and eigen-vectors of the square matrix in the above equation.  

2 2

E-values:    ,    ,    ,    

1
where,   4 2 2 4

2


     

  

x1 x1
1 2 3 4

x1 x1 x1 x1 x1

f f
λ λ λ λ λ λ

λ

λ f m m m f

  

 

2

E-vector matrix:   

1 1 1 1

1
where,        4

2

Q

 
    

 
      
 
 
 
 

  
 

x1 x1

x1 x1

1 2 3 4

1 2 3 4

x1 x1 x1

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

r m m f

 

The eigen-values λ1, λ2, λ3 and λ4 are distinct for non-zero fx1 values implying that the 

equations can be decoupled for fx1 non-zero [15]
†
. The eigen-vectors are constitute the columns 

of the matrix [Q]. Using these eigen-values and eigen-vectors, the solution to Eq.(5.34) is simply 

given by:  

                                                 
† The case when fx1 is zero is trivial and is solved separately; however, details are not presented here since the final 

results are found to be consistent with the general solution for non-zero fx1. 
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 

1 1

2 2

3 3

4 4

1 1 1 1

x x
y

x x
y

x x
z

x x
z

u c e c e

u c e c e
Q

u c e c e
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                            
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1 1

2 2

3 3

4 4

x1 x1

λ λ

λ λ
x1 x1

λ λ
1 2 3 4

λ λ
1 2 3 4

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

 (5.35) 

Here c1, c2, c3 and c4 are the constants of integration. From these four scalar equation, the 

general solution for the normalized transverse displacements uy and uz are given by:  

1 2 3 4 5 63 3 3 3

1 2 3 4

31 2 4
7 82 2 2 2

1 2 3 4

xx x x

y

xx x x

z

u c e c e c e c e c x c

c ec e c e c e
u c x c

      

     

31 2 4

31 2 4

λλ λ λx1 x1

λλ λ λ

f fr r

λ λ λ r λ r

λ λ λ λ

 (5.36) 

The constants are solved in two steps. First the constants c5, c6, c7 and c8 are expressed in 

terms of c1, c2, c3 and c4 using the geometric boundary conditions arising from the spatial beam 

being rigidly fixed at one end:  

       0 0 0 0 0     y y z zu u u u     

2 2 2 2

1 2 3 4

5 1

3 3 3 3

1 2 3 46 2

7 3

1 2 3 48 4

2 2 2 2

1 2 3 4

1 1 1 1

1 1 1 1

c c

c c

c c

c c
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 
    

 

x1 x1

x1 x1

f fr r

λ λ rλ rλ

f fr r

λ λ rλ rλ

λ λ λ λ

λ λ λ λ

 (5.37) 

The remaining four constants are solved using the free-end displacement boundary 

conditions: 

       1 1 1 11 ,    1 ,    1 ,    1     y y y z z z z yu u u u u u          

    1 2 3 4 1 1 1 1

TT

y z z yc c c c C u u  , where 
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 
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We next make use of the natural boundary conditions at the free end of the beam. Natural 

boundary conditions involve relations between loads and displacements that occur naturally 

because of the beam governing equation. The natural boundary conditions at x =1 are 

   

     
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 (5.38) 

The general solution for uy and uz, given by (5.36) is plugged into the above natural 

boundary conditions to relate the transverse loads fy1, fz1, my1 and mz1 to the transverse 

displacements uy1, uz1, θy1 and θz1 by a stiffness matrix:  
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 (5.39) 
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 
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The above relations show that the transverse end-loads and transverse end-displacements 

are linearly related by a stiffness matrix. This is expected because the bending direction beam 

governing equations (5.31) were also linear in these loads and displacements. However, the 

transverse stiffness matrix does include the axial force fx1 and twisting moment mx1. The 

individual stiffness terms, when stated in an explicit form, turn out to be very complicated 

transcendental expressions in fx1 and mx1, making it impossible to gauge the influence of these 

loads on the transverse stiffness. Therefore, to gain better insight, we carry out the Taylor series 

expansion of these transcendental expressions in terms of fx1 and mx1, as follows:  

 
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 (5.40) 
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In the stiffness matrix above, the subscripts 1 and 2 are related to the two end-

displacements, uy1 and θz1, in the XY bending plane. Subscripts 5 and 6 are related to the two 
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end-displacements, uz1 and θy1, in the XZ bending plane. Subscripts 3 and 4 are reserved for the 

X direction displacements, ux1 and θx1, respectively.  

The above series expansions the transverse direction stiffness terms indeed shed more 

light on the effects of the axial load and twisting moment. First , it may be verified that in the 

absence of fx1 and mx1, the stiffness matrix coefficients relating uy1 and θz1 to loads fz1 and my1 

and those relating uz1 and θy1 to loads fy1 and mz1 become zero, showing that the two bending 

directions are uncoupled, and the resulting stiffness matrix is same as one obtained from a purely 

linear analysis [6, 12]. Next we find that if mx1 is set to zero the two bending directions are still 

decoupled. Also, in each bending direction, the influence of  the axial fx1 on transverse stiffness 

is identical to that seen in planar beams [5, 6], i.e. there is a prominent load-stiffening component 

associated with the first power of fx1.  

Thus, it is clear that any coupling between the two bending directions arises solely from 

the twisting moment mx1. The displacement range of interest (uy, uz and θXd ~ 0.1) implies that 

the normalized twisting moment mx1 is also of the order of 0.1 (based on nominal linear twisting 

stiffness). In comparison, the normalized axial force fx1 can be of the order of 1 or greater since it 

is along a DoC (or load bearing) direction.  

Given this magnitude of mx1, it may be seen that its contribution in the k11, k12, k22, k55, 

k56, and k66 terms is less than 0.5%, and therefore mx1 terms may be dropped altogether in these 

cases. Similarly, the second power and higher terms in mx1 may be dropped in k16 and k25 terms 

as well. However, the first power of mx1 that shows up only in the k26, k62, k25, and k52 terms 

cannot be ignored, being the sole or most important contributor in each of these stiffness terms. 

In fact, it is these latter stiffness terms that give rise to cross-axis coupling between the two 

bending directions. Even though the coupling is weak, it captures a behavior that is not identified 

in a purely linear analysis.  

Next, it may be seen that given the larger magnitude of fx1, its contribution to the 

transverse stiffness is stronger. In the stiffness terms k11, k12, k22, k55, k56, and k66, the first power 

in fx1 represents the load-stiffening effect, identical to that seen in planar beams discussed in 

Chapter 2 and 3. The second and higher power fx1 terms have a negligible contribution over the 

load and displacement range of interest, and can be dropped. However, as shown via energy 

arguments, the second power term should be retained to maintain consistency with the X 

direction constraint relation. Based on the above rationale for truncating higher order terms in the 
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series expansions of expression (5.40), the final simplified form of transverse direction stiffness 

terms are summarized below: 
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This engineering approximation (truncation error) of the transcendental terms in the 

stiffness matrix produces less that 1% error, while making the transverse direction load-

displacement relation more insightful and simpler to work with for a designer.  

To express this result in a form that is mathematically concise and provides insight into 

the geometric effects and non-linearities that are relevant to constraint characterization, we carry 

out a Taylor series expansion of each stiffness element in terms of the axial and torsional loads, 

fx1 and mxd1 and drop third and higher power terms.   
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Next, the uy(x) and uz(x) solutions to the bending equations (5.31) are substituted into 

Eqs. (5.32) and (5.33), which upon integration provide the solution for the axial extension and 

twisting, respectively. Once again, these solutions contain 4 x 4 matrices, each non-zero element 

of which

 

is a transcendental function of the end loads fx1 and mxd1. A Taylor series expansion of 

each element, followed by truncation of higher order terms produces the following two constraint 

relations, expressed in terms of the end displacements and loads of the beam.  
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The series truncations produce less than 1% loss of accuracy in each respective relation 

over an fx1 range of ±5 and an mxd1 range of ±0.1, while providing considerable mathematical 

simplicity and physical insight. The former represents a typical DoC direction bearing force, 

while the latter represents the normalized moment associated with a rotation of 0.1 along the Qx 

DoF. The [H1] matrix in relation (5.42) represents the linear elastic stiffness associated with the 

four transverse bending displacements. The [H2] matrix captures load stiffening in these 

directions in the presence of axial load fx1 (Eq.(5.42)) and a corresponding purely kinematic 
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contribution of bending displacements to the axial displacement (Eq.(5.43)). The [H3] and [H7] 

matrices captures load stiffening in the bending directions in the presence of torsional moment 

mxd1 (Eq.(5.42)) and reveals a coupling between the two bending planes in the presence of this 

moment. Corresponding to this, the [H3] matrix also captures the purely kinematic contribution 

of bending displacements to the twisting angle (Eq.(5.44)). Although the [H4], [H5], and [H6] 

matrices make a negligible contribution in Eq.(5.42), they capture the important elastokinematic 

effects in Eqs. (5.43) and (5.44). In the axial direction, [H4] provides an additional compliance 

with respect to axial load fx1 and [H5] provides an additional compliance with respect to axial 

moment mxd1, in the presence of transverse bending displacements. Similarly, in the twisting 

direction, [H5] provides an additional compliance with respect to axial load fx1 and [H6] provides 

an additional compliance with respect to axial moment mxd1, in the presence of transverse 

bending displacements. These relations also highlight the unique status of the twisting rotation 

dx1. Based on physical intuition, this twisting direction appears to be a DoF, like the transverse 

displacements uy1, y1, uy1, and z1, because of its low stiffness. However, mathematically, it 

behaves more like the ux1 DoC and is dictated by the constraint relation (5.44), which is 

analogous to constraint relation (5.43). The [H1] through [H7] matrices are dimensionless and 

valid for any beam size and shape, as long as the beam is uniform, symmetric, and slender.  

Therefore, elements of these matrices are subsequently referred to as the beam characteristic 

coefficients for the spatial beam flexure. 

Next, the strain energy expression (5.13) may be further simplified using Eqs. (5.32) and 

(5.33), and can be stated as follows after normalization: 
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The uy(x) and uz(x) solutions to the bending equations (5.31) obtained previously can be 

substituted  above to produce the total strain energy in terms of end-displacements uy1, uz1, θy1, 

and θz1 and loads mxd1 and fx1 as follows:  
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This strain energy expression allows a designer to treat the spatial beam as a single 

lumped entity, with all the relevant non-linearities captured, when analyzing a flexure 

mechanism consisting of multiple spatial beam flexures using energy methods. Overall, the 

transverse load-displacement relations (5.42), the geometric constraint relations in axial 

extension (5.43) and torsion (5.44), and the strain energy expression (5.46), collectively 

represent a closed-form, parametric, non-linear  model that captures constraint characteristics of 

a slender, symmetric, spatial beam; this model is subsequently referred to as the spatial-beam 

constraint model (SBCM). 

It is worthwhile to note the reoccurrence of matrices [H1] to [H7] in the force 

displacement relations (5.42)-(5.44) and strain energy expression in Eq.(5.46), which points to a 

connection between various terms in all these equations. Although, in the foregoing discussion, 

several physical effects were discussed to explain this connection, there isn’t any mathematical 

proof yet to show that these connections are not coincidental for this particular cross-section but 

is true in a more general case. Such a proof is not obvious because matrices [H1] to [H7] are 

coefficients of the Taylor series of the actual beam solution and doesn’t convey the full solution. 

This proof will be given in Chapter 6, which will not only cover the relation between the first 

few terms of the Taylor series expansion of the beam solution but all terms in the expansion. 

5.5 Validation of SBCM 

The results of the previous section are validated via non-linear FEA using ANSYS™. For 

these simulations, the beam dimensions were taken to be L = 0.1 m and TY =TZ = 0.0025 m, and 

Young’s modulus and Poisson’s ratio were assumed to be 210 GPa and 0.3, respectively. For 

each beam, 400 BEAM188 elements were used, with the restrained warping, torsional shear, 

and large deformation options turned on. To verify individual elements of [H1], three of the four 

displacements among uy1, uz1, θy1 and θz1 are set to zero, while the fourth displacement is varied 

from ‒0.1 to 0.1. When axial and torsional loads fx1 and mxd1 are set to zero, the reaction loads 

fy1, mz1,  fz1 and my1 provide the elements of [H1]. In Figure 5.7(a), each non-zero (i, j) element of 

[H1] is plotted with respect to the respective transverse displacement that was varied, while 

keeping others zero, for its determination. The [H2] matrix is obtained by measuring the ux1 

displacement for different values of uy1, uz1, θy1 and θz1 while setting mxd1 and fx1 to zero, as per 

Eq.(5.43). Similarly, the [H3] matrix is obtained by measuring the xd1 rotation for different 
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values of uy1, uz1, θy1 and θz1 while setting mxd1 and fx1 to zero, as per Eq.(5.44). Finally, as per 

Eq. (5.42), the [H7] matrix is verified by setting mxd1 and θy1 to non-zero values and uy1, uz1, θy1 

and fx1 to zero, and measuring mz1. It should be noted that this will also capture the effect of [H1], 

which is separated out to obtain [H7]. Non-zero elements of the [H2], [H3], and [H7] matrices are 

plotted in Figure 5.7(b). These results show that the elastic bending stiffness captured by the [H1] 

matrix, and load-stiffening and kinematic effects captured by the [H2], [H3], and [H7] in the BCM 

are accurate to within 1% with respect to FEA. 

    

 

Figure 5.7: (a) Elastic Matrix [H1], (b) Kinematic Matrices [H2], [H3], and [H7] 
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Figure 5.8: (a) Elastokinematic Matrix [H4], (b) Elastokinematic Matrix [H5]   

 

Matrices [H4] and [H5] capture the non-linear elastokinematic effects in the X direction 

and are obtained by measuring the ux1 for different values of uy1, uz1, θy1 and θz1 while setting 

mxd1 = 0 or fx1 = 0, one at a time. This calculation requires subtraction of the kinematic 

displacement component associated with [H2], which has already been validated above. The non-

zero elements of [H4] and [H5] are plotted in Figure 5.8 (a) and (b), respectively. Since the 

elastokinematic effects correspond to higher powers of fx1 and mxd1 in the load-displacement 

relations, their effect is relatively weak. Nevertheless, the [H4] matrix, which contributes 

additional compliance in the X direction in the presence of transverse bending displacement, 

matches FEA results with less than 6% discrepancy. As seen in Fig.7, this discrepancy is much 

greater in the case of [H5] – while the orders of magnitude are comparable between the BCM and 

FEA, the trends no longer agree. At this point, the second order assumption made throughout the 
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linear compliance (1/k44); the small additional compliance due to these elastokinematic effects 

does not make much difference. 

 

5.5 Discussion 

While some spatial beam models exist, they are either too trivial to capture the non-linear 

effects that influence the constraint characteristics of spatial beams, or mathematically too 

complex to serve the goals of constraint-based flexure design, analysis, and optimization. In this 

chapter, we employed an existing beam mechanics formulation for a slender, spatial beam, but 

start from first principles to carefully make specific assumptions and approximations that are 

valid within an intermediate range of bending displacements and twisting angle (10% of beam 

length) and corresponding loads. This not only allows reduction of the mathematical complexity 

to a manageable level but also captures all the relevant non-linear effects in a compact, closed-

form, parametric manner.  The final model is based on the Euler’s deformation assumption along 

with small out-of-plane cross-sectional warping, Green’s strain measure, second order 

approximation of strain terms, partial linearization of curvature expressions, and truncation of 

higher power terms in axial and torsional loads.  

This results in a new spatial-beam constraint model that comprises load-displacement 

relations in bending directions, geometric constraint relations in axial and torsional directions, 

and a strain energy expression – all in terms of the six end-loads and six end-displacements.  

These relations capture all the geometric nonlinearities that affect the constraint characteristics of 

the beam:  load-stiffening in the bending directions in the presence of an axial load, coupling 

between the bending directions in the presence of a torsional moment, kinematic and 

elastokinematic components in the axial displacement and twisting angle due to transverse 

bending displacements, and the trapeze effect coupling between axial and torsional directions. 

These are all validated to be accurate within a few percent using non-linear FEA over the above-

mentioned displacement and load range of interest, which is justified by typical material failure 

criteria in flexure mechanisms. Since no assumption, other than symmetry, is made for the beam 

cross-section, this model is applicable to beams with circular, square and other regular polygon 

shaped cross-sections. Furthermore, the model also reveals an interesting mathematical similarity 
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between the twisting angle and axial displacement, even though the former is generally 

recognized as a DoF and the latter as DoC. 

With SBCM for symmetric spatial beam, a way to analyze any flexure mechanism 

comprised of symmetric spatial beam is now created. This model overcomes the restrictions of 

previous models for spatial beams of a very small displacement range, specific loading and 

displacement considerations or all of the above. Since SBCM capture the kinematic behavior of 

the spatial beam accurately it can be used to study the kinematics of a problem and parametric 

dependence on spacing and orientation of the beam. Furthermore, elastic properties of flexure 

mechanisms that are often challenging to find in a parametric relation due to geometric 

nonlinearities are easily available from SBCM via stiffness estimations. Finally the simplicity of 

SBCM should be noted. Not only does it separates out the various physical effects of 

deformation but also represents it in a manageable manner. It is estimated that the extensive 

knowledge of matrix algebra can be used, when integrating several SBCMs for a flexure 

mechanism with multiple spatial beam flexures. 
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Chapter 6   

 

Energy Model for SBCM for a Spatial Beam Flexure With Symmetric 

Cross-section 

 

6.1 Introduction 

Nonlinear closed formed analysis of flexure mechanism with multiple (n) spatial beam 

flexure elements using free body diagrams is non-trivial because it requires solving 6n+6 

variables (each leg contributes 6 internal load variables while the motion stage contributes 6 

displacement variables) from 12n+6 nonlinear simultaneous equations (each leg contributes 6 

load-displacement relations and 6 geometric compatibility relations, and the motion contributes 6 

load-equilibrium relations). For example, consider the 3DoF table flexure, shown in Figure 6.1 

with n-legs, that provides relatively high stiffness against out-of-plane translational 

displacements along X and out-of-plane rotational displacements about Y and Z while allowing 

in-plane translation motions along Y and Z and in-plane rotation about X. An analytical model of 

3-legged table with vertical spatial beam flexures was derived using free body diagrams by Hao 

[60]. The analysis is highly complex because it involves solving of 24 variables. It is estimated 

that a similar analysis of a 4-legged table or n-legged table, by the same procedure will be very 

difficult. However, if an energy based approach such as PVW is used, the number of unknown 

variables reduces to 6 irrespectively of the number of legs of the table. This is because PVW 

requires the strain energy of the deformed table which may be expressed entirely in terms of 

displacement of the table and the spacing of the legs, thus eliminating the internal load variables. 

Furthermore, the derivation of the load displacement relations from the strain energy of the table 

is linear operation, making the complexity of the analysis exactly same for any n-legged table. 
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Figure 6.1: A 3-DoF Spatial Flexure Mechanism 

Since the legs of the table may be tilted by design or due to manufacturing defects, we 

first derive the strain energy of symmetrical spatial beam with a small but otherwise arbitrary tilt 

in section 6.2. It should be noted that although a tilted spatial beam may be analyzed as a straight 

spatial beam by using an aligned local co-ordinate frame instead of the global co-ordinate frame, 

such a formulation leads to mathematical complexity when the local co-ordinate frame needs to 

be changed back to the global co-ordinate frame. 

In order to provide additional designing flexibility, legs with spatial beam flexures with 

varying cross-section is also considered. By using the fundamental relations between the beam 

characteristic coefficients, shown in section 6.3, one may easily derive the strain energy of a non-

prismatic straight spatial beam with a symmetric cross-section. This feature will allow the use of 

some typical beam shapes which has special characteristics. One example of such a beam is one 

that has a rigid section in the middle to change the distributed compliance of the beam to be 

lumped at the two corners [30]. Using the analysis of a tilted spatial beam and a non-prismatic 

spatial beam, a generalized n-legged table is analyzed in section 6.4. For verification, the 

analyses predictions for a 3-legged table with vertical legs are compared against the predictions 

of FEA. Finally, section 6.5 concludes this chapter with a brief discussion and future work. 

6.2 Strain Energy Of A Bisymmetric Spatial Beam With Arbitrary Tilt 

A slender beam with equal thickness along the two narrow dimensions and whose 

centroidal axis is not perfectly parallel with the X-axis of a reference co-ordinate frame X-Y-Z, 
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due to manufacturing/assembly defects or intentional design, is shown in Figure 6.2. The 

orientation of the undeformed beam may be described by rotating a beam, that is initially aligned 

with X, Y and Z, through a rotation of β about the Y axis and γ about the rotated Z axis. It is 

assumed that if the beam also has an initial twist α, the X-Y-Z co-ordinate axes is rotated by the 

same angle to align Y and Z with the principle axes of symmetry of the beam cross-section. After 

deformation, the arbitrary point P on the centroidal axis, translates UX, UY and UZ along the X, Y 

and Z axes respectively. To describe the orientation of the tangent of the centroidal axis at P, 

three Euler rotations, φ about the rotated Y axis followed by ψ about the rotated Z axis followed 

by ΘXd about the rotated X axis, is chosen. These three rotations occur after the rotation due to β 

and γ have taken place. These sequence of five rotations can also be approximately represented 

by three Euler rotations, φ-β about the rotated Y axis followed by ψ+γ about the rotated Z axis 

followed by ΘXd about the rotated X axis as shown in Figure 6.2. 
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Figure 6.2: Tilted Spatial Beam deformation 

 

The deformation any cross-section perpendicular to the undeformed centroidal axis is 

determined to be a rigid body translation and rotation followed by an out of plane warping. 

Using this deformation field, a new co-ordinate frame is defined in which Xd axis is defined 

along the tangent to the deformed centroidal axis while Yd and Zd are the axes of principle 

moment of area of the cross-section prior to warping. This deformation assumption is based on 

(i) Euler Bernoulli assumption which ignored shear effects due to shear forces FYL and FZL in 

comparison to bending for slender beams with thickness/length ratio less than 1/20, and (ii) St. 
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Venant solution of slender prismatic beam that shows in-plane distortion to be absent. A more 

detailed analysis of the assumptions can be found the analysis of non-tilted uniform bisymmetric 

spatial beam in Chapter 5. Using this beam deformation, the strain at any general point before 

deformation with coordinate position (X, Y, Z) may be defined using Green’s strain measure. 

Here 0R  and dR are the position vectors of this point before and after deformation. 
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 (6.1) 

Using Eq.(6.1), the final expression for non-linear strain, approximated to the second 

order, may be derived to be:  
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d
Y Y Y

dZ


g     (6.3) 

                    where XZ Xd W W

d
Z Z Z

dY


g    (6.4) 

Points P and Q, the co-ordinates of which are (X, γX, βX) and (X+dX, γX+γdX, βX+βdX) 

respectively lie on the undeformed centroidal axis while points P’ and Q’, the coordinates of 

which are (X+UX, γX+UY, βX+UZ) and (X+dX+UX+dUX, γX+γdX+UY+dUY, βX+βdX+UZ+dUZ) 

respectively are the displaced position of P and Q before deformation due to out-of-plane 

warping. These co-ordinates maybe used to calculate the sides of cube shown in Figure 6.2 of 

which dRn is the diagonal. The rate of twist angle, κXd, and bending curvatures κYd and κZd can be 

expressed to the second order approximation, as follows: 

     

   

;      sin cos ;     

cos sin

Xd Xd Z Y Yd Xd Y Xd Z

Zd Xd Y Xd Z

U U U U

U U

 Q g  Q Q

 Q Q

        

  
 (6.5) 

The out-of-plane warping along Xd is estimated to be Xd  , where λ is a warping function 

dependent on only the local cross-sectional coordinates Yd and Zd and independent of coordinate 

X. 

The strain energy for the initially tilted spatial beam flexure is expressed below by 

assuming linear material properties. It should be noted that for a slender beam stresses along Y 
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and Z axes may be approximated to be zero and hence strains εYY and εZZ do not appear in the 

calculation of the strain energy. 

 2 2 2

2 2
xx xy xz

vol vol

E G
V dAdX dAdX g g     (6.6) 

This strain energy expression may be expanded using the strain expressions from 

Eqs.(6.2), (6.3) and (6.4) as follows: 
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Several simplifications on the seven individual integrals, denoted by I1 through I7, can be 

done to simplify the strain energy, V. Of these, the integrals I2 and I3 are identically zero by the 

definition of the centroidal axis. For a slender beam with total twisting angle ΘXd  limited to 

±0.1, it may be shown that integral I6 is at least four orders of magnitude smaller than integral I1, 

and is therefore dropped. Next, the strain energy expression is simplified by recognizing that the 

beam curvatures, given in Eq.(6.5), are only dependent on the axial coordinate X. Thus, each 

volume integral can be decomposed into two integrals: a double integral over the cross-section 

and a single integral over X. This leads to: 

     

      
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 (6.7) 
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Once the total strain energy for the spatial beam has been obtained, the Principle of 

Virtual Work (PVW) may be applied to generate the beam differential equations and boundary 

conditions.  

   ,  ,  ,  ,   and X Y Z Xd Y ZU U U U UQ    may be chosen as the six generalized coordinates 

which, along with their boundary conditions, completely define the deformation and strain 

energy of the beam. 

1 4 5 7V I I I I        (6.8) 

The variation of the strain energy is expressed in terms of the six generalized virtual 

displacements ,  ,  ,  ,   and X Y Z Xd Y ZU U U U U   Q    , all variables in the X coordinate, and their 

boundary values at the fixed and free ends of the beam. 

At the fixed end, i.e., X = 0 

0;  0;  0;  Θ 0;  0;  0X Y Z Xd Z YU U U U U             (6.9) 

At the free end i.e. X = L 

;  ;  ;   Θ Θ ; ;  X XL Y YL Z ZL Xd XdL Z ZL Y YLU U U U U U U U U U                     (6.10) 

Next, the virtual work done by external loads FXL, FYL, FZL, MXL, MYL and MZL may be 

expressed as: 

XL YL ZL XL YL ZLW U U U    Q Q Q     XL YL ZL XL YL ZLF F F M M M  (6.11) 

where ,  ,  ,  ,   and XL YL ZL XL YL ZLU U U   Q Q Q  represent a slightly different set of six 

independent virtual displacements at the beam end in the respective directions of the six external 

loads. These six virtual end-displacements have to be expressed in terms of the previous set of 

six virtual end-displacements that are used in the variation of the strain energy in Eq.(6.8) so that 

coefficients of the same virtual end-displacements on both sides of PVW  may be equated. 

Specifically, this requires expressing virtual rotations ,   and XL YL ZLQ Q Q  as functions of 

,  ,  ,  ,  XL YL ZL XdL YLU U U U   Q   and ZLU  . Since virtual rotations can be chosen to be 

arbitrarily small, they can be represented as vectors. Therefore, the virtual rotations at the beam 

end may be expressed as variations of the corresponding Euler angles (Figure 6.2): 



166 

 

    ˆ ˆˆ ˆ ˆ ˆ     cos sin

1 ˆˆ ˆ                                           
1 1 1

XL YL ZL
L L

X Y Z
Xd

X X X L

i j k j k i

U U U
i j k

U U U
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       

     
   
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  (6.12) 
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For the range of end displacements considered, ,  ,  ,  and XL XL YL ZLU U U U    are of the order 

of 10
‒3

, 10
 ‒2

, 10
 ‒1

 and 10
 ‒1

, respectively. Therefore, second order approximations are made to 

simplify Eq.(6.12) to yield:  

       

   

      
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YL ZL ZL XL Y XdL
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Q Q    g   

Q    g Q

Q  g     Q

             

        

           

 (6.13) 

Using Eq.(6.13), the δW can be expressed in terms of 

, , , , ,  and XL YL ZL XdL XL YL ZLU U U U U U   Q      . The only remaining dependent displacement 

variable now is XLU  . Although its dependence on the other virtual displacements is not known 

at this stage, we know that it is mathematically independent of XLU . Therefore, the coefficients 

of δUXL and δUX on both sides of PVW can be respectively compared and equated.  

   2 2,  and   0X Xd X Xd
L

EAU EI EAU EI      XLF   

These two relations imply that 

2 constantX XdEAU EI    XLF  (6.14) 

This relation may now be used to derive the geometric dependence of XLU   on the other 

displacement variables. Since YY

Y




 and YZ

Z




 are approximately zero due to the absence of 

lateral forces and in-plane distortion, respectively, XY

X




turns out to be zero from the elemental 

equilibrium condition in the Y direction:  
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 0    0    0XdYX YY YZ YX
WG Y Y

X Y Z X X

       
       
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 (6.15) 

Since κXd remains constant with X it implies from Eq.(6.14) that 
XU   also remains 

constant with X. This knowledge, along with the definition of 
XU   in Eq., yields the following 

relation:  

   X Y Y Z ZU U U U U g             (6.16) 

The value of XLU   is now substituted back in Eq., which reduces to: 
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          

   

 (6.17) 

The geometric relations in Eq.(6.17) allows one to express all the terms on the right and 

left hand sides of PVW using the same set of six virtual end-displacements. Now, the respective 

coefficients of all the virtual displacements on both sides of this equation are compared and 

equated. Equating the coefficients of the remaining virtual displacements,

,  ,   ,   ,YL Y ZL ZU U U U    ,  ,   and YL ZL Xd XdLU U  Q Q  , three more governing differential 

equations associated with bending in the XY and XZ planes  and torsion are obtained, along with 

four natural boundary conditions at the beam end. The final set of beam governing equations and 

natural boundary conditions are given in Eq.(6.18) and Eq.(6.19) respectively.  
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 (6.18) 
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 (6.19) 

   where  YL ZLU Ug     XdL XL YL ZLM M M M  
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Since YLU g   and ZLU    are approximately equal to rotations about Z and Y axes 

respectively, 
XdLM  is simply the equivalent torsional moment expressed along the deformed 

centroidal axis at the free end of the beam. The geometric boundary conditions are 

       0 0  ;   0 0  ;   0 0  ;   0 0Y Z Y ZU U U U      

At this point in the analysis, all the loads and displacements are normalized per the 

following scheme to make the equations and results compact: 

2 2 2

,    ,    ,    ,   , ,
LL L L L L

EI EI EI EI EI EI

XdLZL YL ZL YL XL
z1 y1 xd1 z1 y1 x1
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m m m f f f   

1 1 1,   ,   ,   ,   ,   ,   Θ ,  ΘY Z YL ZL
y z y z xd Xd xd XdL

U U U UVL X
v u u u u x

EI L L L L L
   

Based on the normalization scheme, the beam governing differential equations (6.18) and 

natural and geometric boundary conditions(6.19), can be normalized as follows. 
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 (6.20) 
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The strain energy expression  may be further simplified using Eqs.(6.20) and can be 

stated compactly as follows after normalization: 

 
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21
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y zv u u dx

k k k k
     

2 2 2

xd1 x1 xd1 x1m f m f
 (6.22) 

Although capturing the various non-linear coupling effects renders the governing 

equations of extension and torsion non-linear, the bending equations are still linear and albeit 

coupled in UY and UZ. This allows the first two equations of Eq. (6.20), along with associated 
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boundary conditions , to be solved using linear algebra techniques and then the results can be 

substituted in last two equations of Eq. (6.20)  to solve for UX and θXd, which provide the two 

geometric constraint conditions. The results may also be substituted in the strain energy term.  

To express this result in a form that is mathematically concise and provides insight into 

the geometric effects and non-linearities that are relevant to constraint characterization, we carry 

out a Taylor series expansion of the solution of fy1, fz1, my1, and mz1 in terms of the axial and 

torsional loads, fx1 and mxd1 and drop third and higher power terms. Since the co-efficients of fx1 

and mxd1 diminish quickly with increasing powers, the truncation results in less 1% error in the 

displacement and load range of interest. Similarly Taylor series expansion of the solutions of ux1 

and θxd1 in term of fx1 and mxd1 are carried out and second and higher power terms are dropped. 

Error due to truncation in this case is less than 5% for fx1 and mxd1 less than 5.  
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All nonlinear effects, that are significant when the translational and angular displacement 

range of the beam end is limited to 0.1L and 0.1 radians, respectively, are captured in Eqs. (6.23)

-(6.26). Equation(6.23), known as transverse load-displacement relation, expresses bending loads 

 bl as a product of bending stiffness values and bending displacement [23]. It should be noted 

that 
1 1 and z yu u  may be approximated as the rotational displacements θy1 and θz1.  
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Figure 6.3:(i) Normalized force fy1 vs normalized displacement uy1 for varying tilt angle β and γ (ii) 

Normalized (mz1-4θz1)/mxd1 vs normalized moment mx1 at θy1=0 and θz1=0.02 radians for varying tilt angle β 

(iii) Normalized displacement ux1 vs normalized displacement uy1 for varying β and γ (iv) Rotational 

displacement θxd1 vs Rotational displacement θy1 for varying γ 

 

The first and second powers of fx1 and mxd1 in the bending stiffness values parametrically 

capture the variation in bending stiffnesses due to axial loads. In particular, the stiffness terms 

with single power of fx1 and mxd1 are a result of the geometric arc length conservation and are 

call load stiffening terms. The terms quadratic in fx1 and mxd1 are relatively less significant than 

the load stiffening terms but are retained to maintain truncation consistency with Eqs.(6.24) 
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and(6.25). Due to the tilt the load displacement curves shift while maintaining the stiffness 

values. This curve shift is more significant for the transverse force (fy1 or fz1) vs transverse 

displacement (uy1 or uz1) as shown in Figure 6.3(i). For the transverse moment vs. transverse 

rotation curve, the shifts due to tilt angles β and γ (i.e. –mxd1θy1 in my1 vs. θy1, and –mxd1θz1 in mz1 

vs. θz1) are much smaller due to the limited range of θy1 and θz1. However, this shift becomes 

crucial for an accurate determination of bending moments, my1 and mz1, at small bending angles. 

For a small angle, θz1 = 0.02 rad, Figure 6.3(ii) plots this curve shift divided by mxd1 for varying 

mx1. Noticeable fluctuations are seen in the FEA validation results, indicating that this term is of 

the order of other second approximations made during model derivation.  

Equation (6.24), which quantifies the axial displacement ux1, is known as a constraint 

equation because of the inherit high stiffness in the axial stretching direction with respect to the 

bending direction. The first two terms in Eq. (6.24)  represent the elastic stretching of the beam 

due to fx1 and mxd1. The stretching due to mxd1 is the well-known trapeze effect which occurs due 

to the addition axial stresses developed during torsion by unequal contraction of fibers parallel to 

but at different distance from the centroidal axis of the beam. The third term in Eq. (6.24), that is 

dependent only on transverse displacements due to bending, [23], represents the shortening of 

the projection of the beam on the X-axis due to the geometric arc length conservation. The fourth 

and the fifth terms represent additional kinematic relation between the bending displacements 

and axial displacement ux1. This kinematic behavior is shown in Figure 6.3(iii). Essentially due 

to the tilt, the parabola ux1 vs uy1 gets shift vertically as well as horizontally. The fourth term in 

Eq. (6.24), which is dependent on both displacements [23] and loads, fx1 and mxd1, represents a 

variation in the amount of shortening of the projection of the beam on the X-axis as fx1 and mxd1 

change the shape of a bent beam by producing additional bending moments. From a different 

point of view, this term quantifies the softening of the stiffness in X direction of a bent beam 

with respect to a straight beam. Since this term is non-zero only in the presence of both loads and 

displacements, it is called an elastokinematic effect. It should be noted that tilt angles β and γ 

have no significant impact on the axial stiffness. 

Equation (6.25) parametrically quantifies the dependence of the twist θxd1 on the axial  

and torsional loads fx1 and mxd1 and transverse bending displacements [23]. Similar to Eq.(6.24), 

elastic, kinematic/geometric and elastokinematic terms are present. The only difference is that 

the trapeze effect can only vary stiffness rather than produce an independent twist displacement 
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as in the case of Eq. (6.24). Tilt angle γ give rise to an additional kinematic dependence of twist 

θxd1 on bending displacements [23]. This relation is verified using FEA in Figure 6.3(iv). It is not 

surprising that tilt angle β does not affect twist θxd1, because the definition of the Euler angles 

itself introduces non-symmetry in the problem. Because of the mathematical similarity with 

Eq.(6.24), Eq. (6.25) will be also called a constraint equation in spite of having a relatively low 

stiffness.  

Equation (6.26) represents the total strain energy stored in the beam due to end 

displacements [23], ux1 and θxd1. The first third terms really functions of displacement, they are 

written in terms of axial loads, fx1 and mxd1, for the convenience of representation. Terms with 

single powers of fx1 and mxd1 in Eq.(6.23) -(6.25) are all kinematic effect and hence have no 

contribution to the strain energy. However, the strain energy due to elastokinematic terms are 

captured in the terms with quadratic powers fx1 and mxd1. It should be noted that there is no term 

of α, β and γ in the strain energy because they represent the undeformed state, rather than any 

deformation.  

6.3 Fundamental Relations Between Beam Characteristic Coefficients  

We proceed to show that the format of Eqs. (5.27)- (5.30) accommodates any general 

beam shape and not just a uniform-thickness beam. The beam deformation, end loading, and end 

displacement representations for the variable cross-section beam remain the same as in Figure 

5.6. The modeling assumptions are also the same as earlier, except that the beam thickness in Y 

and Z direction is now a function of X: TY = TZ = T(X) = T0ξ(X), where T0 is the nominal beam 

thickness at the beam root and ξ(X) represents the beam shape variation. Thus, the second 

moment of area becomes IYY(X) = IZZ(X) = I0ξ
4
(X). Similarly the area and the torsion constant 

become  2

0A X  and  4

0J X  respectively. The normalization scheme remains the same as 

earlier, with the exception that I0 is now used in place of I. Following a PVW procedure 

analogous to the one outlined in Sec. 2, one may derive the following normalized governing 

equations and natural boundary conditions for this case: 

     4 40;      0y y z z z yx u u u x u u u            x1 xd1 x1 xd1f m f m  (6.27) 

       
2 2

2 2 6 4 2 6

33 33 44 44 33 44

21 1
;     

2 2
x y z xd z yu u u u u

k x k k x k x k k x


   
           

2

x1 xd1 xd1 xd1 x1f m m m f
 (6.28) 
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 (6.29) 

Given the arbitrary choice of ξ(X), a closed-form solution to this ordinary differential 

equation with variable coefficients (Eq.(6.27)) is no longer possible. Nevertheless, the equation 

and associated boundary conditions remain linear in the transverse loads 

 ,  ,  ,  and YL ZL YL ZLF F M M  and transverse displacements (  and YL ZLU U and its derivatives). This 

implies that the resulting normalized relation between the transverse end loads and end 

displacement also has to be linear, of the form 

        

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

; ;            where  b

k k k k
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k x d k

k k k k

k k k k
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 
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b x1 xd1
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The effective stiffness terms (k’s) will now be some functions of the axial loads fx1 and 

mxd1, dictated by the beam shape ξ(X) and might be difficult or impossible to determine in closed 

form. Nevertheless, these functions may certainly be expanded as a generic infinite series in fx1 

and mxd1, 
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 (6.30) 

Similarly, it may be shown that irrespective of the beam shape, solution to the constraint 

equations (6.28) will be quadratic in [23] and therefore may be expanded as 
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Here [g
(n-i,i)

] and [e
(n-i,i)

] are 4×4 matrices similar to [k
(n-i,i)

]. 
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Along the same lines, the strain energy for a variable cross-section beam may be shown 

to be quadratic in the transverse displacements
1 1 1 1,  ,   and y z y zu u   , and some unknown function 

of the loads fx1 and mxd1. This expression may be expanded as follows: 

     
   

1 1 1
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0 044 33 33 440 0 0
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v d v d
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 
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xd1 x1 xd1 x1
x1 xd1

m f m f
f m  (6.33)

 The 4×4 matrices in equations (6.30) - (6.33),  [k
(n-i,i)

], [g
(n-i,i)

],  [e
(n-i,i)

] and [v
(n-i,i)

], are 

constants dependent only on the shape of the beam, that is on ξ(X), but independent of loads and 

end-displacements. Here on they will be referred to as beam characteristic coefficients. 

The first three terms of Eq.(6.33) represent the energy due to elastic stretching and elastic 

twisting given by the first two terms of Eqs.(6.31) and (6.32). Although these energy terms 

should ideally be represented using displacement variables, in this case there are expressed in 

terms of loads for simplicity of representation. The fourth term in Eq. (6.33) represents the 

energy due to bending. Ideally this energy term should consist of only bending displacements, 

[23]. However, due to geometric nonlinearity, the actual beam shape is dependent on the axial 

loads fx1 and mxd1. As a result, fx1 and mxd1 appear in strain energy due to bending, as parameters 

in the same capacity as beam shape parameters and beam characteristic coefficients.  

Next, we take a variation of the strain energy, keeping in mind that as loads are kept 

constant while virtual displacements are applied. Therefore, the loads fx1 and mxd1 in the strain 

energy due to bending do not produce δfx1 and δmxd1. On the other hand, since fx1 and mxd1 in the 

stretching and twisting energy terms are representative of displacements ux1 and θxd1, δfx1 and 

δmxd1 is retained from these terms. Next, PVW is applied in order to relate [k] matrices of the 

load displacement relation to the [g], [e] and [v] matrices of the constraint relations and strain 

energy expression.  

The PVW for the normalized displacement co-ordinates of 

1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u        and normalized loads fx1, fy1, fz1, mxd1, my1 and mz1 can be 

obtained using Eq.(6.13) by setting the tilt angles β and γ as zero. 

 1 1 1 1 1 1 1x y z xd z z yv u u u u u u              x1 y1 z1 xd1 y1 z1 xd1f f f m m m m  (6.34) 

Comparing coefficients between the right and left hand sides of the above equation, the 

relations between [k], [g], [e] and [v] are found to be as follows: 
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 (6.35) 

The above relations may be readily verified for the case of a simple spatial beam using 

known results; however, it should be noted that these are valid for any general beam shape, as 

proven above. 

Using conservation of energy yet another fundamental relation between the beam 

characteristic coefficients can be found. Since a given set of end loads fx1, fy1, fz1, mxd1, my1 and 

mz1 produces a unique set of end displacements
1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u   , the resulting strain 

energy stored in the deformed beam remains the same irrespective of the order in which the 

loading is carried out. Therefore, we consider a case where the loading is performed in three 

steps: (1) End loads ,  ,   and y1 z1 y1 z1f f m m are applied to produce end-displacements

1 1 1 1 1 1, , , , ,  and x y z xd z yu u u u u   . (2) While holding the end displacements 
1 1 1 1,  ,  ,  and y z z yu u u u  fixed, 

end load fx1 is applied to change the axial displacement from 1 1 to x xu u . Due to fx1, 1xd   changes 

to 1xd . (3) While holding the end displacements 
1 1 1 1,  ,  ,  and y z z yu u u u   and end load fx1 fixed, end 

load mxd1 is applied to change the axial displacement from 1 1 to xd xd  . Due to end load mxd1, end 

displacement 1xu changes to ux1. Also, with fx1 and mxd1 applied end loads ,  ,   and y1 z1 y1 z1f f m m

will change to ,  ,   and y1 z1 y1 z1f f m m in order to maintain 
1 1 1 1,  ,  ,  and y z z yu u u u  . 

The sum of energy added to the beam in these three steps should be equal to the final 

strain energy given by Eq. (6.33). Energy stored in step 1 is simply obtained by setting fx1 and 

mxd1=0 in Eq.(6.33). 

   (0,0)

1

1

2

T

b bv d v d     (6.36) 

The axial displacement and rotation at the end of step 1 is given by 

   (0,0)

1

T

x b bu d g d     (6.37) 



177 

 

   (0,0)

1

T

xd b bd e d      (6.38) 

Next, assuming a conservative system, the energy added to the beam in step 2 may 

simply be determined by calculating the work done on the system when force fx1 causes the beam 

end to move from 1 1 to x xu u in the axial direction. End-displacement 1xu  can be easily calculated 

by setting mxd1=0 in Eq.(6.31). 
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f  (6.39) 

An integral needs to be carried out since the relation between fx1 and ux1 is nonlinear. 

However, since inverting Eq.(6.39), which provides displacement in terms of force, is not trivial, 

determining the work done in this fashion is difficult if not impossible. Therefore, instead we 

choose to determine the complementary energy, which is readily derived using Eq.(6.37) 

and(6.39): 
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This result is then used to calculate the strain energy stored in the beam during step 2 as 

follows: 

     

 
   

 
   

 
   

 

*

2 1 1 2

1 1

( ,0) ( ,0)

2 2
1 133 330 0 0

1 12 2
1 ( ,0)

2 2
133 330 0

.

     .

     
2

x x

T Tn n n n

b b b b

n n

Tn n

b b

n

v u u v

dx dx
d g d d g d d

k x k x

dx dx
d g d

k x k x

 

 

 

 






  

  
          

  

    

   

 

x1

x1 x1 x1

f

x1 x1
x1 x1 x1 x1 x1

x1 x1
x1

f f f

f f
f f f f f

f f
f    

 
   

 

 
   

1
( ,0)

1

1 12 1 2
( ,0) ( 1,0)

2 2
1 033 330 0

1

1
     

2 1 2

n
T n

b b

n

nn
T Tn n

b b b b

n n

d g d
n

nndx dx
d g d d g d

k x n k x n 





 


 

   


         



  

x1

x1x1 x1 x1

f

ff f f

The twisting angle 1xd can be calculated by setting mxd1=0 in Eq.(6.32). 
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Next, the energy added to the beam in step 3 may simply be determined by calculating 

the sum of work done on the system when moment mxd1 causes the beam end to twist from 

1 1 to xd xd  , denoted as  31v xd1m , and work done when the beam end moves 1 1 to x xu u against 
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constant force fx1, denoted as  32v xd1m . The first term,  31v xd1m , is calculated in the same way 

as done in step 2. 
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The second portion energy term  32v xd1m  in step 3 is given by 
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 Therefore the total strain energy in the beam due to the application of  fx1, fy1, fz1, mx1, 

my1 and mz1 resulting in end displacements, 
1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u   , calculated using step 

1, 2 and 3 is 
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 (6.44) 

Comparing Eqs.(6.33) and (6.44), we obtain the following relations between the beam 

characteristic equations. 
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 (6.45) 
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Alternatively the conservation of energy could have also been applied while interchanging steps 

2 and 3. In that case the 1 1 and x xdu  displacement at the end of steps 2 would have been as 

follows: 
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The total strain energy in this case will be 
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Comparing Eqs. (6.33) and (6.48), we obtain the following relations between the beam 

characteristic equations. 
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Equations (6.45) and (6.49) has to be identical. This implies the following relation must 

exist between the [e] and [g] matrices. 

( , 1) ( 1, )1 1
          , 1,2,3,..   a b a be g a b

b a

           (6.50) 

Equation (6.50) physically means that when fx1 and mxd1 are applied together on the 

spatial beam, the work done by fx1 due to the ux displacement produced by mxd1 is equal to the 

work done by mxd1 due to the θxd1 displacement produced by fx1. This is nothing but 

manifestation Maxwell’s reciprocity theorem.  

Using Eqs. (6.35), (6.45) and (6.50) matrices [g
(a,b)

],  [e
(a,b)

] and [v
(a,b)

] can be expressed 

in terms of [k
(a,b)

]. 
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Equation (6.51) forms the fundamental relations between the beam characteristic 

coefficients and shows that all the beam characteristic coefficients can be easily obtained from 

the solution of the bending load displacement equation, Eq.(6.30). Therefore for any beam shape, 

as long as it is slender and its cross-section is bisymmetric, one only needs to solve the 

differential equation related to bending, Eq.(6.27), which is relatively easier than having to solve 

the torsion and the axial extension equation as well. 

The formulation of an initially tilted spatial beam flexure and variable cross-section 

spatial beam flexure can be combined, by noticing that the effect of the initial tilt is purely 

geometric in nature. As a result, the tilt angles β and γ, do not appear in the strain energy 

expression, Eq.(6.26). Therefore the load displacement and constraint relation for a tilt spatial 

beam with variable but bisymmetric cross-section can be written as: 
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The corresponding strain energy is 
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6.4 Case-Study: Multi-Beam Table Flexure Mechanism 

In this section, using the strain energy of the initially-tilted, general shaped, spatial beam 

flexure derived in the previous section in terms of its end displacements, the principle of virtual 

work will be used to formulate the parametric closed-form nonlinear load-displacement relations 

of an n-legged table flexure mechanism, shown in Figure 6.1. An initially horizontal rigid stage 

is connected to the ground via identical beams, not necessarily uniform in thickness or perfectly 

parallel, numbered 1 through n. The location of the i
th 

beam is given by the normalized (with 

respect to L) co-ordinates (yi, zi) in the X-Y-Z co-ordinate system shown in Figure 6.1. Using the 

same co-ordinate system, the final normalized displacement of the motion stage is described by 

 ,  ,  ,  ,   and xs ys zs xs ys zsu u u    . Preliminary FEA experiments show that for the normalized 

planar translation and rotation of 0.1 and 0.1 radians, respectively, out of plane translation uxs is 

of the order of 0.01 primarily cause by geometric arc length conservation while the out-of-plane 

rotations, θys and θzs, are of the order of 0.001 when 3 or more beams are used. The out-of-plane 

rotations depend on the rotations of the individual beam flexures as well as the axial stretching of 

the beam flexures due to elastic and elastokinematic effect. From preliminary FEA experiments, 

the stiffness of rotation about the X axis is found to increase in a quadratic manner as the spacing 

between the beams increase. In this case, the maximum distance between any two beams in the 

YZ plane which is assumed to be no greater than the length of the beam. This ensures a 

reasonably low stiffness of rotation about the X axis. Also for simplicity, it is assumed that each 

of the principle axes of moment of area of all the cross-sections align with the global coordinate 

axis. If this was not the case, the kinematic relation between the displacement of the stage and 

displacement of each beam flexure would be slightly different, requiring coordinate 

transformations. Although, such a case can be readily dealt with a few additional mathematical 

steps, it is not considered here. 

In the displacement range of interest, the individual end displacement of each beam can 

be approximately expressed in terms of the stage displacement as given in Eq.(6.56). The 

kinematics of the problem constrains the rotation of all the beams to be equal to that of the 

motion stage. 
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The truncated strain energy and constraint equations of the tilted spatial beam model, 

used in this case, are given in Eq.(6.57)-(6.59). The trapeze effect is dropped here assuming that 

fxs is of the same order as the fys needed to produce a uys of 0.1, and mxs in limited to a value 

corresponding to a θxs value of 0.1.  Furthermore the terms with product of fx1 and mxd1 have also 

small coefficients and are dropped in this analysis. Finally elastokinematic effect in torsion is 

dropped because the torsional stiffness of the stage is dominated by the elastic torsional stiffness 

and spacing of the beams. This model captures the linear elastic effect, and the nonlinear 

kinematic and elastokinematic effects in the respective axial stretching directions of all the 

individual beams. 
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The values of fx,i and mxd,i are solved from Eq.(6.58) and (6.59) and substituted in the 

strain energy expression given in Eq.(6.57). The total strain energy, obtained by summing the 

strain energy for all the beams, is given below in terms of the displacements of the rigid stage. 
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The principle of virtual work applied to the multi-beam table flexure system, may be stated as: 

 xs ys zs xds ys ys zsv u u u             xs ys zs xds ys zs xdsf f f m m m m  (6.61) 

where  zs ys  xds xs ys zsm m m m  

The virtual displacements ,  ,  ,  ,  ,  xs ys zs xds ys zsu u u      are arbitrary quantities and 

hence their respective coefficients from both sides of Eq.(6.61) should be identical.  

Using the above relations the force displacement relations can be derived and are as 

follows: 
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Equations (6.62)-(6.64) express the externally applied loads completely in terms of the 

displacements of the motion stage. This analytical model is valid for any number of beams, any 

beam spacing and arbitrary small and independent tilts at each beam for a displacement range of 

uys, uzs, θxds within ± 0.1 and uzs, θys, θzs within ±0.01. For validation using finite elements 

analysis, a specific case of the n-legged table is considered with all the beam flexures perfectly 

vertical and placed symmetrically about the center axis on a circle of radius p×L. This implies 

the following summations are zero. 

0i i i i

i i i

y z y z      (6.65) 

Given that the diameter of the table is of the order of the length of the beam, several 

second order approximations can be made without any significant loss of accuracy. Also the 

maximum axial force in each beam fx,i is restricted to half the buckling load which is π
2
/2. 
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 The load-displacement equations, approximated to the second order, are given in 

Eqs.(6.66) - (6.71). The variables, A and B, are total moments about Z and Y axis respectively by 

the internal axial forces fx,i for each beam. They are solved using Eqs.(6.70) and (6.71). 
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Using the values of A and B, the load-displacement relations for in-plane displacement 

can be further simplified. 
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Equations (6.73)-(6.75) capture the nonlinear stiffness variation in the in-plane 

displacement direction and rotation. Furthermore it also captures the coupling between in-plane 

translations and in-plane rotations. Given the constraint loads fxs, mys and mzs, the DoF 



186 

 

displacements can be found in terms of DoF loads or vice-versa. Using nonlinear finite element 

analysis in ANSYS, Eqs. (6.73)-(6.75) are verified in Figure 6.4. 
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Figure 6.4:(a) Load stiffening during in-plane translation along y, (b) In-plane translation along y due to in-plane rotation in the 

presence of mys, (c) In-plane translation along y due to in-plane rotation in the presence of mzs,(d) Load stiffening during in-

plane rotation due to x, (e) In-plane rotation due to in-plane translation along y in the presence of mys 

 

With the DoF displacement are known, Eqs.(6.69)-(6.71) become three linear equations 

in uxs, θys and θzs, which can be solved using linear algebra. 
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 (6.76) 

In eq.(6.76), for simple representation, the normalized co-ordinates of any beam is taken 

to be     sin , cosi ip pf f . This follows that assumption that the beams are arranged along the 

circumference of a circle with normalized radius p. In the cases, when either in-plane rotation is 

zero ( 0xs  ) or in-plane translation is zero ( 0ys zsu u  ), then eq.(6.76) may be simplified a 

great deal as the denominator Hi becomes constant while S = C = SC = 0.  
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Figure 6.5: Parasitic Error motion in uxs due to uys and θxs 

 

Validation of parasitic uxs motion due to in-plane translation uys and in-plane rotation θxs 

is shown in Figure 6.5. Clearly uxs has a quadratic dependence on both in-plane translation uys 

and uzs as well as on in-plane rotation θxs. Furthermore the stiffness in uxs also drops quadratically 

with uys, uzs and θxs due the elastokinematic effect. 

6.5 Discussion 

This chapter provides a generalized, closed-form and parametric mathematical model of 

tilted spatial beam flexure with bisymmetric cross-section, which accurately captures the 

constraint characteristics of the spatial beam for intermediate range of end-displacements. 

Several pertinent nonlinear effects such as load stiffening effect of axial force and torsional 

moment, kinematic effect of axial and torsional displacements, elastokinematic effect in the 

softening the axial and torsional stiffness and the trapeze effect were captured. Although the 

trapeze effect turned out to very small, in the presence of normal axial forces, it is retained for 

the sake of completeness.  

For beams that have varying cross-sections, solving the beam governing differential 

equations, especially the nonlinear axial displacement and torsion equation is extremely difficult. 

The fundamental relations between beam characteristic coefficients were represented which 

showed that the load-displacement relation, constraint relations and strain energy expression are 

not independent. By employing these relations and a numerical computation technique similar to 
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Chapter 2 Section 2.4.2, the linear bending equation can be used to generate the entire BCM 

model for the spatial beam flexures with varying cross-section. This allows for a relatively easy 

route to expand the library of usable spatial beam flexures.  

The ability of the generalized BCM to enable the use of energy methods, such as the 

principle of virtual work, was also illustrated with the case study of a multi-legged table flexure 

mechanism. Not only did this approach show the ability of handling any number of legs of the 

flexure mechanism, but also the ability of account for arbitrary and independent tilt and shape 

variation of the individual legs. 
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Chapter 7   

 

Conclusion and Future Work 

 

7.1 Conclusion 

Flexure mechanisms, also known as compliant mechanisms, provide repeatable guided 

motion via elastic deformation. Its output motion is often characterized by dividing the entire 

motion into directions along with stiffness is relatively low and other independent directions 

along which stiffness is relatively high. These directions are known as degrees of freedom or 

DoFs and degrees of constraints or DoCs, respectively. Constraint based design recognizes the 

presence of DoCs and DoFs at the level of flexure elements, the building blocks of flexure 

mechanisms and, by arranging the flexure elements, it attempts to regenerate the DoCs and DoFs 

of the entire mechanisms. One of the major limitations of the constraint based design 

methodology is that it assumes the flexure elements to produce ideal DoCs and DoFs. Because of 

this assumption constraint based design is generally suitable for the synthesis of small motions. 

In this dissertation, this limitation is removed to analytically quantify the non-ideal constraint 

behavior of flexure elements. The challenge of modeling constraint characteristics for large 

displacements is overcome by recognizing properties of beam geometries rather than restricting 

them. Additionally, provision for characterizing common geometric effects and using energy 

methods are provided. A more details discussion on each of the analyzed flexure element is 

given below. 

 

7.1.1 Planar Beams 

Planar beams are a commonly used flexure element for planar mechanisms that has 

several applications in macro-scale and MEMS devices. Although it has been analyzed several 
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times in literature, a strain energy expression in terms of end-displacement that is accurate over 

intermediate displacements is not present. Such an expression will be useful for analyzing 

complex flexure mechanisms using energy methods. In this dissertation, a generalized Planar 

Beam Constant Model (PBCM) for the planar flexure strip with generalized shape is formulated 

that provides a strain energy expression along with end load-displacement characteristics in term 

of end-displacements. This lumped parameter model allows the flexure elements to be 

represented via a lumped stiffness and geometric parameters. It is illustrated how misalignment 

of flexure elements with the global co-ordinate axes can be easily tackled using the derived strain 

energy expression.  

Furthermore fundamental relations within the beam characteristic coefficients of the 

PBCM are determined. These relations showed that even for varying thickness, the basic 

behavior of planar flexure strips does not change. In other words, the nature of relationship 

(linear, quadratic etc.) of the end-displacements with the end-loads remains the same while the 

proportionality constants given the beam characteristic coefficient change. The main utility of 

these relations is in expanding the library of available flexure elements that can be used in 

designing flexure mechanisms by generating models with same capabilities without dealing with 

most the complexity associated with varying cross-section.  

7.1.2 Flexure Strip with Spatial Loading 

Several examples of flexure mechanism exist where flexure strip are used in such a 

manner that planar analysis to determine the motion characteristics is insufficient.  Since, under 

spatial loading, stresses are significant in more than one direction, beam theory is generally 

unsuited for these analyses. Therefore, plate theory is used for the analysis of the flexure strips. 

However, obtaining closed form models using nonlinear plate theory is difficult and often 

computational methods like finite element analysis are used. The beam characteristic differential 

equations that will lead to a closed-form model which can not only take generalized loading into 

consideration but also be accurate over intermediate displacements of about 10% of the length of 

the flexure strip is given in this dissertation.  

The key assumption of this analysis is the estimation of the transverse stress along the 

width of the flexure strip which leads to the anticlastic curvature. This stress is estimated to be 

proportional to the stress along the neutral axis of the beam. The constant of proportionality is 
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determined as a function of the width and the length of the beam. Another key challenge was to 

overcome the analytical complexity brought about by torsion. When the ends of a flexure strip 

are kept straight, the torsional stiffness varies nonlinearly due to the Wagner’s effect. Normally, 

this nonlinearity cannot be dropped. However when the geometry of the flexure strip has an 

aspect ratio of Width
2
/(Length×Thickness) less than 15, this nonlinearity in torsion becomes 

negligible. Further simplification was done by recognizing that the kinematic arc-length 

conservation is insignificant in the plane of the flexure strip when the width of the flexure strip is 

at least 10 times the thickness. Dropping the associated kinematic nonlinear effects, a set of four 

solvable differential equations can be found. Three of the four governing differential equations 

are linear with varying coefficients and are potentially solvable, while the last nonlinear equation 

which determines the axial displacement, can be solved using the solutions of the first three 

differential equations. 

 

7.1.3 Symmetric Spatial Beam Flexure 

The third flexure element that was analyzed was the symmetric spatial beam flexure. This 

element, also known as the wire flexure, is also an extensively used flexure element. Although 

the nonlinear mechanics in the case of wire flexure is complex, it was identified that a closed-

form model can be obtained if the area moments of inertia associated with bending in two 

mutually perpendicular planes are equal. By choosing the co-ordinate such that this condition is 

satisfied, closed form model of wire flexure that captures all the pertinent nonlinearities for a 

intermediate range of displacements. 

The key nonlinearities that was captured were 1) The kinematic coupling between the 

bending planes in the presence of torsional moment 2) The variation of axial, transverse and 

torsional stiffness due to bending displacements 3) The kinematic axial displacement and 

torsional rotation caused by the bending displacement 4) A elastic stiffening of the torsional 

direction in the presence of axial tension forces. 

Similar to the models for planar loading of flexure strips, the Spatial Beam Constraint 

Model (SBCM) for wire flexure is generalized in terms of both loads and displacements. It is 

also capable of handling small tilts with the global co-ordinate frame due to manufacturing 

defects without using co-ordinate transformations. Furthermore, fundamental relations between 
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the beam characteristic coefficients of the SBCM are also derived. These relations show a similar 

pattern to those derived for the flexure strips with planar loading. As in the case of flexure strip, 

the fundamental relations between the beam characteristic coefficients ensure the easy addition 

of various wire flexures with varying cross-sections to the library of flexure elements for the 

analysis of flexure mechanisms. 

7.2 Future work 

Although the differential equations of flexure strip with spatial loading are linear, solving 

them is challenging due to the presence of varying coefficients,. While a numerical solution, 

using standard mathematical software such as Matlab, can easily predict the constraint 

characteristics of a flexure strip, a closed-form model will be useful in quantifying design 

insights. Although a simple application of perturbation methods does not yield a closed form 

solution, more sophisticated application of perturbation methods like homotopy perturbation 

method may be tried out to obtain a solution to the given set of differential equations. 

Using the derived models of various flexure elements, the next logical step is to refine the 

constraint based synthesis approach of flexure mechanisms. Given the accuracy of the BCM over 

finite displacement, a nonlinear constraint based synthesis that can generate mechanisms for 

producing finite motion paths should be the next step. 

The closed-form representation of the BCM can also be leveraged in formulating 

optimization routines for flexure elements. Increasing number of flexure elements can add 

robustness against failure. Given, the availability of the strain energy expression, analyzing 

multiple flexure elements is no longer computationally challenging and can be easily done in 

closed-form. Hence, the number of flexure elements to be used and determining the optimal 

spacing between them can be easily computed by standard optimization techniques. 

The BCM can also give valuable insight into the nonlinear dynamics of flexure 

mechanisms of the first resonant frequency. In several mechanisms, used in positioning devices, 

the first resonant frequency change with large displacements. Analysis using BCM can give 

insight into the nonlinear variation of the stiffness values in different displacement directions. 

Although, BCM does not give any insight into the higher frequency dynamics of flexure 

mechanics, the insights that are available can be used as a starting point for understanding the 

dynamics of a complex flexure mechanism.  
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