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ABSTRACT 

 

The objective of this thesis is to investigate the genesis and consequences of complex non-

minimum phase (CNMP) zeros observed experimentally in the dynamics of large displacement 

flexure mechanisms. The knowledge gained through this research may be used to overcome 

traditional tradeoffs between large displacement and good dynamic performance in various 

applications that employ flexure mechanisms. Applications include high precision positioning 

stages for wafer inspection, motion stages for atomic force microscopy, and micro electro-

mechanical systems for high speed scanning. 

In the first part of this study, a lumped parameter approach is proposed to model the CNMP 

behavior. It is shown that CNMP zeros appear due to the inherent geometric nonlinearities in the 

mechanics of a simple beam (i.e., arc length conservation) as well as due to small structural 

asymmetry (e.g., manufacturing tolerances) at certain operating points in the mechanism’s 

workspace. In addition, a hypothesis of a correlation between CNMP zeros and a phenomenon 

known as curve veering is proposed. This hypothesis is verified in later part of the thesis. 

Second, to understand the physics of CNMP zeros, a systematic investigation is presented, 

assuming a broader scope of lightly damped flexible systems. The analysis of modal residues 

based on modal theory is conducted to find the conditions for the existence of each possible type 

of zeros (i.e., marginally minimum phase, real non-minimum phase, and complex non-minimum 

phase). To study the transition between these types of zeros, a graphical technique is proposed 

that utilizes the sequences of the dominant modes and the sequences of each decomposed mode’s 

sign. It is shown that CNMP zeros appear in a system that is decomposed as two closely spaced 

modes and a remainder mode with alternating signs, and these modes dominate at their 

corresponding frequency regions. Furthermore, the impact of CNMP zeros on closed loop 

control, as well as the initial properties (e.g., initial undershoot) of the step response for a system 

with CNMP zeros are visualized via this technique.  
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Third, the correlation between CNMP zeros and curve veering is examined. It is shown 

under certain conditions that CNMP zeros appear in the presence of curve veering. The physical 

insights of these conditions are presented. This finding reveals a conditional connection between 

the two fields (i.e., CNMP and curve veering) that have been separately studied in the literature. 

Next, an experimental setup is designed to validate the above findings. To conduct the 

validation, a design procedure is presented to minimize the extraneous factors. The frequency 

responses are then measured and match well with the model prediction. 

Lastly, a mechatronic system (including mechanical system and control system) design 

approach is presented based on the knowledge developed above, in order to achieve better closed 

loop performance in large motion range flexure stages compared to the state-of-the-art stages. 

The study is based on a simplified system considered in this thesis. It is shown that a system with 

a sequence of alternating signs is easier to stabilize compared to a system with non-alternating 

signs, even when the former one has CNMP zeros. Therefore, it is recommended to design the 

mechanical system by studying the sequence of decomposed modes’ signs (and the sequence of 

dominant modes) to achieve the best possible dynamic characteristics for good control 

performance. An example is presented with both simulation and experiment. 
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Chapter 1. Introduction and Background 

1.1. Flexure for High Speed Motion Applications 

 

 Flexure mechanisms (Fig 1-1a) employ elastic deformation instead of rolling or sliding 

joints to provide guided motion along certain compliant directions and load bearing capability 

along the remaining stiff directions [1-6]. The term mechanism, in this context, signifies a 

similarity with traditional rigid-link mechanisms (Fig 1-1b), which also selectively allow certain 

motions and constrain others. For example, both the parallelogram mechanisms of Fig 1-1a and 

Fig 1-1b offer a translational degree of freedom (DoF) in the transverse direction and degrees of 

constraint (DoC) in the axial and rotational directions [3-4]. From another perspective, flexure 

mechanisms may also be considered similar to elastic structures (Fig 1-1c) since both represent 

an elastic continuum. But the key distinction between these two lies in the fact that, unlike 

flexure mechanisms, structures are typically designed for high stiffness and minimal motion 

along all directions [7]. 
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Fig 1-1 A comparison between different mechanisms: (a) parallelogram flexure mechanism; (b) parallelogram rigid 

mechanism; (c) elastic structure 
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This research investigation is motivated by the need to achieve large range, high precision, 

and high speed all simultaneously in multi-axis flexure-based motion systems  [3, 8]. Such 

capability is of practical importance in various applications such as compact and affordable 

motion stages for semiconductor wafer inspection [9] and micro electro-mechanical systems 

(MEMS) scanners for high speed imaging [10]. Flexure mechanisms are well-suited for these 

applications because of their joint-less construction and inherently high precision due to lack of 

friction and backlash, but present significant tradeoffs between large displacement and dynamic 

performance [11]. 

 

1.2. Performance Tradeoff and Limitation 

 

Large displacement generally implies transverse deformation (see Fig 1-1a) of the 

constituent beams in the flexure mechanism greater than 5% of the beam length. This typically 

corresponds to several millimeters of displacement or motion range for a desktop size flexure-

based motion system. The relevant system dynamics include natural frequencies, mode shapes, 

and transfer functions. The closed-loop dynamic performance objectives include high bandwidth, 

good noise and disturbance rejection, good command tracking, small steady-state error, fast 

point-to-point positioning and settling, stability robustness, low sensitivity to plant variations, etc. 

While recent results have demonstrated large range as well as high precision in multi-axis 

flexure mechanisms, achieving dynamic performance remains a challenge [11, 12]. Fig 1-2a 

shows an XY nano-positioning system based on a parallel-kinematic flexure mechanism, 

designed to achieve a range of 10 mm and a precision of ±25 nm per axis. This mechanism 

employs a systematic and symmetric layout of eight double parallelogram flexure modules 

(DPFM). This design provides a high degree of geometric decoupling between the X and Y 

motions of the motion stage resulting in large unconstrained motion range; actuator isolation that 

allows the use of large-stroke single-axis actuators (X Actuator and Y Actuator); and a 

complementary end-point sensing using commonly available sensors (e.g., Sensor 1 and Sensor 2 

for the X direction). 
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There are many factors that make the dynamics of such a flexure mechanism challenging. 

Large displacements can lead to geometric relations (or coupling) between displacements in 

flexure mechanics. Given their dependence on the magnitude of displacement, these relations 

(and their impact on system dynamics) vary with the operating point of the flexure mechanism. 

Furthermore, large displacements require relatively low stiffness in the motion directions and 

therefore lead to low natural frequencies of the first few modes. Any attempt to achieve a closed-

loop bandwidth that is greater than these low natural frequencies requires a proper understanding 

of these low-frequency dynamics, which is complicated by the above-mentioned geometric 

coupling. Further, while the symmetric layouts (e.g., Fig 1-2a) help provide large range, cancel 

undesired motions, improve space utilization, and enhance quasi-static performance, they also 

result in multiple closely spaced modes that are highly sensitive to manufacturing tolerances. 

This results in parametric uncertainty in the system dynamics. 
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Fig 1-2 The XY flexure mechanism and its corresponding system identification: (a) the layout of the XY flexure 

mechanism; (b) experimental frequency response under different operation point. 

 

Fig 1-2b shows an experimental measurement of the non-collocated X direction frequency 

response from force input Fx to the displacement output Xms, for different values of Y 
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displacement (Yms = 0, 1.5, 3 mm) [11, 13]. One may notice that there are multiple closely spaced 

modes around 150Hz. These correspond to the natural frequency of the secondary mass in each 

DPFM (discussed further in Chapter 2). It is also noteworthy that the X direction frequency 

response changes with the Y direction operating point. At the operating points yms = 1.5 and 3 

mm, the frequency response shows an additional phase drop of 360° and 720°, respectively, near 

150 Hz compared to the nominal operating point yms = 0. The magnitude and phase below and 

above 150 Hz remains the same for all the operating points. Such observation cannot be 

explained by minimum phase zero pairs. Thus, such phase drop is due to CNMP zero pairs on 

the right half plane. This dynamic response was unexpected and the existence and number of 

CNMP zeros seemed arbitrary.  

From a closed-loop performance stand-point, it is well known that NMP zeros severely limit 

bandwidth, stability robustness, and positioning speed [14, 15]. To explain this limit, here we 

provide a visual explanation of a key theorem that is related to the sensitivity peak of a system 

that has NMP zeros [16]. 

Suppose that z=x+jy (x>0) where z is a zero on the right half plane (RHP). Assume that the 

sensitivity function S is required to be small over a frequency range [0, ω0): 

 ( ) [ )01, 0,S jω α ω ω
∆

< < ∀ ∈Ω =  
(1-1) 

Due to its role in the sensitivity function, ω0 is also closely related to the crossover 

frequency and thus the closed loop bandwidth. One can assume an approximately linear relation 

between ω0 and the bandwidth.  

Next, we state the weighted length of the frequency interval Ω by 

( ) ( )
( ) ( )

0 0 0
2 22 20 0

0

, , z jx xz W z d d
z jx y x y

ω ω ωω ω ω
ωω ω

   −
Θ Ω = = + = −∠     ++ − + +   

∫ ∫  
(1-2) 

Θ(z,Ω) is illustrated in Fig 1-3, which is the opening angle from the right half plane zero z, 

to +/- jω0 on the imaginary axis. Based on this geometric construction, there are two main 

observations. First, Θ(z,Ω) is always in the range of [0, π]. Particularly, Θ(z,Ω)→0 as ω0→0, and 

Θ(z,Ω)→π as ω0→∞. Second, if one draws a circle across the three points: z, (0, jω0), and (0, ‒
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jω0), then any RHP zero z lying on this circle has the same value of Θ. For the example in Fig 

1-3a and Fig 1-3b, z2 is another RHP zero different from z, but Θ(z2,Ω)= Θ(z,Ω). Note that if this 

circle is centered at the origin (Fig 1-3a), then Θ(z,Ω)=π/2 (i.e., 90°); in contrast, if the circle is 

centered on the right side of the real axis (Fig 1-3b), then Θ(z,Ω)<π/2. 

Real

Imag

Real

Imag(a) (b)
ω0

-ω0

ω0

-ω0

Θ(z,Ω)

Θ(z,Ω)
z

z
z2

z2

 

Fig 1-3 Geometric illustration of the opening angle: (a) the circle is centered at the origin; (b) the circle is centered 

on the right side of the real axis. 

 

Next, the theorem [16] states that if both the open loop system (i.e., the plant with the 

controller) and the closed loop system are stable, and the sensitivity function is constrained by 

Eq.(1-1), then  

 ( )
( )

( )

0

,
,1 1max

z
z

S j
π

ω ω
ω

α α

Θ Ω
Λ∆−Θ Ω

≥

   > =   
   

 

(1-3) 

To explain, consider first the power order term Λ. Λ is a monotonously increasing function 

of Θ, with a range as [0, ∞). Two main observations are provided. First, an important case is 

when Θ=π/2, one has Λ=1. This corresponds to the situation in which the RHP zero of interest is 

on the circle that is centered at the origin and has a radius of ω0 (Fig 1-3a). Second, if the 

position of the RHP zero is fixed, then increasing ω0 results in a larger Θ, and thus a larger Λ. 

With the explanation of Λ, we next consider Eq. (1-3), which is known as the guaranteed 

peak or maximum value of the sensitivity function. On one hand, one generally prefers a small α 

(i.e., small in sensitivity function at low frequency) for better disturbance rejection, smaller 

tracking error, etc. On the other hand, one also prefers a large ω0 for higher bandwidth. However, 
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from Eq. (1-3), one can see that either decreasing α or increasing ω0 significantly increases the 

maximum value of the sensitivity function. As a result, the modulus margin is significantly 

decreased, where modulus margin is defined as the minimum distance from the point (-1, 0) to 

the open loop transfer function of a system in a Nyquist plot. This indicates that the robustness of 

the closed loop system drops significantly. In other words, if a system has an RHP zero, then in 

order to maintain a reasonable robustness, one has to choose a less aggressive pair of ω0 and α.  

The above mentioned conclusion is visualized in Fig 1-4. Assume that a system has an RHP 

zero at z and choose α=0.5. Moreover, Θ has to be small in order to keep the sensitivity peak 

small. For example, if we choose Θ=π/6 (i.e., 30°), then by drawing an opening angle of π/6 from 

z to the imaginary axis, ω0 is determined. Note that if one draws a circle passing through z, (0, 

ω0), and (0, -ω0), any RHP zero on this circle will result in the same opening angle of π/6. 

Furthermore, if the system’s RHP zero is located outside the circle (shaded area) instead of z, 

then using the current ω0 will result in an opening angle smaller than π/6, which reduces the 

lower bound of the sensitivity peak. However, if the system’s RHP zero is located inside the 

circle (e.g., z2), then in order to maintain the same value of the opening angle, a smaller circle 

(dashed line) is required, resulting in a smaller ω0, and therefore a lower bandwidth.  

imag

real

Θ(z,Ω)

z

ω0

-ω0

z2

 

Fig 1-4 Geometric illustration of NMP zeros’ limitation 

 

From Eq. (1-3) it is preferable to have Θ smaller than π/2. Thus, the corresponding circle is 

centered on the real axis of the RHP. For the circle in Fig 1-4, if one examines the distance from 
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the origin to the circle, the minimum value is achieved on the imaginary axis, while the 

maximum value is achieved on the real axis. Recall that for a zero (e.g., z in Fig 1-4), its 

corresponding frequency is the distance from the origin to its position in the complex plane. 

Therefore, for RHP zeros with the same frequencies, in order to achieve the same Θ for 

robustness, ω0 is the smallest when the zero is on the real axis (i.e., real NMP zero), while ω0 is 

the largest when the zero is close to the imaginary axis (i.e., complex NMP zero). In other words, 

among the RHP zeros with the same frequencies, the real NMP zero has the strongest limitation 

on closed loop bandwidth. 

With the above observations, several questions arise: since complex NMP zeros always exist 

in the form of conjugate pairs, how should a pair of complex conjugate NMP zeros be evaluated 

using Fig 1-4? With the experimental observation of CNMP zeros in Fig. 1-2b, when, why, and 

how do these CNMP zeros appear? Can they be analytically predicted? Do they have a physical 

meaning? Can they be avoided via physical system design? If they are mitigated, can one achieve 

a better dynamics performance? All of these questions represent a gap in the current knowledge 

of flexure mechanism dynamics. This gap, in turn, limits improvements in the performance of 

flexure based motion systems. 

To address this knowledge gap, the goal of this Ph.D. thesis research is to develop and 

validate models to explain the conditions (when), the means (how), and the physical 

interpretations (why) of CNMP zeros that appear in flexure mechanisms. This understanding will 

result in guidelines for mechanical and control system design to address such CNMP behavior in 

flexure based motion systems. For a representative study, this research will focus on flexure 

mechanisms based on the double-parallelogram flexure module (DPFM) (Fig 1-2a), but its 

outcomes are more broadly relevant to the dynamics of flexible systems. 

 

1.3. Problem Statement 

 

Based on the above discussion, the problem is stated as follows. “Conduct a scientific 

investigation into the existence, genesis, and consequences of CNMP zeros observed 

experimentally in the dynamics of large displacement flexure mechanisms.”  
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The scientific knowledge gained through this research is essential to overcome traditional 

tradeoffs between large displacement and good dynamic performance in various applications that 

employ flexure mechanisms for motion guidance. 

 

1.4. Organization of the Thesis 

 

  Based on the problem statement, the work in this thesis is divided into five research tasks as 

below. The organization of the chapters is based on these tasks. An illustration of the research 

framework and task chain is presented in Fig 1-5. 

Task 1 (Chapter 2): Develop reduced-order analytical models of flexure mechanisms 

taking into consideration the relevant geometric non-linearities due to large deformation as 

well as unintended parametric asymmetries (e.g., manufacturing imperfections). Predict 

when these two factors result in CNMP zeros in the input-output transfer function of the 

flexure mechanism over its range of motion. 

Task 2 (Chapter 3): Conduct a systematic investigation based on modal theory to explain 

the existence and genesis of CNMP zeros in systems that have two closely spaced modes. 

Use the analytical results to generate a physical interpretation of the CNMP zeros. 

Task 3 (Chapter 4): Explore the possibility of an inherent relationship between the 

appearance of CNMP zeros and the phenomenon of curve veering seen in systems with 

symmetric/periodic structures. This relationship has not been explored before and, if 

established, would enable a deeper understanding of both CNMP zeros and curve veering. 

Task 4 (Chapter 5): Design and conduct experiments to validate the appearance of CNMP 

zeros as predicted for any given operating point within the range of motion and parametric 

asymmetry. This experimental set-up will comprise a flexure mechanism integrated with 

sensors, actuators, and drivers, as well as control hardware and software.  

Task 5 (Chapter 6): Based on the above physical system understanding, design 

mechatronic systems (i.e., mechanical system and controller) to demonstrate superior 

dynamic performance over large motion range. 
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Practical Motivation 
(Flexures): 
Nano-positioner, etc.

Experimentally 
Observed

Adversely Impact
(Challenge)

Model to Predict

Task.1 Model CNMP (When)

Why Do CNMP (NMP) Zeros Show Up?
• Physical meaning/genesis
• Math model
• Relationship with curve veering

Task.2 Investigation of NMP Zeros (Why)

Experimental Validation Task.4 Design the Setup

Application on the Original Problem Task.5 Design Mechatronics

Dynamics 
CNMP zeros

Task.3 Connection between CNMP and 
Curve Veering (How)

 

Fig 1-5 Illustration of research framework and related tasks 

 

1.5. Research Contributions 

 

The contributions of this thesis are summarized as below: 

(1) A lumped-parameter modeling approach that analytically captures the dynamics of 

flexure mechanisms comprising the parallelogram or double parallelogram modules is 

established. This model captures the key relevant geometric non-linearity in large 

displacement flexure mechanics. Linearization about any arbitrary operating point 

enables frequency domain analysis. With this model we are able to predict previously 

unexplained CNMP zeros seen experimentally. The model establishes the existence of 

CNMP zeros under certain combination of operating point and parametric asymmetry in 

the non-collocated transfer function of a simple representative XY flexure mechanism.  
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(2) A theoretical model is presented to explain the conditions (when), the means (how), and 

the physical interpretations (why) of the occurrence of the CNMP zeros in flexure 

mechanisms. For NMP zeros, the well-known limitations on control are visualized in a 

Nyquist plot. 

(3) The connection between CNMP zeros and curve veering is explored. Using normalization 

and the variation of modal residues, it is shown under certain conditions that CNMP 

zeros are guaranteed in the presence of curve veering. This finding enables a further 

understanding on both CNMP zeros and curve veering. 

(4) The above modeling work is validated experimentally. The experiment is carefully 

designed to isolate the features of interest (i.e., the closely spaced modes) from other 

factors (e.g., parasitic dynamics). The existence of CNMP zeros are validated in lightly 

damped, passive stable flexure mechanisms.  

(5) A mechatronic design approach (i.e., a physical and control system design performed in 

conjunction) is presented that leverages the above system-level knowledge to improve the 

dynamic performance (bandwidth, disturbance rejection, point to point, robustness, etc.) 

of large range flexure-based motion stages over the state-of-the-art stages. 
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Chapter 2. Modeling CNMP Zeros of DPFM based Flexure Mechanisms 

 

This chapter presents a model to explain complex non-minimum phase (CNMP) zeros seen 

in the non-collocated frequency response of a large displacement XY flexure mechanism, which 

employs multiple double parallelogram flexure modules (DPFM) as building-blocks. Geometric 

non-linearities associated with large displacement along with the kinematic under-constraint in 

the DPFM, lead to a coupling between the X and Y direction displacements. Via a lumped-

parameter model that captures the most relevant geometric non-linearity, it is shown that specific 

combinations of the operating point (i.e. flexure displacement) and mass asymmetry (due to 

manufacturing tolerances) give rise to CNMP zeros. This model demonstrates the characteristics 

that an intentionally positive/negative asymmetric configuration can guarantee/avoid the 

appearance of CNMP zeros, respectively. Furthermore, a study of how the eigenvalues and 

eigenvectors of the flexure mechanism vary with the operating point and mass asymmetry 

indicates the presence of curve veering when the system migrates from minimum phase to 

CNMP. Based on this, the hypothesis of an inherent correlation between CNMP zeros and curve 

veering is proposed (the hypothesis is discussed in Chapter 4).  

 

2.1. Literature Review 

 

In recent years, there has been a growing body of research literature on the dynamics of 

flexure mechanisms. Lan et al. [17] presented a distributed-parameter dynamic modeling 

approach of elastic flexure mechanisms. The resulting equations of motion in the time domain 

were solved using numerical methods, which are not very suitable for frequency domain analysis 

of CNMP zeros. Akano and Fakinlede [18] used finite element based non-linear analysis to 

predict the effect of design parameters on the dynamic performance of flexure mechanisms. 

While accurate, these methods are computationally intensive and provide limited physical 
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insights in the frequency domain. Alternatively, lumped-parameters closed-form modeling 

approaches have also been investigated. Shilpiekandula and Youcef-Toumi [19] derived a 

lumped-parameter dynamic model of a diaphragm flexure using Timoshenko beam theory, but 

did not include geometric non-linearities. Awtar and Parmar [11] captured the non-linear 

variation in the stiffness of flexure building blocks to create a lumped-parameter dynamic model 

of a XY flexure mechanism (Fig 1-2a), but did not capture the non-linear coupling between X 

and Y directions in a DPFM and therefore were unable to predict the NMP behavior seen 

experimentally (Fig 1-2b). The pseudo-rigid-body approach has also been used for modeling the 

non-linear dynamics of flexure mechanisms [20-22]. While this approach leads to simple 

lumped-parameter closed-form models, the model parameters are computed via numerical 

optimization and depend on the boundary conditions of each beam, thereby increasing the 

modeling complexity in flexure mechanisms that have a large number of beams. 

Dynamic modeling of rigid link mechanisms with inherent flexibilities, e.g. robotic 

manipulators, has also been an active area of research. An overview and classification of various 

modeling approaches is found in the review paper by Dwivedy and Eberhard [23]. Research in 

this area includes the study of manipulators with one or more flexible links as well as one or 

more flexible joints. Various methods including finite elements, assumed modes, lumped 

parameter, and inverse dynamics have been adopted to study the relevant dynamics. This body of 

work assumes small deformation of the links, compared to rigid body motion, which is justified 

since the links are designed to be stiff. However, this assumption fails for flexure mechanisms 

that provide large deformation in their motion directions. 

The large deformation of constituent elements or beams in a flexure mechanism results in 

geometric non-linearities arising from arc-length conservation, cross-sectional warping, trapeze 

effect, and Wagner’s effect in beam mechanics [24-30]. The impact of these non-linearities on 

the dynamics of flexible beams and structures has been studied extensively, as reported in the 

review papers by Modi [31] and Pandalai [32]. Furthermore, the dynamics and control of flexible 

beams with an end-mass [33] as well as rotating beams [34] have also been investigated. In 

further generalization, DaSilva formulated the non-linear differential equations of motion for 

Euler-Bernoulli beams experiencing flexure along two principal directions, along with torsion 

and extension [35]. Jonker has formulated a highly generalized model for spatial beams taking 
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into account relevant non-linearities, using finite element based multi-body dynamics 

computations [26, 36]. Nayfeh modeled the non-linear transverse vibration of beams with 

properties that vary along the length [37]. Zavodney and Nayfeh studied the non-linear response 

of a slender beam with a tip mass to a principal parametric excitation [38]. Moeenfard studied 

the in-plane flexural and axial vibration of a flexure beam with a tip mass while accounting for 

the non-linearity associated with arc length conservation [39]. While the resulting non-linear 

equations of dynamics are solved in time-domain via perturbation, homotopy, or computational 

methods, this prior work [32] does not pursue the frequency domain investigation relevant to the 

present work. 

Separately, there exists a significant body of work in the frequency domain dynamics of 

lumped or distributed parameter flexible systems [40-42]. It has been shown that lightly damped 

flexible systems with collocated sensor and actuator have alternating poles and zeros along the 

imaginary axis and are easy to stabilize in closed-loop [43, 44]. Non-collocated systems do not 

share these attributes and, under certain conditions, exhibit real non-minimum phase (NMP) 

zeros in the right half plane [45-47]. Spector and Flashner [45] studied the sensitivities of beam 

cross-section, material properties, and sensor placement on the locations of poles and zeros in 

flexible systems. They showed that as the sensor placement is moved away from the actuator, the 

conjugate zeros, originally located along the imaginary axis, migrate towards infinity and then 

reappear along the real axis. Miu [46] provided a physical explanation for these real NMP zeros 

stating that they are related to the non-propagation of energy within the structural subsystem 

confined by the actuator and sensor. Unlike real NMP zeros, CNMP zeros are relatively rare and 

have been reported in the context of a non-collocated acoustical transfer function of a room [48], 

as well as in a non-collocated transfer function of a lumped parameter spring-mass system [49, 

50]. Awtar identified CNMP zeros arising due to an electromagnetic coupling between a DC 

motor and tachometer used in a servo-system [51]. These studies on CNMP zeros simply report a 

mathematical or experimental observation, without providing further insight into when or why 

the zeros appear. 
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2.2. Modeling Geometric Non-linearity in DPFM 

 

 A DPFM, shown in Fig 2-1, comprises a reference stage, a secondary stage, and a primary 

stage connected via two parallelogram flexures in series. This arrangement uses geometric 

reversal to cancel the X direction kinematic error motion (i.e. parabolic trajectory) of one 

parallelogram with that of the second parallelogram. In quasi-static operation, these two error 

motions exactly cancel out, resulting in a straight-line motion along the Y direction between the 

primary and reference stages while providing high stiffness in the X and Θ axes. Furthermore, 

the DPFM provides large displacement range and low stiffness in the Y direction for a given 

footprint. For a building block, these are desirable attributes because they help minimize various 

error motions and enable large motion range in the resultant flexure mechanisms [11]. 

Kinem
atic Error M

otion

X

Y

Θ

(Xk , Yk)

Secondary Stage

Primary Stage

Reference Stage

Reference Stage
(Xk , Yk)

(Xi , Yi)
(Xj , Yj)

L  

Fig 2-1 Double parallelogram flexure module (DPFM) 

 

 One of the limitations of the DPFM is that it presents a kinematic under-constraint 

associated with the Y displacement of its secondary stage. In quasi-static operation, this under-

constraint adversely impacts the X direction stiffness, as reported previously [30]. In dynamic 

operation, this leads to an additional degree-of-freedom (DoF) in the DPFM even though it is 

intended to be a single-DoF building block. Referring to the X and Y displacements of the 

primary and secondary stages with respect to the reference stage in Fig 2-1, the following quasi-

static relations hold [13, 30]: 
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 ( )2
0.6 /i j i jX X Y Y L− = − −  (2-1) 

 ( )2
0.6 /j k j kX X Y Y L− = −  (2-2) 

 Here, L stands for the beam length (Fig 2-1). These kinematic relations, which define the X 

direction error motion of the parallelogram flexures, are the result of the geometric non-linearity 

associated with beam arc-length conservation. Relative to the reference stage, there are four 

displacement coordinates in the DPFM (i.e. Xi, Yi, Xj, Yj); of these, only two are independent 

because of the above kinematic relations. This illustrates the 2 DoFs of the DPFM and its under-

constraint. 

 The above quasi-static relations are based on certain core assumptions that may be extended 

to low-frequency dynamics spanning the resonance of the secondary stage of a DPFM with 

respect to the reference and primary stages. In the flexure mechanism of Fig 1-2a, this is the 

frequency range in which complex non-minimum phase zeros appear. Since the secondary stage 

mass is small compared to the other stages and the X direction stiffness of the beams is relatively 

high, modes associated with beam stretching appear at much higher frequencies. This 

observation justifies the first assumption that the individual flexure beams may be treated as 

inextensible. Beam inextensibility also eliminates Θ displacement coordinates in the DFPM. 

Furthermore, in the frequency range of interest, the beams are also assumed to be massless, given 

the relatively larger masses of the various stages. This implies that the beams deform in the 

quasi-static S-shape with amplitude dictated by the relative Y displacement of the relevant 

parallelogram flexure [29, 30]. At higher frequencies, there will be other beam shapes dictated 

by the resonance of individual beams, in which case the above relations will no longer hold. 

Because of large out-of-plane stiffness, the out-of-plane displacements (and associated 

modes) are neglected in the dynamic modeling. Also, damping is neglected since the flexure 

mechanism is monolithic with no sliding joints. Experiments confirm that the dissipation from 

material hysteresis and viscous effects is very low (damping ratios about 0.001). Beyond arc-

length conservation, there are several other non-linearities in beam mechanics [27, 28], but these 

are systematically estimated and neglected using an order of magnitude analysis [13].  
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2.2.1. Dynamic Modeling of XY Mechanisms1 

 

 The kinematic non-linearity of Eqs. (2-1) and (2-2) may be incorporated in deriving the 

equations of motion for a flexure mechanism involving the parallelogram or double 

parallelogram flexure modules. To investigate how the frequency domain dynamic response 

varies with the operating point, these non-linear relations may be linearized about an arbitrary 

operating point. But this potentially holds the risk of premature linearization. To test this 

possibility, we retain the non-linear kinematic relations throughout the derivation of the dynamic 

equations of motion and linearize the latter in the end. The results prove to be the same as when 

the kinematic relations themselves are linearized at the onset. 

 Thus, defining Yij = Yi–Yj, using the subscript “o” to denote nominal values at an operating 

point, and lower case letters to denote deviation from these nominal values, Eq. (2-1) becomes: 

 ( ) ( )2
0.6 /io i jo j ijo ijX x X x Y y L+ − + = − +  (2-3) 

 Since the nominal values are still related by Eq. (2-1), Eq.(2-3) may be linearized for small 

deviations about the nominal values 

 1.2 ( / ) i j ijo ij ijx x Y L y yα
∆

− = − = − ⋅  
(2-4) 

 Here α is a coupling coefficient that depends on the operating point Yijo and captures the 

coupling between the X and Y axis displacement coordinates. 

 Next, for the purpose of investigating CNMP zeros in XY flexure mechanisms that have 

multiple DPFM building blocks, we select a simple representative flexure mechanism shown in 

Fig 2-2 to initially limit modeling complexity and enable physical insights into the observed 

dynamic phenomena. Yet, this design captures all the essential attributes of more complex 

flexure mechanisms (e.g. Fig 1-2a). The layout comprises the smallest number of symmetrically 

placed DPFMs (i.e. two) needed to produce multiple (i.e. two) closely spaced modes associated 

with the kinematic under-constraint of the secondary stages (② and ③). This mechanism 

allows stage ① to displace in the X and Y directions. The former is due to the X direction 

                                                 
1 This work was done in collaboration with Gaurav Parmar (M.E. Ph.D. 2014) at the University of Michigan 
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bearings (indicated by the rollers) at stages ④ and ⑤ and the latter is due to large bending 

deformations of the beams in the two DPFM. Large deformation leads to the geometric non-

linearity and associated coupling between X and Y displacements, mentioned above. For this 

mechanism, the operating point is given by a static displacement of stage ① in the Y direction 

with respect to ground (Y1o) caused by a constant force Fy1o. Thus, the non-collocated transfer 

from an X direction force P on stage ④ to the X displacement of stage ① (X1) can be 

investigated for different values of Y1o. In fact, this simple mechanism is representative of a 

portion (indicated by the red rectangular outline) of the more complex XY mechanism of Fig 

1-2a. 

 
Y

X Operating Point

①
②

⑤

③

④

(X1, Y1)

(X2, Y2) (X3, Y3)(X4) (X5)

k24

k12k4 k5

k35

k13

P

FY1oY1o

x1

 

Fig 2-2 Simple representative flexure mechanism 

 

The five stages have eight displacement coordinates, as shown in Fig 2-2; lower case 

versions of these coordinates represent the respective deviations with respect to an operating 

point. Furthermore, these coordinates are related by four kinematic relations (Eq.(2-4)), one for 

each parallelogram. Thus, this mechanism has four DoF and is therefore referred to as the simple 

representative 4-DoF (SR4DoF) mechanism in this thesis. The displacement coordinates x1, y1, y2, 

and y3 are chosen for this analysis, to be able to study the X displacement of stage ① and the Y 

displacements of stages ② and ③ with respect to stage ①. 

 Assuming a lumped parameter Y direction bending stiffness for each of the parallelograms 

(k12, k24, k13, k35), the equations of motion for the SR4DoF may be derived to be the following: 

 
1 1 2 3

  
[ ]    and    [1 2 0]T T

M K
x y y y P 

 

   

z z Q
z Q
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(2-5) 
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 It should be noted that the lower-case displacement coordinates in the above equations of 

motion represent the small deviations about the respective nominal operating point values. Based 

on these equations, one can derive the transfer function G(s) from the input force P to output 

displacement x1 for different values of α, which depends on Y1o: 

 10.6 /oY Lα =  (2-6) 

 In the above stiffness matrix, the Y direction bending stiffness for each parallelogram (k12, 

k24, k13, k35) is nominally 24EI/L3, where E is the bending modulus, L is the beam length, and I is 

the second moment of area about the Z axis [30]. To obtain numerical results, we use the same 

dimensions as those for the XY flexure mechanism of Fig 1-2a (see Table 2-1). Furthermore, 

although not included in the above derivation, small nominal values for damping are assumed to 

avoid singularities in the numerical simulation. Although the SR4DoF is intended to be 

symmetric, there is the possibility for parametric asymmetry between (m4 and m5), (m2 and m3), 

(k4 and k5), or (k12, k24, k13, and k35) resulting from finite manufacturing tolerances. Initially, we 

assume the parameters be perfectly symmetric; but the above lumped parameter model allows us 

to study the impact of asymmetries in the next section. 

 The last three of the four predicted modes are shown in Fig 2-3 (relative to the displaced 

configuration / operating point of Fig 2-2) while all modes are quantified in Table 2-2. There are 

three key observations: (1) The 1st mode (not shown in Fig 2-3) is the ‘rigid body’ mode in 

which all the stages vibrate together in the X direction due to springs k4 and k5; (2) The 2nd mode 

is associated with the in-phase Y direction vibrations of stages ①, ②, and ③; (3) The 3rd and 

4th modes are primarily associated with the Y direction vibrations of the two secondary stages 



19 
 

(② and ③) in the opposite and same directions, respectively, with natural frequencies close to 

each other. 

Table 2-1. Dimensions and physical parameters. 

Name Symbol Value Unit 
Beam length L 47.5 mm 
Beam height H 25 mm 

Beam thickness T 0.625 mm 
Young’s modulus (aluminum) E 6.9×1010 N/m2 

Second moment of area I 5.09×10-4 mm4 

Poisson’s ratio ν 0.33  
Motion stage mass m1 0.284 kg 

Secondary stage mass m2, m3 0.018 kg 
Intermediate stage mass m4, m5 0.177 kg 

Spring stiffness k4, k5 4.4×103 N/m 

Y
X

(a) 2nd Mode

(b) 3rd Mode

(c) 4th Mode

 

Fig 2-3 Mode shapes of the SR4DoF. Black arrows indicate the relative motion direction of each stage. 
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Table 2-2. Eigenvectors of the SR4DoF mechanism at operating point Y1o=5% of L. 

∆m23=0% 
f1=18.2 

Hz 

f2=27.6 

Hz 

f3=153.2 

Hz 

f4=154.3 

Hz 
∆m23=5% 

f1=18.2 

Hz 

f2=27.6 

Hz 

f3=150.1 

Hz 

f4=153.9 

Hz 

x1 0.9999 0 -0.0231 0 x1 0.9999 -0.0000 -0.0189 -0.0139 

y1 0 0.8075 0 0.0481 y1 0.0000 0.8073 0.0294 -0.0387 

y2 0.0068 0.4171 -0.7069 -0.7063 y2 -0.0068 0.4176 -0.9845 0.1384 

y3 -0.0068 0.4171 0.7069 -0.7063 y3 0.0068 0.4169 0.1718 0.9895 

 

 The 3rd and 4th modes arise due to the under-constrained secondary stages in the DPFM. 

When Y1o = 0 (i.e. α = 0), the vibration of the secondary stages does not cause any X direction 

motion of stage ①. Therefore, these two modes are unobservable in the G(s) transfer function. 

However, when Y1o ≠ 0, the X and Y displacements of the DPFMs get coupled, which affects the 

3rd and 4th modes differently. For the 3rd mode, the Y vibration of the two secondary stages is 

coupled to the X vibration of stage ①. However, in the 4th mode, the two secondary stages have 

the same vibration magnitude and phase in the Y direction, which results in a cancellation of the 

coupling at stage ① in the X direction. Instead, the coupling results in X direction vibrations at 

stages ④ and ⑤ (Fig 2-3c). Thus, when parameters are symmetric but Y1o ≠ 0, the 3rd mode 

shows up in the G(s) transfer function while the 4th mode remains unobservable. 

 

2.2.2. Parametric Asymmetry and CNMP Zeros 

 

 While the SR4DoF was assumed to be perfectly symmetric so far, some parametric 

asymmetry is inevitable in a practical situation due to manufacturing tolerances. Using the above 

lumped parameter model, we varied parametric asymmetry over a ± 5% range for (m4 and m5) 

and (k4 and k5). This did not have much of an effect on the flexure mechanism dynamics in terms 

of mode shapes and transfer functions. But an asymmetry in (k12, k24, k13, and k35) or (m2 and m3) 

impacts the vibrations of the secondary stages (i.e. 3rd and 4th modes) and therefore the overall 

flexure mechanism. Of the two sets of parameters, the mass parameter is more sensitive. When 

the DPFM is used as a building block, its secondary stage size and mass are minimized to reduce 
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footprint and raise the resonance frequency at which it vibrates. For example, in the XY flexure 

mechanisms of Fig 1-2a and Fig 2-2, the nominal mass of the secondary stage is 18g. Therefore, 

even a small additional mass such as 0.9g results in a relatively large variation (5%). Therefore, 

in this section, we investigate how an asymmetry in masses, ∆m23 (= m2/m3 – 1), affects the 

dynamics of SR4DoF. 

 As seen via the respective eigenvectors in Table 2-2, the impact of non-zero ∆m23 on the 1st 

and 2nd modes is minimal. This mass asymmetry primarily impacts the vibration of the two 

secondary stages, which directly influence the 3rd and 4th modes. As noted earlier, the 4th mode of 

the SR4DoF flexure mechanism is hidden in the transfer function G(s) for any Y1o (zero or non-

zero) when ∆m23= 0. However, for a small parametric asymmetry, e.g. ∆m23= 5%, the two 

secondary stages have different vibration magnitudes as seen in the eigenvector in Table 2-2. 

Thus, the X direction coupling no longer cancels out at stage ① and the 4th mode appears in 

G(s). Similarly, the impact of ∆m23 = 5% on the 3rd mode is significant. 

 G(s) is plotted in Fig 2-4 as Y1o varies from 0% to 5%, for ∆m23 = 0% and 5%. Key 

observations are: (1) As expected, the 3rd mode is hidden when ∆m23 = 0 but appears when ∆m23 

= 5%; (2) The natural frequencies of the 3rd and 4th modes drop as Y1o increases. As the X 

vibration of stage ① gets increasingly coupled with the Y vibration of the secondary stages, the 

modal mass increases more than the modal stiffness, resulting in reduced natural frequencies; (3) 

A 360° phase drop is observed at around 150 Hz in the asymmetric case (∆m23 = 5%) when Y1o = 

5% but not in a symmetric case (∆m23 = 0%). In the latter case, the phase drop due to the 

complex pole pair (3rd mode) is off-set by a phase rise due to the complex zero pair (“valley”), 

resulting in no net phase drop. For the asymmetric case, there are two stable complex pole pairs 

(3rd and 4th modes), each contributing 180° phase drop. But since the overall phase drop is 360°, 

this implies that there is no phase rise or drop at the “valley” even though there are two pairs of 

complex zeros at in this frequency region (about 153 Hz). This indicates the presence of a quartet 

of complex zeros, with one pair in the left half plane and the second pair in the right half plane, 

thereby contributing no net phase change. This is an important observation because it suggests 

that CNMP zeros can arise at certain combinations of operating points and parametric 

asymmetry. 



22 
 

-130

-125

-120

-115

-110

-105

-100

M
ag

ni
tu

de
 (d

B)

140 145 150 155 160
-540

-450

-360

-270

-180

-90

Ph
as

e 
(d

eg
)

Bode Diagram. (∆m23 = 0%)

Frequency  (Hz)

-130

-125

-120

-115

-110

-105

-100

M
ag

ni
tu

de
 (d

B)
140 145 150 155 160

-540

-450

-360

-270

-180

-90

Ph
as

e 
(d

eg
)

 

 

Bode Diagram. (∆m23 = 5%)

Frequency  (Hz)

Y1o = 0% * L

Y1o = 2.5% * L

Y1o = 5.0% * L

3rd Mode
3rd  Mode

4th Mode

Valley
Valley

 

Fig 2-4 G(s) transfer function for different operating points (Y1o) and mass asymmetry (∆m23). 

2.2.3. Existence of CNMP Zeros 

 

 Next, we proceed to analytically determine the conditions under which CNMP zeros arise. 

Based on modal decomposition, the transfer function G(s) may be written as follows, where βi is 

the modal residue and ωi is the corresponding natural frequency: 

 
2 3 24
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(2-7) 

 The decomposed form can also be expressed via a numerator N(u) and a denominator D(u), 

each a polynomial. Note that there are no odd power s terms because damping is ignored. If N(u), 

which is a cubic polynomial, has two complex conjugate roots, then G(s) will have a quartet of 

complex zeros. Two of these zeros will be in the right half plane (i.e. CNMP zeros). For this to 

happen, the following inequality in the coefficients of N(u) has to hold [52]: 

 3 2 2 3 2 2
3 2 1 0 2 0 2 1 3 1 3 018 4 4 27 0b b b b b b b b b b b b∆ = − + − − <  (2-8) 
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 Therefore, this is the mathematical condition for the existence of CNMP zeros in the G(s) 

transfer function. Shown in Fig 2-5, Δ is plotted in a contour map against a range of operating 

points and parametric asymmetry values for the SR4DoF flexure mechanism. The color in the 

contour map represents the magnitude of Δ: red represents higher positive values, blue represents 

lower positive values, and the black region represents the conditions for which Δ becomes 

negative, indicating the presence of CNMP zeros. This particular mechanism is seen to be very 

sensitive to positive asymmetry, i.e., if m2 is greater than m3 even by a small amount, then 

CNMP zeros arise in specific ranges of Y1o. However, if m2 < m3, then the entire operating range 

is free of CNMP zeros. The reason for such asymmetric behavior is due to the physical 

asymmetry introduced by the actuator placement in Fig 2-2). 
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Fig 2-5 Contour map of ∆ function (a) top view; (b) 3D view. 

 

 With this finding, we are able to replicate via modeling some aspects of the NMP 

phenomenon previously observed experimentally (Fig 1-2b). Although, for this study we 

intentionally chose the SR4DoF mechanism to keep modeling complexity and assumptions 

minimal, it is representative of the more complex designs in that it incorporates the key attributes 

of DPFM building blocks (with their under-constrained secondary stages), geometrically 

symmetric design, large displacements leading to non-linear coupling between axes, non-

collocated transfer functions, and parametric asymmetry. 
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 In the design of multi-DoF flexure mechanisms, it is a common guideline to employ 

symmetric and/or periodic geometries to cancel undesired motion, improve space utilization and 

enhance quasi-static performance [3]. However, the above dynamic model for the SR4DoF 

mechanism indicates that a perfectly symmetric layout is sensitive to parametric asymmetry, 

which is likely to occur due to manufacturing tolerances and can give rise to CNMP zeros. But if 

the design is intentionally made asymmetric (i.e. if ∆m23 is sufficiently negative), then CNMP 

zeros can be avoided even if there are finite manufacturing tolerances. 

 This also shows that one can pursue the springs in the flexure mechanism (i.e. beam flexures 

dimensions and layout) to be symmetric to achieve the desired quasi-static performance, while 

choose certain masses to be asymmetric which provides the desired dynamic performance 

without impacting quasi-static performance. This combination of symmetry in certain attributes 

and asymmetry in others is rather counter-intuitive but helps meet both quasi-static and dynamic 

performance goals. 

 In Chapter 6 we will see that, with certain intentionally mass asymmetric design, we also 

create the possibility of achieving a higher closed-loop bandwidth, while maintaining robustness, 

in the SR4DoF flexure mechanism, comparing to other mass configuration. This would have 

been impossible without the knowledge above. 

 

2.2.4. Modeling a Complex XY Mechanism 

 

 So far, we modeled the SR4DoF flexure mechanism to predict CNMP zeros at around 150 

Hz. Next, we extend this modeling approach to the more complex (and practically relevant) XY 

flexure mechanism of Fig 1-2a. The transfer function X actuator force Fx to the X displacement 

of the motion stage Xms is investigated. The Y actuator is used to provide a constant force Fyo to 

achieve various Y direction operating points Ymso. There are 13 rigid stages in this case, each 

with an X and Y displacement coordinate.  Each of the 16 parallelogram flexures provides one 

kinematic relation between relative X and Y coordinates. Therefore, the model has 10 

independent DoFs, which results in the same number of equations of motion, natural frequencies, 

and mode shapes. There is a “rigid body” X vibration mode, a “rigid body” Y vibration mode, 
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and eight modes associated with the vibration of the secondary stages (all around 150Hz) in the 

eight DPFM. Next, we arbitrarily vary these secondary stage masses with respect to their 

nominal value, and use the model to predict the 0° / 360° / 720° phase drop seen in Fig 1-2b and 

the existence of CNMP zeros. The secondary stages are identified by the subscript a-h, as shown 

in Fig 1-2a. We present three cases in Table 2-3 with different combinations of secondary stage 

mass variations that result in the three different phase drops. Thus, we are able to analytically 

predict the seemingly unexplained phenomena observed experimentally in Fig 1-2b. 

 

Table 2-3. Deviations of masses that cause different phase drops. 

Phase Drop Yms 
(% of L) 

% deviation in masses 

ma mb mc md me mf mg mh 
0 0 0 0 0 0 0 0 0 0 

360° 4.88 -8.16 13.10 8.57 -13.21 -13.24 0.66 -4.80 -13.12 
720° 9.54 8.47 12.08 -14.19 -12.78 6.59 -2.42 14.97 5.14 

 

2.3. Possible Relation between CNMP Zeros and Curve Veering 

 

 As noted earlier, the SR4DoF mechanism considered in this chapter has a symmetric and 

repetitive geometry, which leads to two closely spaced modes (i.e., the 3rd and 4th modes shown 

in Table 2-3). Furthermore, these modes vary with the operating point and parametric asymmetry. 

The operating point determines the extent of the cross-axis coupling between X and Y 

displacements, thus building a connection between the 3rd and 4th modes. All these features make 

the phenomenon of curve veering (or mode veering) potentially relevant in this study. 

 Curve veering occurs when the eigenvalue loci of two closely spaced modes in a system 

approach each other and then diverge, as a result of parameter variation [53]. The point in the 

parameter space where the two modes are the closest is called the veering point. The special case 

when the two modes intersect at the veering point is called mode crossing [54]. In the vicinity of 

the veering point, eigenvectors undergo dramatic changes. As a result, the system could become 

so-called “critically configured” meaning that small changes in a system parameter could cause 

large changes in system response [55]. 
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Fig 2-6 a. Eigenvalue loci of the 3rd and 4th modes; b. and c. Eigenvector elements of the 3rd and 4th modes. The 

sign of magnitude indicates the phase. 

 

 In the SR4DoF flexure mechanism dynamics, we observe curve veering close to the 

operating point and parametric asymmetry value at which the CNMP zeros arise. Fig 2-6a shows 

the eigenvalue loci of the 3rd and 4th modes as a function of the operating point (Y1o) and 

parametric asymmetry (∆m23). When the structure is completely symmetric (i.e. ∆m23=0), the two 

loci intersect with each other at a frequency of 153 Hz and Y1o=6.6%. Graphically (Fig 2-6a) as 

well as qualitatively, this is mode crossing. When the structure is asymmetric (e.g. ∆m23 > 0), the 

two loci do not intersect. Instead, they approach each other and then diverge as Y1o increases. 

Thus the point when Y1o=6.6% is the veering point. 

 In the 3rd and 4th modes, the Y direction vibrations of the two secondary stages (i.e. y2 and y3) 

are dominant in the respective eigenvectors (see Table 2-3). Therefore, only the evolution of y2 

and y3 are plotted in Fig 2-6. Fig 2-6b shows such evolution of the 3rd mode. When ∆m23 = 0 and 
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Y1o = 0, y2 is 0.7 and y3 is – 0.7 (i.e. opposite directions). When Y1o reaches the crossing point, the 

value of y3 suddenly changes from -0.7 to 0.7 and stays constant with y2 unchanged (i.e. y2 and y3 

become in the same direction); in other words, modes 3 and 4 ‘swap’ at the crossing point. This 

transition is more gradual (i.e. without a discontinuity) for non-zero ∆m23. Similarly, as shown in 

Fig 2-6c, in the 4th mode, y2 and y3 change from being in the same direction to opposite 

directions. Note that modes shapes shown in Fig 2-3 correspond to those before curve veering 

has happened. 

 To summarize, the eigenvalues and eigenvectors of the 3rd and 4th modes exhibit veering. 

Furthermore, for the asymmetric case (∆m23 > 0) at the veering point, y3 becomes zero while y2 

becomes 1 in the 3rd mode, while opposite happens in the 4th mode. This is recognized to be 

mode localization [56]. 

 The above analysis shows that curve veering exists in the SR4DoF flexure mechanism 

dynamics. However, the more important observation here is that the curve veering happens at 

about the same operating point (Y1o=6.6%), positive parametric asymmetry (∆m23 > 0), and 

frequency (153 Hz) at which CNMP zeros appear (see Fig 2-4 and Fig 2-5). Moreover, the 

CNMP phenomenon and curve veering share the same key factors such as closely spaced modes, 

parametric asymmetry, and mode coupling (caused by operating point variation in this case). 

Therefore, we hypothesize that this is not merely a coincidence and that there exists a 

fundamental relationship between these two phenomena. If established, this would allow a new 

physical perspective and interpretation of the CNMP phenomenon, and may help guide physical 

system design. 

 

2.4. Contributions and Conclusion 

 

 The key contributions of this chapter are: (1) a lumped-parameter modeling approach is 

proposed to analytically model the dynamics of flexure mechanisms comprising the 

parallelogram or double parallelogram modules. This model captures the key relevant geometric 

non-linearity in large displacement flexure mechanics. Linearization about any arbitrary 

operating point enables frequency domain analysis; (2) Based on this model we are able to 
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predict previously unexplained CNMP zeros seen experimentally. The model establishes the 

existence of CNMP zeros under certain combinations of operating point and parametric 

asymmetry in the non-collocated transfer function of a simple representative XY flexure 

mechanism; (3) This finding helps generate the design insight that, rather than an intuitively 

symmetric design, an intentional positive/negative asymmetry in mass can guarantee/avoid 

CNMP zeros, respectively. (4) This overall investigation may have relevance not just to the XY 

flexure mechanisms considered in this chapter but also to a broader range of flexible systems. 

 In addition, there are several questions posed by this chapter: (1) Experimental validation of 

the analytical predictions such as the CNMP map (Fig 2-5) that can validate the modeling 

simplifications and assumptions. (2) While CNMP zeros were predicted for the SR4DoF as well 

as the full XY flexure mechanisms, these results are mathematical; greater physical insight into 

what causes the CNMP zeros is desirable. (3) The potential correlation between CNMP zeros 

and curve veering was based on observations in this chapter but needs to be investigated 

scientifically. (4) Based on these findings, physical and control system design can be explored to 

achieve the originally stated dynamic performance goals of large range, high precision, and high 

speed. These questions are answered in the following chapters. 
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Chapter 3. On the Non-Minimum Phase Zeros of Lightly Damped Flexible Systems 

 

In Chapter 2, an approach is proposed to model the relevant CNMP zeros and predict the 

conditions where these CNMP zeros appear. In this chapter, a more fundamental question is 

considered: what is the genesis and what is the physical meaning of CNMP zeros? 

This chapter focuses on the zeros of systems that are linear time invariant (LTI) and single 

input single output (SISO). There are three main original contributions presented in this chapter. 

First, we present a systematic investigation using the variation of modal residues to demonstrate 

the conditions for the existence of various types of zeros in the lightly damped flexible systems. 

Fig 3-1 illustrates all types of zeros that can exist in such systems, namely marginal minimum 

phase (MMP), real minimum phase (RMP), real non-minimum phase (RNMP), complex 

minimum phase (CMP), and complex non-minimum phase (CNMP). The term marginal 

minimum phase (MMP) is based on the assumption of lightly damped flexible systems and refers 

to complex zeros that are slightly to the left of the imaginary axis due to the small damping. 

Given the significance of NMP zeros in control system design and performance, particular 

emphasis is provided on RNMP and CNMP zeros.  

Real

Imag
Marginal MP (MMP)

Complex NMP (CNMP)

Real NMP (RNMP)

Complex MP (CMP)

Real MP (RMP)

 
Fig 3-1 Definition of all types of zeros discussed in this chapter. 
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Second, we propose a graphical tool that utilizes the sequence of dominant modes and the 

sequence of their relative signs to predict the types of zeros of lightly damped flexible systems. 

Via these sequences, one can physically understand the sufficient and necessary conditions for 

the existence of certain types of zeros; one can also explain the initial transients of the time-

domain step responses of systems with certain type of zeros. Moreover, this tool helps visualize 

the impact on close loop control systems with NMP zeros. Third, we show the capability of 

extending this investigation to cover more general flexible systems, and not just flexure 

mechanisms. 

The rest of this chapter is organized as below. Section 3.1 provides a literature review on 

modal theory (i.e., modal decomposition and the variation of modal residues) and various kinds 

of zeros in flexible systems. Section 3.2 starts with the assumptions and definitions that are used 

in the rest of the chapter. Next, we introduce the concept of “sequence of dominant modes” to 

explain the conditions for the existence of various types of zeros. Particular emphasis is placed 

on NMP zeros, including necessary and sufficient conditions, physical interpretations, and 

impact on closed loop control. Additionally, we explain why flexible systems with different 

NMP zeros behave differently in the initial transient of their time-domain step responses (i.e., 

initial undershot, zero-crossings, and monotonousness). In Section 3.3, we explore a situation of 

flexible systems with both RNMP and CNMP zeros that have non-zero damping. Additionally, 

other generalizations are discussed. Lastly, this chapter concludes in Section 3.4. 

 

3.1. Literature Review 

 

 In recent years, there has been a growing body of research literature on the zeros in the 

dynamics of flexure mechanisms that are LTI systems. These studies focus on properties of zeros 

in two domains: the frequency domain and the time domain. In the frequency domain, the studies 

can be further classified into two groups: (1) studies that focus on several fundamental system 

types; and (2) studies that focus on certain specific types of zeros based on various specific 

systems.  
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Studying the zeros of LTI systems using fundamental system types is based on the idea of 

modal decomposition [57]. Since a single mode cannot lead to any zeros, the simplest system 

type to study zeros is a system with only two modes. This representation can be obtained from 

specific systems with two degrees of freedom (DoF), or systems that can be truncated into only 

two dominant modes. In this system type, an even simpler case is when one of the modes has 

zero natural frequency (i.e., the rigid-body mode). Miu [58] used a two-mass torsional model and 

studied the variation of the locations of zeros (also termed as the migration of zeros) due to the 

variation of sensor combination. Rankers [59] studied the intersections between a rigid-body 

mode and a flexible mode in a Bode plot. He demonstrated that the variation of zeros due to the 

variation of modal residues. Coelingh [60] studied a motion stage with flexible guidance and 

shows the mapping between sensor / actuator locations and various types of zeros. In this body 

of works, the MMP zeros, RMP zero, and RNMP zero are identified under certain conditions.  

There are also studies that focus on systems that are generalized from two-mode model. 

Tohyama and Lyon [48, 61] studied the transfer function in room acoustics and used a system 

with two modes and a constant remainder. By varying the modal residues and the remainder, 

they identified MMP zeros and CNMP zeros. However, these studies are limited by two main 

factors. First, the mathematical investigation requires further work to obtain a complete 

architecture, since these studies only provided the variation of the remainder without showing the 

relation between the two modes. As result, some type of zeros (e.g., RNMP zero) are not 

captured. Second, few physical insights are provided for the conditions that occur when zeros 

change their types. Duffour and Woodhouse [62] studied the transfer function of linearized 

systems with a frictional contact. In their studies, analytical expression and the locus technique 

are used to examine cases with two modes only, two modes with a constant remainder, and three 

modes, as well as undamped and damped systems. MMP zeros and CNMP zeros are identified; 

however, in each of the cases reported, attention is only given to a specific condition without a 

complete scenario (e.g., the RNMP zero can appear in a two-mode model but is not covered). 

Martin [43] studied a model with three modes numerically and identified the MMP, RNMP, 

RMP, and CNMP zeros. However, his results are limited to the numerical results without further 

generalization. It is noteworthy that he also considered the transfer function decomposed into a 

general form with n modes that are second order and undamped. He concluded that for the 
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situation of sensor and actuator collocation, the zeros are guaranteed to be MMP zeros and are 

located between the poles of the system (known as poles-zeros alternation).  

The advantage of this group of work (using generalized forms of systems) is that when 

certain assumptions are met, the transfer function of a general system can be regarded as a 

combination of several of such simple forms. Thus the conclusions developed based on these 

forms can be applied. However, most of these studies simply report a mathematical or 

experimental observation, without providing further insight into when and why the zeros appear, 

especially RNMP and CNMP zeros.  

The second group of studies focuses directly on a certain type of zeros based on specific 

systems. Miu [63] studied the MMP zeros in a simple class of systems in the form of single-axis 

serially connected spring-mass structures. He concluded that for this class of systems, the MMP 

zeros indicate the natural frequencies of several sub-systems isolated by the actuator and sensor. 

Chandrasekar et al. [64] showed that all of the zeros obtained in such systems with serially 

connected spring-mass structures are MMP zeros. Straete [65] used the approach of bond graph 

to study zeros generally and concluded that zeros are related to subsystems where the energy is 

“trapped”. Also, Calafiore [66] analytically characterized the sub-systems related to the zeros. 

However, in these works, a compact sub-system is available only in a simple class of systems. 

For a general system (especially when the output is a linear combination of the states of the 

system), the related sub-systems are difficult to identify and their physical insights are not easy 

to obtain. An example is Coelingh’s model [60] (Fig 3-7a), which uses a multi-axis system and 

has certain coupling between the modes in different axes. 

Studying the zeros of systems with a single beam has also been an active area of research. 

Spector and Fleshner [42, 45] studied a non-collocated pinned-free beam model and identified 

the migration of zeros on the two axes due to variation of the sensor location. Wie and Bryson 

[67] studied the pole-zero patterns in flexible structures including beams, membranes, and 

triangular trusses. Lee and Speyer [68] used a Bernoulli-Euler beam and studied the migration of 

zeros in various input-output transfer functions. In addition, Aphale et al. [69] studied the zeros 

of a cantilever beam with the impact of a feed-through term, and Vakil et al. [70] studied the 

location of zeros of a single flexible beam under the variation of different physical parameters. In 

these works, the migration of zeros is shown to be anchored on the real and imaginary axes. 
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However, the migration of zeros can only show the conditions of RNMP zeros, which is not 

sufficient to obtain the physical interpretation of RNMP zeros. One particular study of a 

cantilever beam presents an attempt at establishing a connection between RNMP zeros and wave 

propagation [58]. However, this theory is limited by two main factors. First, the scope is limited 

to only continuous systems whose equation of motion contains a fourth order differentiator (e.g., 

Euler-Bernoulli beams). Therefore, this would not apply to the vibration of a string. However, 

RNMP zeros exist in a much broader range of systems, thus generalization is desired. Second, 

part of the derivation provided in this work is incorrect and requires a re-derivation. 

Though CNMP zeros have been observed in flexible systems [16, 71], there are a limited 

number of studies that focus on understanding these zeros. Cannon and Schmitz [47] identified 

RNMP zeros and CNMP zeros numerically in the transfer function of a pinned-free beam. Loix 

et al. [49] studied a four DoF spring-mass model with spring stiffness variation. They identified 

the existence of CNMP zeros and the corresponding zero locus. They also provided an 

experimental validation on the existence of CNMP zeros in a cantilever beam set-up. It is 

interesting to note that the CNMP zeros captured in both works are not common in the 

theoretical studies of beams (as reviewed in the previous paragraph). However, few discussions 

are available to understand this difference. Hoagg et al. [50] investigated a three DoF spring-

damper-mass model that also captured CNMP zeros. However, they assumed a large damping 

ratio (ζ>1.3) to create CNMP zeros. In a physical system example, Awtar [51] predicted and 

observed CNMP zeros arising in the non-collocated transfer function of a multi-spring multi-

mass servo system as a result of the electromagnetic coupling between a DC motor and 

tachometer. In our recent work, CNMP zeros have been experimentally observed and modeled in 

a flexure mechanism-based motion stage that is lightly damped [72]. However, all of these 

studies on CNMP zeros are case-specific and cannot be generalized to provide a further 

understanding on a broader range of flexible systems. 

The advantage of this group of works that focuses on specific systems is that the existence of 

certain type of zeros (particularly the RNMP and CNMP zeros) can be validated via physical 

models and experiments. Furthermore, the relationship between physical parameters and the 

locations of zeros are demonstrated. However, there is lack of physical interpretation on the 
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conditions when zeros change to NMP zeros, especially CNMP zeros. Also, it is desirable to 

have a generalized conclusion that can unify all these studies. 

There is another large body of studies that focus on the zeros in the time-domain response. 

Generally, zeros are understood as the source of a blocking effect, i.e., each zero blocks a 

specific input signal [16, 73]. It follows that for a system with NMP zeros, an exponential 

unbounded input determined by the system’s NMP zeros leads to a bounded output. It is also 

commonly known that the step response of a stable, strictly proper transfer function exhibits 

initial undershoot if and only if the system has an odd number of positive zeros [73, 74], where 

the initial undershoot is defined for a step response whose initial value and steady state value 

have opposite signs. Great effort is made to understand the relationship between the number of 

NMP zeros and the time-domain properties of a system in response to a step input [75-77]. 

However, for the initial properties (e.g., undershoot, zero-crossings, and monotonousness), 

Hoagg and Berstein [73] reviewed the relevant studies and found the statements to be 

inconsistent with each other. This implies that the connection between NMP zeros and the 

properties of corresponding step responses is still open to consideration. Furthermore, to 

understand the initial response of a system to a step input, the information on the numbers of the 

system’s NMP zeros alone is insufficient. In addition, in a physical example, Cannon and 

Schmitz [47] experimentally observed the initial undershoot of a cantilever beam with NMP 

zeros and explained that the time for the wave to propagate the length of the beam is non-zero. 

All of these works present a time-domain understanding of the NMP zeros. However, similar to 

the previously discussed groups of works, few physical insights are available on why the NMP 

zeros appear. Also, attention is mostly paid on RNMP zeros, while the understanding of CNMP 

zeros is lacking.  

To summarize, the gap of knowledge in this area is characterized into three main points as 

follows. First, the technique of varying modal residues can be used to study general flexible 

systems. However, current results are incomplete to present analysis on systems that include all 

possible types of zeros. Second, regarding the NMP zeros (especially CNMP zeros), the 

interpretation of the physical meaning and the genesis (when and why) of NMP zeros is still an 

open question. Third, current available references are presented as isolated case studies; therefore 

a systematic presentation to demonstrate the connection between them is desired. 



35 
 

In order to address the above-mentioned knowledge gap, we present a systematic step by step 

investigation based on modal decomposition and the variation of modal residues in the next 

section. We begin with preliminaries with a set of assumptions that can help one better define the 

systems being considered. Several general system types are presented in a sequence that 

gradually increases complexity. 

 

3.2. Investigation of Zeros based on the Variation of Modal Residues 

3.2.1. Assumptions and Definitions 

 

For an LTI and SISO system, the input-output dynamics (i.e., transfer function) can be 

expressed as the sum of the contribution of its decomposed modes (Eq. (3-1)), where all of the 

coefficients in both the numerator and the denominator are real numbers. It follows that the 

variation of modal residues (αi) leads to variation of the coefficients of the numerator (bi), and 

thus the variation of zeros of G(s). In addition, the variation of pi would change both ai and bi. 

However, since the variation of pi refers to the change of the internal modes of the system. As 

the first step investigation, such variation is not considered in the main section of this chapter. 

We will discuss this situation in Chapter 4. 
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(3-1) 

Three main assumptions are made here. These assumptions are consistent with the 

investigations in the field of structural dynamics in the literature. 

Assumption A3-1: the system is a structural system. In other words, all of the decomposed 

modes are second order, and there are no first order modes. 

Assumption A3-2: damping is negligible.  

Assumption A3-2 is valid for flexible systems such as flexure mechanisms that are 

monolithic with no rolling or sliding joints [2], as well as for space structures and machines that 

operate in vacuum [78]. Our experiments in flexure-based motion systems [72] confirmed that 
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the dissipation from material hysteresis and viscous effects is very low, with a damping ratio in 

the order of 0.001.  

Assumption A3-3: the system considered has no right half plane poles (i.e., the plant is open 

loop stable). 

With Assumptions A3-1 to A3-3, Eq. (3-1) can be restated as Eq. (3-2), where ωi is the 

natural frequency of the ith mode. 
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(3-2) 

Note that in Eq. (3-2) the modal residue (αi) is the residue related to the ith decomposed mode 

(i.e., a second order system). Based on the theory of modal decomposition [59], αi is determined 

by the ith eigenvector, the system’s mass matrix, and the sensor / actuator locations. In this 

chapter, we only consider αi as real numbers. 

With Eq. (3-2), it follows that the numerator of G(s) has no odd order terms; therefore, the 

zeros of G(s) are always in symmetric pairs (i.e., symmetric w.r.t. to either the two axes or the 

origin). Based on the value of cj, there are three different situations. First, if cj is positive real, 

then the zeros are located on the imaginary axis and symmetric w.r.t. the real axis. Second, if cj is 

negative real, then the associated zeros are located on the real axis and symmetric w.r.t. the 

imaginary axis. Among these two zeros, one is an RNMP zero, and the other is a RMP zero. 

Third, if cj is complex, there must be a cj
* as its complex conjugate. Thus the associated zeros are 

in the form of a quartet in the complex plane, and they are symmetric w.r.t. to both the real and 

the imaginary axes. Among these four zeros, there is a pair of CNMP zeros and a pair of CMP 

zeros. 

 For easy representation, in the naming convention of this thesis, we use the term marginally 

minimum phase (MMP) zeros to refer to the first situation (a pair of zeros on the imaginary axis, 

see Fig 3-1). This because even though we have assumed zero damping, in practice there is a 

small amount of viscous or structural damping, which shifts the zeros slightly to the left of the 

imaginary axis, making them marginally minimum phase. Next, we use the term RMP-RNMP 

zeros to refer to the zeros in the second situation (a pair of zeros with one RMP zero and one 
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RNMP zero). Lastly, we use CMP-CNMP zeros to refer to the zeros in the third situation (a 

quartet of zeros with a pair of complex MP zeros and a pair of CNMP zeros). 

It is noteworthy that based on Assumptions A3-1 to A3-3, all of the NMP zeros are in the 

form of either RMP-RNMP or CMP-CNMP zeros. Furthermore, MMP zeros and RMP-RNMP 

zeros have only one pair of zeros, while CMP-CNMP has two pairs (i.e., a quartet). 

In the remainder of this section, several new terms are defined to facilitate the subsequent 

discussion. The purpose of introducing these definitions is described below: First, we setup the 

concept of mode “take over”; Second, the idea mode “take over” is used to define the “dominant 

mode” in a specific frequency region; Finally, the sequence of the dominant modes from low 

frequency to high frequency is used as the proposed tool to examine the various types of zeros 

identified above.  

Note that under the Assumptions A3-1 and A3-2, the phases of a transfer function can only 

be either 0° (defined as the positive direction / sign) or 180° (defined as the negative direction / 

sign). For a system’s transfer function G(s), denote the contribution of mode x as Gx(s) and 

denote the contributions of all other modes as Gx̅(s). It follows that G(s)=Gx(s)+Gx̅(s).Then 

consider the following situations: 

(1) If for a mode x, there is a frequency ω0 such that  

a. G(jω0)=0, and 

b. G(jω0
+)·Gx(jω0)>0 or G(jω0

-)·Gx(jω0)<0 

Then we say that mode x takes over at ω0, as frequency increases. Note that condition (1a) 

indicates that there is zero crossing in G(s) at ω0, and condition (1b) indicates that this 

zero crossing is caused by mode x. 

(2) If there are multiple modes (e.g., mode x1, mode x2, and mode x3) satisfying the above 

condition (1), then rewrite G(s) into the form as G(s) = Gx1(s) + Gx2(s) + Gx3(s) + Grest(s) 

and consider the following. 

a. Consider the sole impact of each candidate. For example, G1(s)=Gx1(s)+Grest(s). If 

for G1, check if there is a frequency ω1 sufficient closed to ω0, such that condition 

(1) is satisfied. 

b. If there is at least one candidate (e.g., mode x1) that satisfies condition (2a), then 

we say that mode x1 takes over at ω0, and those that do not satisfy condition (2a) 
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are not the modes that take over at ω0. 

c. If there are multiple candidates that satisfy condition (2a), then we can use an 

abstract mode to represent the contribution of these candidates. In this case, the 

only possible cases are: DC constant for low frequencies and double integrator 

(DI) for high frequencies.  

d. If none of the candidate satisfies condition (2a) but recall that each of them 

satisfies condition (1), then we say there is an abstract mode that takes over at ω0, 

as the contributions of all the candidates. 

(3) If for a mode x, there is a frequency ω0 such that  

a. |Gx(jω0)|>>|Gx̅(jω0)|, and 

b. Among all of the decomposed modes, there is at least one mode that is non-

decreasing. 

Then we say that mode x takes over at ω0, as frequency increases. Note that this is a take-

over where there is no zero-crossing in G(s). In addition, condition (3b) indicates that 

there is no take-over defined in high-frequencies region where all of the decomposed 

modes are decreasing. 

(4) Mode x cannot take over twice continuously. In other words, if mode x has two take-

overs (or more), then between each of the two take-overs of mode x, there has to be a 

take-over of a mode other than mode x. 

(5) We say that mode x is the dominant mode in the range (ω1, ω2). If: 

a. Mode x takes over at ω1, and mode y takes over at ω2, with ω1 <ω2.  

b. There is no mode that takes over in the range (ω1, ω2).  

Particularly, if there is no mode that takes over in the range (0, ω1), then mode x is the 

dominant mode in the range (0, ω2), or the dominant mode in the low frequencies; if there 

is no mode that takes over in the range (ω2, +∞), then mode y is the dominant mode in 

the range (ω2, +∞), or the dominant modes in the high frequencies. Also, we say that 

mode x is taken over by mode y at ω2. 

With this definition, it follows that at certain frequency range, a system behaves as the 

dominant mode corresponding to that frequency range. Moreover, the phase of a system in that 

frequency range is determined by the dominant mode. 
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Note that the definition above has some rough definitions (e.g., “>>” and “near”) that result 

in rough bounds. However, we are interested in the sequence of dominant modes of a system. As 

illustrated later in this chapter, such sequence along the entire frequency axis is well-defined 

even with the rough positions of the bounds. Moreover, such sequence has significant physical 

meaning related to the NMP zeros. Without losing generality, in this thesis, these sequences are 

discussed in the direction as frequency increases. 

 

3.2.2. Systems with Two Modes: a Double Integrator and a Second Order Mode 

 

Based on Assumptions A3-1 to A3-3, consider the assumptions as following. 

Assumption A3-4: consider the transfer function G(s) of a system and its two modes of 

interest (denoted as mode u and mode v). In the frequency range between the natural frequencies 

of mode u and mode v, G(s) can be approximated as the contributions of only these two modes, 

while the contributions of all other modes are negligible.  

Assumption A3-5: mode u is much slower than mode v (i.e., ωu<<ωv). 

Therefore, with assumptions A3-1 to A3-5, in the frequency region around ωv, mode u can be 

approximated as a rigid-body mode (double integrator). The first system type is then presented. 

Consider the variation of modal residues of only two modes as in Eq. (3-3), where mode u is a 

double integrator. 
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(3-3) 

 Additionally, for ease of representation, we follow the assumption as below, which explains 

why αu is positive in Eq. (3-3). 

Assumption A3-6: for the transfer function of a system that is expressed as the contributions 

of its relevant decomposed modes, the slowest mode is in the positive direction (i.e., the modal 

residue of the slowest mode is positive). 
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With Eq. (3-3), if we vary αv, but fix every other variable, then we obtain the locus of zeros 

along the real and the imaginary axes as shown in Fig 3-2a, which is termed as the migration of 

zeros in previous studies [58, 60, 68]. Fig 3-2b demonstrates the corresponding values of αv at 

certain zero locations shown in Fig 3-2a. Note that Fig 3-2a can also be obtained via the locus 

technique [79]. Therefore, Fig 3-2a is also termed as the locus of zeros. 

0v 

Real

Imag
II 

(at Infinity)

III (at Origin)

I

(a)

I

v 

III

v u v 
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Mode v

 
Fig 3-2 Migration of zeros (double integrator + single mode). (a) the locus of zeros; (b) conditions of αv. 

 

 Three main observations are reviewed. First, when αv is in the segments of I-II and I-III in 

Fig 3-2b, the corresponding zeros appear in the form of MMP zeros as in Fig 3-2a. Particularly, 

when αv is at I or III in Fig 3-2b, the zeros are collocated with the poles of mode v or mode u (at 

origin) respectively, leading to a pole-zero cancellation.  Note that in Fig 3-2b, the situations of 

both positive infinity and negative infinity are related to same point III. Second, when αv is in the 

segment of II-III in Fig 3-2b, the zeros appear in the form of RMP-RNMP zeros. Moreover, 

RMP-RNMP zeros are the only type of NMP zeros in systems described as Eq. (3-3). Third, for 

systems with collocated sensor and actuator, one can guarantee αu·αv>0 (i.e., αv>0 under 

Assumption A3-6) [59]. Consequently, the zeros are guaranteed to be MMP zeros and appear 

between the poles (known as pole-zero alternation) [43]. However, for systems with non-

collocated sensor and actuator, there is no such guarantee. Instead, zeros can appear in any 

situations shown in Fig 3-2. 
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Fig 3-3 Bode plot of G(s) expressed in decomposed modes showing MMP zeros: (a) decomposed modes are in-

phase; (b) decomposed modes are out-of-phase. 

 

 To demonstrate how MMP zeros appear, a numerical examples of two fundamental 

situations are presented in Fig 3-3 (similar works can be found in [57, 58]). In both situations, the 

transfer function G(s) has only two modes, namely mode u (the rigid-body mode) and mode v. 

The Bode plots of G(s) are then examined. With Assumptions A3-1 and A3-2, a transfer function 

can only be either positive or negative at a given frequency. Therefore, in Fig 3-3a, the modes 

with the same sign (i.e., αu·αv>0) are called in-phase modes; conversely, in Fig 3-3b, the modes 

with opposite signs (i.e., αu·αv<0) are called out-of-phase modes. In each plot of Fig 3-3, there is 

a specific frequency when the two decomposed modes have the same magnitudes but different 

signs (i.e., opposite phases). At these frequencies, G(s)→0, indicating a pair of zeros on the 

imaginary axis. To conclude, for system with only two modes and under Assumptions A3-1 to 

A3-6, the MMP zeros appear if and only if (sufficient and necessary condition) there is a 

frequency where these modes have the same magnitude but opposite signs.  

Since MMP zeros are extensively studied, we will focus on the NMP zeros in the rest of this 

chapter. Furthermore, since in-phase modes are guaranteed with only MMP zeros, we will focus 

on the situation of out-of-phase modes (i.e., αu>0 and αv<0 under Assumption A3-6).  

 Shown in Fig 3-4 is the Bode plot of a system that described as Eq. (3-3) which contains a 

double integrator (mode u) and a second order mode v. The comparison between the MMP case 

and the RMP-RNMP case is demonstrated, under the variation of the modal residue αv (αv<0). 
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Under the Assumptions A3-1 to A3-3, only the magnitudes are plotted, with the signs of the 

magnitudes indicating their corresponding phases. 
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Fig 3-4 Decomposed modes under different modal residues (double integrator + single 2nd order mode). 

  

The blue dashed line corresponds to mode v in the case of MMP zeros. Two points (P1 and 

P2) indicate the same magnitudes of the two modes. At P1, the contributions of the two modes 

are in the same direction (negative). According to the definition of mode “taking over”, there 

exist a frequency near P1 where mode u is taken over by mode v (i.e., a take-over in the same 

direction). In contrast, the contributions of the two modes are in the opposite directions at P2. 

Thus, P2 is the frequency where mode v is taken back over by mode u (i.e., a take-over in 

opposite directions). Therefore, the sequence of dominant mode in this MMP case is denoted as 

[u]-[v]-[u]. Moreover, P2 indicates the existence of MMP zeros (same magnitude but opposite 

directions). Thus, P2 is the frequency of the associated MMP zeros. Conversely, the red solid 

line corresponds to mode v in the case of RMP-RNMP zeros. In this case however, there is only 

one point (P3) indicating that there is a taking over from mode u to mode v near P3. 

Consequently, the sequence of dominant modes is denoted as [u]-[v].  

 Next, the phase of G(s) is examined. According to Eq. (3-3), the phase of G(s) will follow 

the phase of the mode that is the dominant mode. Thus, for the MMP case, at low frequencies, 
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G(s) starts as the double integrator whose phase is -180°. Next, near P1, mode v takes over and 

becomes the dominant mode. Thus, G(s) drops towards -360° due to the resonance of mode v. 

However, at P2, the double integrator takes over again. Consequently, G(s) rises back to -180°. 

In contrast, there is only one mode taking over in the RMP-RNMP case. Therefore, near P3, 

mode v takes over and is never taken back over by the double integrator. As a result, G(s) begins 

at -180° and drops to -360° due to the resonance of mode v. 

 A numerical example is provided to show a comparison between an MMP case and an 

RMP-RNMP case. The system used in this example is shown in Eq. (3-4). We use αv=-0.5 for 

the MMP case and αv=-5 for the RMP-RNMP case. Additionally, a small damping ratio of 0.001 

is added to avoid numerical errors.  Fig 3-5a is the Bode plot of the MMP case with Fig 3-5c as 

its corresponding step response. As a comparison, Fig 3-5b is the Bode plot of the RMP-RNMP 

case with Fig 3-5d as its corresponding step response. 
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 Three main observations are presented. First, for both Bode plots (Fig 3-5a and Fig 3-5b), 

since mode u is much slower than mode v, mode u is then approximated as a double integrator 

around the natural frequency of mode v. Second, in the MMP case (Fig 3-5a), since the sequence 

of dominant modes is [u]-[v]-[u], the phase of G(s) eventually rises back to -180°. In the RMP-

RNMP case (Fig 3-5b) however, since the corresponding sequence is [u]-[v], the phase of G(s) 

eventually drops to -360°. Third, there is an initial undershoot in step response of the RMP-

RNMP case (Fig 3-5d), while no such observation is presence in the MMP case (Fig 3-5c). 

The step response can be explained by the sequence of dominant modes. For the MMP case, 

since the sequence is [u]-[v]-[u] (Fig 3-5a), one can see that mode v only dominates a relative 

small frequency region, while mode u dominates in most of the frequency regions. Consequently, 

the step response of G(s) is essentially the step response of mode u, which is a second order 

system in the positive direction (Fig 3-5c).  

As a comparison, for the RMP-RNMP case, since the sequence is [u]-[v] (Fig 3-5b), one can 

see that mode v is the dominant mode throughout the entire high frequency region. High 

frequency properties are related to fast transient behavior. This is evident in the step response of 
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G(s), where the initial transient behavior is dominated by mode v (i.e., a second order system in 

the negative direction). Therefore, in Fig 3-5d, G(s) is initially dominated by mode v, resulting in 

an initially “wrong” direction. As time progresses, the slower mode (mode u) dominates, thus 

G(s) is eventually driven back by mode u to the positive direction (the “right” direction). 
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Fig 3-5 Numerical comparison: MMP case vs. RMP-RNMP case. (a) Bode plot of the MMP case; (b) Bode plot of 

the RMP-RNMP case; (c) step response of the MMP case; (d) step response of the RMP-RNMP case. 

 

Based on the above discussion, one can see that there is a mapping from sequences to the 

types of zeros. Moreover, this mapping is bijective, under Assumptions A3-1 to A3-6. The 

reason is that, the sequence of dominant modes is a graphical representation of the analytical 

conditions of modal residues that lead to different type of zeros. 

 To further understand the physical insights of these sequences (particularly the RMP-RNMP 

case), Fig 3-6 illustrates the Nyquist plots of G(s) for both the MMP case and the RMP-RNMP 



45 
 

case. For ease of presentation, only the positive frequencies of the Nyquist curve are shown. The 

directions of the Nyquist curves indicate the increase of frequencies. 

MMP Case

Real

Imag

Double 
Integrator

Phase Rising 
Back to -180° 

RMP-RNMP Case

Double 
Integrator  

Fig 3-6 Nyquist plot of G(s): MMP case vs. RMP-RNMP case. 

 

 In Fig 3-6, the double integrator (mode u) is a straight line on the left side of the real axis 

(always -180°). In contrast, mode v (i.e., a second order system in the negative direction) is 

associated with the trajectory in the shape of a circle. This circle grows to the left side along the 

positive direction of the Nyquist curve. Additionally, such a circle is clockwise and thus implies 

phase dropping as the frequency increases.  

For the MMP case, since the sequence is [u]-[v]-[u], the double integrator (mode u) is the 

dominant mode at high frequencies, the circle ends on the left side of the origin. Therefore, if 

evaluating a vector from the origin to the circle, one can see that the phase of G(s) first drops due 

to the clockwise circle and then rises back to -180°. In the RMP-RNMP case however, since the 

sequence is [u]-[v], mode v is the dominant mode along the high frequencies, the circle ends on 

the right side of the origin. Thus, the phase of G(s) drops from -180° to -360°. 

 Therefore, for systems described as Eq. (3-3), RMP-RNMP zeros appear if the following 

two conditions are met. First, there exists a negative direction decomposed second order mode 

(i.e., mode u and mode v are out-of-phase). Second, the two modes subscribe to a certain 

sequence of dominant modes denoted as [u]-[v] (i.e., each mode dominates at its corresponding 

frequency region). 
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To illustrate a physical example of a negative direction decomposed second order mode, 

consider a cart that can rotate w.r.t. its center of mass as shown in Fig 3-7a [60, 80]. The transfer 

function T from the actuator force to the sensor displacement is examined. Based on the sensor 

and actuator configuration, there are two modes of interest: (1) the rigid-body mode; and (2) the 

rotational mode associated with the two vertical springs. In this manner, the rigid-body mode and 

the rotational mode refers to mode u (double integrator) and mode v discussed in this section, 

respectively. Regarding the rotational mode, if the actuator and the sensor are on opposite sides 

of the center of mass, then it becomes a negative direction decomposed second order mode of T. 

Moreover, if the actuator and the sensor locations meet certain conditions [60, 80] such that the 

rotational mode is the dominant mode throughout the high frequency region, then RMP-RNMP 

zeros are expected in T.  
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Fig 3-7 Example of second order decomposed modes in the negative direction and its impact on closed loop control 

(a) Rotatable spring-mass cart; (b) Nyquist plot of open loop transfer function. 

  

This negative direction second order mode is important, because a problem is encountered 

when one attempts to apply a closed loop control while pursuing a high bandwidth. We use the 
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example in Fig 3-7a to illustrate this problem. Consider applying a classic closed loop control 

with unity feedback, where the crossover frequency is set to be between the natural frequencies 

of the translational mode and the rotational mode (usually with a lead filter). The Nyquist plot of 

the typical open loop transfer function L is shown in Fig 3-7b. The bulky circle is associated with 

the negative direction second order mode. Since this circle is on the left side of the Nyquist curve 

of L, it dramatically reduces the distance from the Nyquist curve to the critical point (-1, 0). This 

implies a peak in the sensitivity function S=1/(1+L), which adversely affects the closed loop 

stability. Moreover, the size of the circle will significantly increase if the damping is decreased, 

making the stability problem more difficult. Additionally, such circles are presented due to the 

negative direction second order mode, regardless of whether it is an RMP-RNMP case or an 

MMP case. 

Therefore, two points are noteworthy from the design standpoint. First of all, we recommend 

avoiding the negative direction second order mode via mechatronic design. In the example 

shown in Fig 3-7a, by simply placing the actuator and sensor on the same side of the center of 

mass, the rotational mode will change to be in a positive direction. This is consistent with 

previous literature [60, 80]. Secondly, if the crossover frequency is separated from the negative 

direction second order mode with an appropriate margin, one can apply a certain amount of 

phase lag (usually with a low pass filter) to “rotate” the problematic circle clockwise to a safety 

angular position [59, 81]. However, the crossover frequency requires careful consideration so 

that this additional phase lag minimally impacts the phase margin. 

To conclude the discussion in this section, for systems described as Eq. (3-3), the relations 

between the sequences of the dominant modes, the corresponding segments in the locus of zeros 

(shown in Fig 3-2), and the corresponding type of zeros are summarized as Table 3-1. The 

situation of in-phase is also included such that the all situations in Fig 3-2 are covered. Note that 

we use the symbol [uv] to denote any possible sequence formed by mode u and mode v. 
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Table 3-1. The sequences of dominant modes and related zero types (double integrator + single mode). 

Signs-Sequence Sequence of dominant modes Zero locus Zero types MMP Location 

αu>0, αv>0 
(in-phase) [uv] I-III MMP 

(0, ωv) 

(pole-zero alternating) 

αu>0, αv<0 
(out-of-phase) 

[u]-[v] II-III RMP-RNMP N/A 

[u]-[v]-[u] I-II MMP (ωv, ∞) 

 

 In addition, using the decomposed view, one can also explain why a certain unbounded 

input (i.e., an exponential input related to the RNMP zero of a system) can lead to a bounded 

output. This is due to the fact that in the responses of the two decomposed modes, the unbounded 

parts have the same magnitudes but opposite signs, thus canceling out each other. However, this 

explanation cannot be visualized via the sequence of dominant modes. This is because the tool of 

the sequence can easily reveal the type of zeros but not the exact location of zeros. 

 

3.2.3. Systems with Two Modes: Two Second Order Modes 

 

 A more general situation of systems with only two modes is achieved by removing 

Assumption A3-5. Consider the variation of modal residues of only two modes as in Eq. (3-5). 

Without losing generality, we assume that mode u is slower than mode v.  

 2 2 2 2( ) ; 0; 0u v
v u u

u v

G s
s s

α α ω ω α
ω ω

= + > > >
+ +

 
(3-5) 

 Since the analysis on systems described as Eq. (3-5) is very similar to the discussion in 

previous section, we simply present the results without detailed discussion. The locus of zeros is 

shown in Fig 3-8, where we vary αv, but fix every other variable. 
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Fig 3-8 Migration of zeros (two 2nd modes): (a) the locus of zeros; (b) conditions of αv. 

 

The corresponding sequences of dominant modes are listed in Table 3-2. Note that 

comparing to Table 3-1, there is an extra sequence mapping to the segments III-IV in Fig 3-8. 

This is because mode u has a non-zero natural frequency. 

 

Table 3-2. The sequences of dominant modes and related zero types (two 2nd order modes). 

Signs-Sequence Sequence of dominant modes Zero locus Zero types MMP Location 

αu>0, αv>0 

(in-phase) 
[uv] I-IV MMP 

(ωu, ωv) 

(pole-zero alternating) 

αu>0, αv<0 

(out-of-phase) 

[v]-[u]-[v] III-IV MMP N/A 

[u]-[v] II-III RMP-RNMP (ωv, ∞) 

[u]-[v]-[u] I-II MMP (0, ωu) 
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3.2.4. Systems with Two Modes and a Double Integrator 

 

 In Section 3.2.2 and Section 3.2.3 we have covered the systems with only two modes. In this 

section, a more general class of systems is considered. Such systems have two modes and a 

remainder, following the assumption shown as below. 

Assumption A3-7: consider the transfer function G(s) of a system and the two modes of 

interest (denoted as mode u and mode v). In the frequency range near (ωu, ωv), the contributions 

of modes other than mode u and mode v are dominated by a single mode. Moreover, this mode is 

well-separated from the mode u and mode v.  

In this thesis, the two modes of interest satisfying Assumption A3-7 are called the closely 

spaced modes. Following this definition, the two modes discussed in Section 3.2.2 and Section 

3.2.3 are also called closely spaced modes. The difference between Eq. (3-5) and Eq. (3-6) is that 

Eq. (3-5) requires a much stronger separation between the closely spaced modes and the other 

modes. With Assumptions A3-1, A3-2, A3-3, and A3-7, consider systems described as Eq. (3-6), 

where R(s) is the contribution of other modes (R is termed as the remainder [48]). By 

Assumption A3-6, R(s) is dominated by a single mode, which is denoted as mode R in this 

chapter. In the analysis of this section, the resonance frequencies of mode u and mode v are fixed. 

Again, mode u is assumed to be slower than mode v. 

 2 2 2 2( ) ( ); 0u v
v u

u v

G s R s
s s

α α ω ω
ω ω

= + + > >
+ +

 
(3-6) 

 If mode R is much slower than mode u and mode v, then R(s) can be approximated as a 

double integrator; conversely, if mode R is much faster, then R(s) can be approximated as a 

constant (i.e., modal truncation). For flexure mechanisms, the first primary mode is usually the 

“rigid-body” mode at a much lower frequency. Therefore, R(s) is considered as a double 

integrator in this section. The situation of a fast mode R is discussed in the next section. As a 

result, Eq. (3-6) is restated as Eq. (3-7). Note that αR is assumed to be positive by Assumption 

A3-6. 
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 2 2 2 2 2( ) ; 0; 0u vR
v u R

u v

G s
s s s

α αα ω ω α
ω ω

= + + > > >
+ +

 
(3-7) 

 Next, rewrite Eq. (3-7) into Eq. (3-8). 

 

2 2 2 2 2 2 2 2

2 2 2 2 2

[( / 1) ( / )] [ ( )( )]( )
( )( )

( ) ( )( )
( ) ( )

v u v u v v u R u v

u v

v

s s s sG s
s s s

A s B sN s
D s D s

α α α α ω α ω α ω ω
ω ω

α∆

+ + + + + +
=

+ +
⋅ +

= =
 

(3-8) 

 If a transfer function T(s) is defined as T(s)=A(s)/B(s), one can state the following. First, the 

poles of T(s) are the poles of mode u and mode v. Second, T(s) has two pairs of zeros. One pair is 

fixed at the origin; the other pair follows a similar scenario discussed in Section 3.2.3 (two 

modes only), and is determined by the ratio αu/αv. Lastly, if we vary αv while fixing other 

variables, then we obtain the root locus of T(s) with unity feedback, which is also the zero locus 

of G(s). Also, if the sign of αv is flipped, one obtains the complementary root locus. 

The root locus and the complementary root locus of T(s) are shown as Fig 3-9. For ease of 

representation, only the first quadrant is shown in each case. Additionally, when αu/αv is fixed, 

the break in/away points can be computed by dαv /ds=0. 
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Fig 3-9 The locus of zeros under different values of αu/αv. 
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 As the root locus of T(s) is the zero locus of G(s), if the ratio αu/αv, is varied from -∞ to +∞, 

one obtains the family of the zero locus of G(s). Fig 3-10 demonstrates a numerical example of 

zero locus family. There are some two cases where the loci are determined by the two natural 

frequencies ωu and ωv. Moreover, one can see that the loci in Fig 3-10 are no longer limited on 

the two axes (as Fig 3-8); instead, they fully cover the complex plane. 
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Fig 3-10 The family of the zero locus of G(s). 

 

From Fig 3-9, we can see the CMP-CNMP zeros appear only when αu<0, and αv>0. For ease 

of illustration, we consider the case when αR=1, αu=-α0<0, and αv=α0. Consequently, the variation 

of α0 leads to the locus of zeros referring to the red solid locus shown in Fig 3-9c. As for the 

break in/away points, the associated α0 is computed as α01=(ωu-ωv)/(ωv+ωu) at the imaginary 

axis and α02=(ωu+ωv)/(ωv-ωu) at the real axis. 

Fig 3-11 demonstrates a Bode plot with different values of α0. Since the double integrator has 

αR>0, mode R always exhibits a negative direction (-180°). Additionally, since αv>0 and αv<0, 

mode u has a negative direction while mode v has a positive direction. 
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Fig 3-11 Decomposed modes under different modal residues (double integrator + two modes). 

 

The blue dashed lines refer to the situations of mode u and mode v when α0<α01. Four points 

(P1, P2, P3, and P4) indicate the frequencies where mode R intersects with mode u and mode v 

(same magnitudes). Following a similar procedure as Section 3.2, one can see that there are take-

overs near P1, P2, and P3. Moreover, P2 and P3 indicate the existence of two pairs of MMP 

(dual MMP) zeros nearby. However, there is no take-over near P4 according to the definition. 

Consequently, the sequence of dominant mode is [R]-[u]-[R]-[v]. 

The red solid line corresponds to the case when α0>α01. At low frequencies, P5 is similar to 

P1. At medium frequencies however, one can see that P2 and P3 both disappear. Instead, P6 is 

presence, indicating a nearby frequency that mode u is taken over by mode v. Therefore, the 

sequence of dominant mode is [R]-[u]-[v], indicating the situation that the zeros migrate into the 

complex plane as CMP-CNMP zeros. In other words, α01 is visualized by the sequence change 

from [R]-[u]-[R]-[v] to [R]-[u]-[v].  

As α0 further increases, one can expect that the sequence remains as [R]-[u]-[v]. However, 

when α0>α02, the zeros change from CMP-CNMP to two pairs of RMP-RNMP (dual RMP-



54 
 

RNMP). Therefore, α02 cannot be visualized by the change of sequence. In other words, the 

sequence [R]-[u]-[v] only indicates that there are two zeros on the right half plane.  

Next, a numerical example is presented. This example has the form as Eq. (3-9). We set αu=-

α0, αv=α0, and use α0=0.01, α0=5, and α0=21 to illustrate dual MMP, CMP-CNMP, and dual 

RMP-RNMP zeros respectively. Fig 3-12a demonstrates the Bode plot of the three cases, while 

Fig 3-12b shows their corresponding step responses. In Fig 3-12a, one can see that the difference 

between the case with [R]-[u]-[R]-[v] and the cases with [R]-[u]-[v] is that the latter ones both 

have significant large amount of contributions from mode u and mode v. 

 2 2 2 2 2

1( )
0.001 1 0.02 10 0.022 11

u vG s
s s s s s s

α α
= + +

+ + + + + +
 

(3-9) 
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Fig 3-12 Numerical example of a system with CNMP zeros, under different α0: (a) Bode plot; (b) step response; (c) 

pole-zero map; (d) initial part of step response. 
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 For the dual MMP case, since αR>0 and αv>0, at high frequencies (i.e., ω>ωv) mode v 

behaves similarly as mode R. Therefore, mode R is dominant mode in most of the frequency 

regions. As a result, the step response (Fig 3-12b blue solid) of the dual MMP case is essentially 

the step response of mode R (i.e., a second order undamped system in the positive direction).  

For the dual RMP-RNMP case, the initial properties are discussed. Fast time-domain 

behavior is related to frequency-domain behavior at high frequencies. This is evident in the dual 

RMP-RNMP case (Fig 3-12b red dash-dot). We denote f(t) as the step response of G(s). Thus, 

the initial behavior is explained by examining the frequency-domain properties from high 

frequency to low frequency, which is the inverse direction of the sequence [R]-[u]-[v]. The first 

one in the inverse sequence is mode v. Consequently, f(t) starts with the step response of mode v, 

which is a second order undamped system in the positive direction. Second, mode v is inversely 

“taken over” by mode u. Thus f(t) exhibits a tendency of negative growing due to the step 

response of mode u, which is in the negative direction. The last one is mode R. As a result, f(t) 

eventually follows the step response of mode R. In addition, one can see that the number of 

direction reversal and the number of zero crossings are the same as the numbers of the RMP-

RNMP pair. This observation is consistent with the previous literature [74]. 

 For the CMP-CNMP case however, the variation of α0 leads to different initial properties. 

Fig 3-12d demonstrates the step response of G(s) under different values of α0. The corresponding 

migration of zeros is shown in Fig 3-12c. Note that all of these situations belong to the CMP-

CNMP case. With different values of α0, the step response exhibits a different number of zero 

crossings (i.e., zero, one, or two zero crossings), and different monotonousness (i.e., monotonous 

or non-monotonous). This observation is related to the study by Hoagg and Bernstein [73], who 

raised an open question on the relationship between the number of NMP zeros and the initial 

behavior in the step response of a system that contains these zeros. From Fig 3-12d, the number 

of NMP zeros in each case is the same while the initial behaviors are different, varying from the 

properties the same as MMP (dual) to those the same as RMP-RNMP (dual). Therefore, CMP-

CNMP can be understood as a transition between these two types of zeros. 

To explain the phase change, a comparison between a dual MMP case and the CMP-CNMP 

(or dual RMP-RNMP) case is illustrated in the Nyquist plot in Fig 3-13. Again, we use a simple 

settings as αR=1, αv=α0>0, and αu=-α0. One can see that the main characteristic for both cases is 
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the existence of two resonance circles (dual circles). For the dual MMP case, mode R (double 

integrator) “takes back over” at the medium frequency region (ωu, ωv). As a result, to the “corner” 

of the dual circles appears on the left side of the origin, leading to the phase rising twice. For the 

CMP-CNMP (or dual RMP-RNMP) case however, mode R does not “take back over” in (ωu, ωv). 

Consequently, the corresponding “corner” appears on the right side of the origin. Thus the phase 

drops twice (360°) due to the resonance circle without ever rising again. Also, one can see that 

αR>0, αu<0 and αv>0 play an important role for the 360° phase drop to happen. 

real

imag

Starts as mode R 
at low frequencies

Mode R takes over 
(corner on the left side)

Mode R does not take over
(corner on the right side)

Mode u (negative direction)

Mode v (positive direction)

CMP-CNMP or dual RMP-RNMP

Dual MMP

 

Fig 3-13 Nyquist plot of G(s) showing the phase change (αR>0, αu<0 and αv>0). 

 

Therefore, for the systems that described in Eq. (3-7) (under Assumptions A3-1, A3-2, A3-3, 

A3-6 and A3-7), CMP-CNMP (or dual RMP-RNMP) zeros appear if and only if the following 

two conditions are met. First, the three modes have alternating sign sequence (i.e., for any two 

adjacent modes, they are out-of-phase). Second, the sequence of dominant modes is [R]-[u]-[v] 

(i.e., each mode dominates at its corresponding frequency region). 

The dual circles are more problematic than the single circle discussed in the RMP-RNMP 

case. Fig 3-14 illustrates the Nyquist plot of the open loop system that contains such dual circles. 

First, the dual circles exist in both the MMP case and the CMP-CNMP cases. Second, since the 

dual circles occupy all of the quadrants of the complex plane, it is almost impossible to “rotate” 

the dual circles to an angular position without endangering the critical point (-1, 0) (i.e., there is a 
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guaranteed peak in the sensitivity function). Moreover, if the damping ratio is reduced, the sizes 

of the dual circles increase dramatically, making the stability problem even more difficult. 

Similarly as Section 3.2.2, for a MMP case, it able to change the directions of the dual circles to 

the same direction by accepting the consequence of adding additional stable conjugate pole-zero 

pairs (an additional circle as shown in Fig 3-14). However, there may be some potential 

problems due to the small damping of the plant. This will be discussed in Chapter 6. 
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Fig 3-14 Nyquist plot of the open loop transfer functions (plant + controller) under different situations. 

 

Table 3-3. The sequences of dominant modes and related zero types (double integrator + two modes). 

Signs-Sequence Sequence of dominant modes Zero types MMP Location 

αR>0, αu<0, αv>0 
(alternating) 

[R]-[u]-[v] CMP-CNMP 
or dual RMP-RNMP N/A 

[R]-[u]-[R]-[v] dual MMP  (ωu, ωv) 

[R]-[u]-[v]-[u] MMP + RMP-RNMP (ωv, +∞) 

[R]-[v]-[u]-[v] dual MMP (0, ωu) 

[R]-[u]-[v]-[u]-[DI] dual MMP (ωv, +∞) 

αR>0, αu>0, αv<0 
[Ru]-[v] MMP + RMP-RNMP (0, ωu) 

[Ru]-[v]-[DI] dual MMP (0, ωu) and (ωv, +∞) 

αR>0, αu<0, αv<0 
[R]-[uv]-[R] dual MMP (ωu, ωv) and (ωv, +∞) 

[R]-[uv] MMP + RMP-RNMP (ωu, ωv) 

αR>0, αu>0, αv>0 [Ruv] dual MMP (0, ωu) and (ωu, ωv) 
(pole-zero alternating) 
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For a general situation not limited to the specific condition discussed above (i.e., αR=1, 

αv=α0>0, and αv=-α0), a complete summary of the sequences is provided in Table 3-3. Note that 

the systems are limited to the types described as Eq. (3-7) (i.e., two modes with a double 

integrator). Similar as previous sections, we use [xy] to denote any sequence formed by mode x 

and mode y. Also, we use [DI] to denote an abstract dominant mode that behaves as a double 

integrator with positive a modal residue (i.e., αD/s2, and αD>0). This is because in that case, the 

dominant mode is a combined effort of multiple modes and one cannot tell which one is the 

major contributor. 

From Table 3-3, one can see that if CMP-CNMP and dual RMP-RNMP are regarded as a 

single class, the sequence of signs and the sequence of dominant modes can be used to uniquely 

map to the various situations of zeros, and this mapping is bijective.  

Also, for cases other than CMP-CNMP, there are similarities between these cases and the 

results in Table 3-2 (or Table 3-1). In other words, these cases can be understood as applying the 

results in Table 3-2 twice. For example, consider the case when αR>0, αu>0, αv<0 and [Ru]-[v]. 

For mode R and mode u (αR>0, αu>0), there must be a pair of MMP zeros, regardless of the 

sequence according to Table 3-2. Since mode v (αv<0) only takes over at high frequencies, there 

must be a pair of RMP-RNMP zeros according to Table 3-2.  

Therefore, the similarity between Table 3-3 and Table 3-2 implies that CMP-CNMP zeros 

refer to the case when a system as Eq. (3-7) cannot be decomposed into two simple systems 

listed in Table 3-2. The reason is that the two simple decomposed systems are not well-separated. 

This is consistent with the previous discussion that CMP-CNMP zeros can be understood as the 

transitions between dual MMP and dual RMP-RNMP. 

In chapter 1, one of questions raised is: as CNMP zeros appear in the form of complex 

conjugate pair, how to evaluate the impact of CNMP zeros? Note that CNMP zeros appear in the 

form of CMP-CNMP zeros under Assumption A3-1 and A3-2. Since CMP-CNMP zeros are the 

transitions between dual MMP zeros and dual RMP-RNMP zeros, one can create a bound for the 

impact of CMP-CNMP zeros. In other words, CMP-CNMP zeros have weaker impact than dual 

RMP-RNMP zeros. This conclusion is consistent with the discussion in Fig 1-4. 
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3.2.5. Systems with Two Modes and a Constant 

 

Following the last section, in this section we consider mode R as a mode much faster than 

mode u and mode v. As a result, Eq. (3-6) is restated as Eq. (3-10), where R is constant (i.e., the 

DC gain of mode R due to truncation). 

 2 2 2 2( ) ; 0; 0u v
v u u

u v

G s R
s s

α α ω ω α
ω ω

= + + > > >
+ +

 
(3-10) 

The analysis on the zeros of G(s) in Eq. (3-10) is very similar as the last section. Thus we 

simply present the results as Table 3-4. Similar as the previous section, we use [DC] / [-DC] to 

denote an abstract dominant mode as the combinations of the DC gain of each mode in the 

positive / negative direction, respectively. 

 

Table 3-4. The sequences of dominant modes and related zero types (two 2nd order modes + constant). 

Signs-Sequence Sequence of dominant modes Zero types MMP Location 

αu>0, αv<0, R>0 
(alternating) 

[u]-[v]-[R] CMP-CNMP 
or dual RMP-RNMP N/A 

[u]-[R]-[v]-[R] dual MMP  (ωu, ωv) 

[v]-[u]-[v]-[R] MMP + RMP-RNMP (0, ωu)  

[DC]-[v]-[u]-[v]-[R] dual MMP (0, ωu) 

[u]-[v]-[u]-[R] dual MMP (ωv, +∞) 

αu>0, αv<0, R<0 
[u]-[v]-[R] MMP + RMP-RNMP (ωv, +∞) 

[-DC]-[u]-[v]-[R] dual MMP (0, ωu) and (ωv, +∞) 

αu>0, αv>0, R<0 
[R]-[uv]-[R] dual MMP (0, ωu) and (ωu, ωv) 

[uv]-[R] MMP + RMP-RNMP (ωu, ωv) 

αu>0, αv>0, R>0 [uvR] dual MMP (ωu, ωv) and (ωv, +∞) 
(pole-zero alternating) 
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3.3. Generalization Considerations 

3.3.1. The Impact of Damping: a Simple Case 

 

In this section, the impact of damping is examined. We still follow Assumptions A3-1 and 

A3-3. However, for Assumption A3-2, we assume small but non-zero damping. Consequently, 

the transfer function of a system can be written as Eq. (3-11). 

 2 2
1

( )
2

n
i i

i i i i

sG s
s s

β α
ζ ω ω=

+
=

+ +∑  
(3-11) 

Two main differences are observed between Eq. (3-11) and Eq. (3-2). First, each of the 

second order decomposed modes has its corresponding non-zero damping ratio (ζi). Second, each 

decomposed mode has an extra term (βis) in its numerator (i.e., modal residues). This extra term 

(βis) can be understood as the speed (i.e., first order derivative w.r.t. time) of the time-domain 

response of the ith mode, with the amount of βi.  

In this section, we will discuss the impact of damping under a simple case. We assume βi=0 

for all of the decomposed modes. This is valid when the damping ratio is sufficiently small. Next, 

we start with the variation of modal residues of only two modes. Similar to the discussion on 

RMP-RNMP zeros in Section 3.2.3, Eq. (3-5) can be extended to Eq. (3-12). 

 2 2 2 2( ) ;
2 2

u v
u v

u u u v v v

G s
s s s s

α α ω ω
ζ ω ω ζ ω ω

= + <
+ + + +

 
(3-12) 

From Eq. (3-12) one obtains Eq. (3-13). 

 
2 2 2 2

2 2 2 2

/ ( 2 ) ( 2 ) ( / ) ( ) ( )( )
( 2 )( 2 ) / ( )

u v v v v u u u u v

u u u v v v v

s s s s A s B sG s
s s s s D s

α α ζ ω ω ζ ω ω α α
ζ ω ω ζ ω ω α

∆+ + + + + ⋅ +
= =

+ + + +
 

(3-13) 

Similar as previous sections, the locus technique can be applied. Fig 3-15 demonstrates the 

zero loci of G(s) with a non-zero damping ratio. For ease of representation, we only show the 

situation when αu·αv<0 (i.e., out-of-phase). 
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Fig 3-15 Migration of zeros with non-zero damping ratios (only two modes): (a) damping ratios are the same; (b) 

damping ratios are different. 

 

Three main observations are listed, in contrast to Fig 3-8. First, the poles of mode u and 

mode v are shifted to the left by a distance that is determined by the amount of damping. Second, 

the zeros are still presented in the form of a pair. However, these zeros are no longer anchored on 

the imaginary axis. Additionally, when these zeros appear on the real axis, they are no longer 

symmetric w.r.t. the imaginary axis (though they are symmetric w.r.t. the zero loci in some 

sense). More importantly, when ζu> ζv, the circle-like locus is repelled to right hand side. In this 

case, the pair of zeros may become CNMP zeros. In other words, if the slower mode u has a 

larger damping ratio than the faster mode v, then it is possible that a pair of CNMP zeros appear. 

Third, both the break in/away points (Z1 and Z2) are finite, with their positions governed by Eq. 

(3-14). 

 ( ) ( ) ( )2 2 2 0u u v v u v u v v u u vs sζ ω ζ ω ω ω ω ω ζ ω ζ ω− + − + − =  (3-14) 

Regarding the CMP-CNMP case, we present a simplified situation as an extension of Eq. 

(3-7) as shown in Eq. (3-15). For simplicity, mode u and mode v are assumed to have the same 

amount of damping ratio (ζ0). 
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(3-15) 

Fig 3-16 demonstrates a numerical example (ωu=0.9, ωv=1.1, and αu/αv=2) with different 

values of damping ratios. It is noteworthy that the loci change with varying the ratio of modal 

residues (αu/αv). Regarding the case when αu/αv> ωv
2/ ωu

2, it can be seen that all of the loci move 

to the left as the damping ratio increases. Moreover, there is a certain value of the damping ratio 

when all of the loci are located on the left side of the complex plane. This damping ratio can be 

obtained by evaluating the crossing of the loci w.r.t. the imaginary axis, as shown in Eq. (3-16). 
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Fig 3-16 Migration of zeros under different damping ratios (two modes with a remainder, αu/αv> ωv
2/ ωu

2). 

 

It is important to note that since the damping is non-zero, the phase of a system is no longer 

fixed to either positive (i.e., 0°) or negative (i.e., 180°). Instead, there will be transitions between 

the two directions. As a result, the definition of mode taking over, the dominant mode, and thus 

the sequence of dominant mode may not apply to the situation with large damping. The impact 

of damping for the technique of sequence is a future work worth investigating. 
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3.3.2. Other Considerations 

 

In addition to the representative but specific situations discussed in the above sections, the 

presented work can be extended to cover more general cases. The extensions are based on 

removing the assumptions made previously, and some are briefly discussed as below. 

First, the work in this chapter is based on simple systems (e.g., systems with only two modes). 

For systems with multiple modes, how to apply the developed results is of great interest. Second, 

one can extend the cases of two closely spaced modes to multiple closely spaced modes. This 

extended analysis represents a broader class of module-based systems. Third, continuous system 

can be considered. Lastly, an even broader range of systems can be included if the decomposed 

modes are first order systems or a hybrid form of first order and second order systems. In these 

situations, the zeros may no longer appear in the form of pairs. 

 

3.4. Contributions and Conclusions 

 

The key contributions of this chapter are concluded as below. First, based on the variation of 

modal residues, a systematic step by step investigation is provided to explain the zeros of lightly 

damped flexible systems. Under Assumption A3-1 and A3-2, the zeros appear in the form of 

pairs. Particularly for NMP zeros, RNMP zeros appear in the form of RMP-RNMP zeros and 

CMP zeros appear in the form of CMP-CNMP zeros. Furthermore, the minimum system that has 

CNMP zeros is a system with two closely spaced modes and a remainder. Second, a tool is 

proposed using the sequence of dominant modes and the sequence of their signs to interpret the 

variation of zero types. For a system with only two modes, RMP-RNMP zeros appear if and only 

if the two modes are out-of-phase and the faster mode dominates the high frequency region. For 

a system with two modes and a remainder, we demonstrate a similarity between CMP-CNMP 

zeros and dual RMP-RNMP zeros. Furthermore, these two types of zeros appear if the 

decomposed modes have alternating signs and dominate under a certain sequence. Moreover, this 

tool allows us to understand the initial properties of the step response of systems with NMP zeros. 

In addition, the difficulties that RMP-RNMP zeros and CMP-CNMP zeros bring in for the close 
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loop control are visualized. One can relieve these difficulties albeit with certain tradeoffs. Third, 

the investigation is extendable to a more general form, such as non-zero damping. 

In addition, there are several new open questions posed in this work that are being addressed 

by us. First, it is desirable to generalize the framework. Second, the variation parameters in this 

framework are essentially mathematical parameters. Greater insights into the relationship 

between these parameters and physical parameters are desirable. Last, based on the findings of 

this chapter, physical system and control system design can be explored to improve the dynamic 

performance of flexible systems over the state-of-the-art level. 
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Chapter 4. On the Correlation between CMP-CNMP Zeros and Curve Veering 

 

In the work of the previous chapters, Chapter 2 presents an approach based on physical 

parameters to model when the CNMP zeros appear (in the form of CMP-CNMP quartet) 

observed in experiments. Chapter 3 presents a mathematical model that utilizes the sequence of 

dominant modes to reveal a sufficiency condition for the existence of CMP-CNMP zeros and an 

associated physical interpretation. The variation parameter in the former study is the operating 

point while the variation parameters in the latter study are the modal residues. However, the 

mapping between the operating point and the modal residues has not been shown in the previous 

chapters, resulting in a correlation gap between the physical model and the mathematic model. 

To address this gap, the phenomenon of curve veering is introduced in this chapter. It is 

shown that the existence of curve veering under certain conditions will guarantee the specific 

sequence of dominant modes and their signs that leads to CMP-CNMP zeros. Therefore, this 

finding validates the hypothesis proposed in Section 2.3 (i.e., there is a correlation between 

CNMP and curve veering). Furthermore, by combining the results from Chapters 2 to 4, we 

demonstrate the transition from MMP to CMP-CNMP zeros for certain flexure mechanisms (i.e. 

how CNMP zeros appear).  

The motivation of introducing the phenomenon of curve veering into this work is due to the 

fact that CNMP zeros and curve veering share the same key attributes. From the discussion in 

Chapter 2, three key factors are shown to be closely related to the existence of CMP-CNMP 

zeros in flexure mechanisms. First, there are multiple modes with their natural frequencies 

closely spaced. This is due to the fact that the flexure mechanisms usually employ multiple sub-

structures that are based on the same module or building block. Moreover, all of these sub-

structures have nominally the same dimensions (i.e., these sub-structures are periodic/symmetric). 

Second, there can be certain parametric asymmetry between these periodic/symmetric sub-

structures that may arise either intentionally (e.g., physical parameter choices) or unintentionally 
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(e.g., manufacturing tolerances). Third, there is certain mechanical structure that connects these 

sub-structures (e.g., Fig 2-2). 

 Interestingly, the phenomenon of curve veering shares similar key attributes as those 

mentioned above. One of the earliest studies in curve veering was conducted by Leissa [53] in 

1974, while early studies of CNMP zeros include Tohyama and Lyon [48] in 1989 as well as 

Loix et al. [49] in 1996. If these two fields that have been studied separately for decades are 

shown to be connected on certain conditions, then we can extend our understanding on both 

phenomena one step further. Moreover, since curve veering widely exists in periodic/symmetric 

structures, this work can be extended to a broader range of flexible systems not just limited by 

module-based (e.g., DPFM) flexure mechanisms. 

 

4.1. Literature Review 

 

 Curve veering refers to the situation when the eigenvalue loci of two closely spaced modes 

in a system approach each other and then diverge, as a result of certain parametric variation [53]. 

The point in the parametric space where these two modes have the closest natural frequencies is 

called the veering point. Specifically, the situation that occurs when these two modes intersect 

(i.e., when they have the same natural frequency) at the veering point is called mode crossing 

[54]. In some references, curve veering is termed as mode veering or mode coalescence [82]. 
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Fig 4-1 3 DoFs spring mass model example: (a) model illustration; (b) the loci of natural frequencies. 
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A simple three degree-of-freedom (3 DoF) example is demonstrated in Fig 4-1a. This model 

is enlightened by the traditional 2 DoF spring-mass models in the studies of curve veering [83]. 

To illustrate the eigenvalue loci, we use the numerical setting as follows: k1=k2=kb=1 kg/s2, 

mb=50 kg, mu=1 kg, and mv=1+ρ kg. For the variation of parameters, we set k varying from 0 to 

0.03 kg/s2, and ρ varying from 0 to 0.01 kg. The loci of the natural frequencies associated with 

the modes dominated by mu and mv are shown in Fig 4-1b and the above-defined curve veering is 

exhibited. Moreover, mode crossing (i.e., the situation when ωu=ωv) is observed when ρ=0 (i.e., 

when the two masses mu and mv are symmetric).  

Curve veering can be mathematically understood as a situation when the system is very close 

to the status of having repeated eigenvalues [55, 84, 85]. In the vicinity of the veering point, 

eigenvectors undergo dramatic changes [86]. These dramatic changes are recognized as mode 

localization [56, 87, 88]. In addition, the system could become so-called “critically configured” 

indicating a sensitive situation in which small changes in a system parameter could cause large 

changes in system response [55].  

The phenomenon of curve veering is studied in situations where there are symmetric or 

periodic structures, such as blade disks and turbine blades [89-92], wind-bridges [93], and 

module-based flexure mechanisms [72]. These situations can be concluded as flexible systems 

with nominally the same dimensional modules, which lead to multiple closely spaced modes. 

The studies of curve veering can be applied to the safety evaluation [91]. There are also 

techniques using curve veering to achieve vibration isolation [94]. 

There can be various selections of the varying parameter, such as the mass value [83], the 

stiffness value [87], and other operating conditions [72]. The large number of different choices 

makes each study case-specific and thus limits the referential value. However, the conclusions of 

these studies are inherently consistent. The reason is that all of the different choices fall into the 

same two of the key attributes of curve veering: (1) the connection (coupling) between the 

nominally symmetric/periodic structures, and (2) the parametric asymmetry between these 

structures. Therefore, in this chapter the varying parameter is selected based on the principle that 

it mainly affects one of the above two attributes without significantly affecting the other. For 

example, in the model shown in Fig 4-1a, the coupling spring stiffness k mainly affects the 
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spring connecting between the two nominally symmetric masses (mu and mv), while the mass 

asymmetry ρ mainly affects the balance between these two masses. 

 Based on the above discussion, one can conclude that there are totally three key attributes in 

curve veering. First, there are multiple nominally periodic/symmetric sub-structures within the 

given system. Second, there are certain asymmetries between these sub-structures. Third, there is 

certain coupling between these sub-structures. It is noteworthy that these attributes are the 

necessary conditions of curve veering. However, the sufficiency of these attributes is rarely 

discussed in the literature to the best of our knowledge. Moreover, one can see the strong 

similarity between the key attributes of CNMP zeros and those of curve veering, which 

motivates the study in this chapter. 

 

4.2. The Correlation between CMP-CNMP Zeros and Curve Veering 

4.2.1. Preliminary Assumptions 

 

This section has certain overlap with Section 3.2. But we recall all of the necessary equations 

and assumptions for ease of discussion in this chapter. Regarding the scope of discussion in this 

chapter, the systems considered are linear time invariant (LTI) and single-input-single-output 

(SISO). Assumptions made in this chapter are listed as below. 

Assumption A4-1: the system is a structural system. In other words, all of the decomposed 

modes are second order and there are no first order modes. 

Assumption A4-2: damping is negligible.  

Assumption A4-3: the system has no right half plane poles (i.e., the plant is open loop 

stable). 

Assumption A4-4: consider the transfer function G(s) of a system and the two modes of 

interest (denoted as mode u and mode v). For frequencies near the range (ωu, ωv), the 

contributions of modes other than mode u and mode v are dominated by a single mode (denoted 

as mode R). Moreover, mode R is well-separated from mode u and mode v. 

Assumption A4-5: consider mode R as a double integrator. 
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Consequently, a system under Assumption A4-1 to A4-5 is stated as below. Without losing 

generality, mode u is defined to be slower than mode v. 

 ( ) 2 2 2 2 2 ; 0u vR
v u

u v

G s
s s s

α αα ω ω
ω ω

= + + > >
+ +

 
(4-1) 

Next, G(s) is written into the rational polynomial form as  

 ( ) ( )
( )

[ ] ( )
( )( )

4 2 2 2 2 2 2 2

2 2 2 2 2

v u R u v R u v v u R u v

u v

s sN s
G s

D s s s s

α α α ω ω α α ω α ω α ω ω

ω ω

 + + + + + + + = =
+ +

 

(4-2) 

Note that in this section there is no requirement of the curve veering phenomenon. In the next 

two sections, we will first examine the necessary and sufficient conditions of CMP-CNMP, and 

then bring in the correlation between CMP-CNMP and the curve veering phenomenon. 

 

4.2.2. The Parabola of CMP-CNMP Zeros 

 

Based on Eq. (4-2), if we define x=s2, the numerator of G(s) is shown below. 

 
( ) [ ] ( )2 2 2 2 2 2 2

2
2 1 0

v u R u v R u v v u R u vN x x x

b x b x b

α α α ω ω α α ω α ω α ω ω = + + + + + + + 
= + +

 
(4-3) 

From Eq. (4-3) one can see that N(x) is a second order polynomial as a function of x, which is 

a parabola. The condition N(x)=0 corresponds to any crossing(s) of the parabola with the 

horizontal line. This gives the roots of N(x) in terms of x and thus the zeros of G(s) in terms of s. 

If there is no crossing between the parabola and the horizontal line, then the roots of N(x) are 

complex conjugate numbers. As a result, G(s) has CMP-CNMP quartet zeros.  

To illustrate, a specific numerical example is provided. If we vary αR, while fixing other 

variables as αu=−1, αv=1, ωu
2=1, and ωv

2=2, then the second order coefficient b2 in Eq. (4-3) is 

solely affected by αR, which determines the “flatness” of the parabola. Fig 4-2a demonstrates the 

different situations of crossing between the parabola and the horizontal line under different 

values of αR. 
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Fig 4-2 Numerical example of parabola N(x) under different values of αR (αu=-1, αv=1, ωu
2=1, and ωv

2=2). Dashed 

lines indicate the situations with CNMP zeros. (a) αR varies from negative to positive; (b) αR is negative and varies 

between two critical values. 

  

 In this numerical example, situations with different signs of αR in Fig 4-2a are discussed as 

below. First, when αR<0, the opening of the parabola faces downward. Therefore, there must be 

two crossings between the parabola and the horizontal line. Moreover, since the crossings 

happen at x<0, then by s2=x, this situation corresponds to a pair of marginally minimum phase 

zeros on the imaginary axis, and they are symmetric w.r.t. the real axis. Second, when αR=0, the 

parabola reduces to a line passing through the origin. This case refers to the situation where the 

mode R is negligible. Third, when αR>0, the opening of the parabola faces upward. Moreover, as 

the absolute value of αR increases, the parabola becomes less “flattened”. Therefore, there exist 

instances when the parabola has no crossing with the horizontal line, which is illustrated as the 

dashed lines in Fig 4-2a. When there is no crossing, solving N(x)=0 results in complex roots of x, 

indicating that the zeros of G(s) are in the form of CMP-CNMP zeros (quartet). 

It is also noteworthy that there are two points (denoted as Pu and Pv in Fig 4-2a) shown to be 

invariant of αR. This can be verified by substituting x=−ωu
2 and x=−ωv

2 into N(x) in Eq. (4-3) as 

shown below. Note that there are no specific numerical values required. 

 ( ) ( )2 2 2 2 2 2 2 2: , ; : ,u u u u v u v v v v v uP Pω α ω ω ω ω α ω ω ω   − − − − −     (4-4) 
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The existence of these two points is explained as below, using Pu as an example. When x is 

closed to −ωu
2, the situation indicates that G(s) is evaluated at frequencies closed to the natural 

frequency of mode u. As a result, the magnitude of G(s) is dominated by mode u, while the mode 

R and mode v are negligible. Therefore, αR and αv are not presented in the vertical value of Pu in 

Eq. (4-4). Similarly, αR and αu are not presented in the vertical value of Pv. Thus, Pu and Pv are 

invariant of αR. 

From Eq. (4-4), since we define ωv>ωu, the signs of the vertical values of Pu and Pv are 

determined by the signs of αu and αv. Moreover, from Fig 4-2a one can see that for CMP-CNMP 

to appear, Pu and Pv have to be either above the horizontal line with αR>0 (i.e., αR>0, αu<0, and 

αv>0), or below the horizontal line with αR<0 (i.e., αR<0, αu>0, and αv<0). This indicates that αR, 

αu, and αv form a sequence of alternating signs. 

Next, if Pu and Pv are on the same side of the horizontal line (i.e., αu·αv<0), one can calculate 

the corresponding values of the second order coefficient (b2), referring to the instance when the 

parabola N(x) has a single crossing with the horizontal line (i.e., condition of tangency; see the 

dashed-dot lines in Fig 4-2b). Accordingly, the critical values of αR can be obtained as below. 

Note that for values between αR1 and αR2, the parabola has no crossing with the horizontal line, 

which indicates the presence of CMP-CNMP zeros in G(s). 

 ( ) ( )2 2 2 2
1, 2 2 / ; 0R R v u u v u v u v v u u vα α ω α ω ω ω α α ω ω α α= − ± − − ⋅ <  (4-5) 

Accordingly, the corresponding values of the second order coefficient b2 is obtained by the 

relationship b2= αR+αu+αv as below. Note that when αu<0 and αv>0, b21 and b22 are positive, and 

vice versa. For ease of presentation, we define |b22|>|b21|. 

 ( ) ( ) ( )
2

2 2
21,22 sign / ; 0v v v u u v u u vb α ω α ω α ω ω α α= ⋅ ± − ⋅ <  

(4-6) 

It is noteworthy that the results in Eq. (4-6) are related to the two break in/away points in the 

locus of zeros such as the example shown in Fig 3-9. 
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4.2.3. Normalization and the Propositions 

 

In last section, the crossing between a parabola associated with the system and the horizontal 

line is used to examine the presence of CMP-CNMP zeros. Regarding this parabola, two points 

(Pu and Pv) that are invariant of αR are shown to be useful in checking the crossing situations. 

When these two points are fixed, the condition causing CMP-CNMP zeros is described by a 

specific range of values of the second order coefficient (b2). In this analysis, αR is chosen as the 

varying parameter for simplicity. However, if mode u and mode v are under curve veering, the 

eigenvectors associated with other modes are assumed to be invariant (Assumption A4-4). As a 

result, the modal residue of mode R is unchanged in the vicinity of curve veering (i.e., αR is 

constant). Instead, there are multiple parameters under variation (i.e., αu, αv, ωu, and ωv), which 

complicate the analysis of zeros. Therefore, a normalization (or scaling) method is proposed to 

transform the complex situation of curve veering to a simpler case. 

 The normalization method is shown in Eq. (4-7). 

 2 2 2 2 2 ˆˆ( ) ; ( )v u u v ux x N Nω ω ω ω ω= − = −  (4-7) 

 Pu and Pv are then scaled to P̂u and P̂v, with their coordinates (x̂, N̂) shown as Eq. (4-8). 

 ( ) ( )2 2 2 2 2 2 2 2ˆ ˆ: / , ; : / , /u u v u u v v v u v v uP Pω ω ω α ω ω ω α ω ω   − − − − −     (4-8) 

Based on Eq. (4-7), one can see that after normalization, the horizontal distance between the 

two points P̂u and P̂v is scaled to unity. Moreover, the second order coefficient is scaled as 

follows, where ωΔ=ωu−ωv. 

 ( ) ( )( )2 2 2 2
2 2

ˆ / /v u u v u u v R ub bω ω ω ω ω ω α α α ω∆= − = + + +  (4-9) 

Additionally, the critical values for the second order coefficient (i.e., b21 and b22) can be 

scaled as follows. 

 ( ) ( )2

21,22 2

1ˆ sign ; 0v v v u u u v
u

b α ω α ω α α α
ω

= ⋅ ⋅ ± ⋅ <  
(4-10) 
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Note that for b̂21 and b̂22 to exist, one requires αu·αv<0. Similarly, we define |b̂22|>|b̂21|. Next, 

consider the following statements. 

Condition C4-1: αR, αu, and αv form a sequence of alternating signs. 

Condition C4-2: b̂21 and b̂22 exist, and either Eq. (4-11) or Eq. (4-12) is met. 

 22 2 21
ˆ ˆ ˆ 0; 0; 0u vb b b α α> > > < >  (4-11) 

 22 2 21
ˆ ˆ ˆ 0; 0; 0u vb b b α α< < < > <  (4-12) 

Proposition P4-1: for systems under Assumptions A4-1 to A4-5, CMP-CNMP zeros appear 

if and only if Condition C4-1 and C4-2 are met (necessary and sufficient conditions). 

The proof of Proposition P1 is shown in the above procedure of finding the two critical 

situations of the parabola family (see Fig 4-2a and Fig 4-2b). Note that by far the presence of 

curve veering is not required. Next, we bring in the scenario of curve veering. Since it is 

complicated to directly examine the correlation between the phenomenon of CMP-CNMP and 

the phenomenon of curve veering, we will examine how the presence of curve veering affects to 

the necessary and sufficient conditions of CMP-CNMP zeros. 

Condition C4-3: the two closely spaced modes (i.e., mode u and mode v) experience curve 

veering with certain parameter (denoted as ψ) variation, and their natural frequencies are 

sufficiently close at the veering point ψcv (i.e., ωΔ→0, where ωΔ=ωu−ωv). 

It is known that there have to be at least two modes for the existence of curve veering. 

Moreover, the number of modes related to curve veering is the number of periodic structures 

(e.g., bladed disks). In this chapter, we focus on the situation with only two modes that are 

related to curve veering, while situation with multiple modes can be extended analogically. The 

description “sufficiently close” in Condition C4-3 indicates that the parameter set of the system 

is almost the parameter set of mode crossing. 

Condition C4-4: b̂21 and b̂22 exist, and there exists a value ψ0≠ψcv such that either Eq. (4-13) 

or Eq. (4-14) is met. 

 2 21
ˆ ˆ 0; 0; 0u vb b α α> > < >  (4-13) 
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 2 21
ˆ ˆ 0; 0; 0u vb b α α< < > <  (4-14) 

Proposition P4-2: for systems under Assumptions A4-1 to A4-5, if Condition C4-1, C4-3, 

and C4-4 are met, then there exists a value ψ=ψx such that CMP-CNMP zeros appear. 

To prove, if condition C4-3 is met, then one has ωΔ→0 at the curve veering point. Since all 

of the modal residuals (i.e., αu, αv, and αR) are finite, b̂2 is finite (see Eq. (4-9)), then b̂2→0 as 

ωΔ→0. Based on Condition C4-3, if Condition C4-1 and C4-4 are met, then in the variation of ψ, 

there exists an instance (denoted as ψx) when b̂2 is in the range of (b̂21, b̂22) due to continuity, 

which indicates Condition C4-2 is met. Therefore, based on Proposition P4-1, CMP-CNMP 

zeros are presence when ψ=ψx. 

One can see that Condition C4-4 has a weaker requirement than Condition C4-2, because of 

the presence of curve veering. In other words, in the vicinity of curve veering (Condition C4-3), 

the requirement for CMP-CNMP zeros is weakened from Condition C4-2 to Condition C4-4. 

Furthermore, it can be seen that Condition C4-1, C4-3, and C4-4 are the sufficient but not 

necessary conditions of the presence of CMP-CNMP zeros. In other words, Proposition P4-2 

indicates that at the presence of CMP-CNMP zeros, the phenomenon of curve veering may not 

exist. An example is shown in Fig 4-3, which is inspired by the modal decomposition in the 

literature [59]. In Fig 4-3, all masses can only move in the vertical direction. The contribution of 

each spring-mass (i.e., subsystems with the subscript as R, u, and v) to the output y is determined 

by their associated lever arms. Moreover, each spring-mass is isolated from the other ones. 

Therefore, the output y can be any linear combination of these spring-mass modes. Now consider 

applying the same scalar force F on each of the masses and examine the transfer function from F 

to y. It can be seen that with a certain selection of parameters (i.e., masses, springs, and the 

length of the lever arms), there will be CMP-CNMP zeros in this transfer function. However, 

since there is no coupling between mode u and mode v, there is no curve veering in this system. 
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Fig 4-3 Spring-mass system with lever arms. 

 

However, for systems under Assumptions A4-1 to A4-5, if Condition C4-3 is always true, 

then Condition C4-1 and C4-4 become the necessary and sufficient conditions of the presence of 

CMP-CNMP zeros.  

Proposition P4-2x: for systems under Assumptions A4-1 to A4-5, if Condition C4-3 is true, 

then CMP-CNMP zeros appear if and only if Condition C4-1 and C4-4 are met.  

Compared Proposition P4-2x with Proposition P4-1, since Condition C4-4 is a weaker 

requirement of Condition C4-2, one can see that the presence of curve veering makes CMP-

CNMP zeros more likely to appear. 

Next, since Condition C4-4 is related to Eq. (4-9) and Eq. (4-10), to further understand the 

physical insights of Condition C4-4, a simpler case of Condition C4-4 is examined next, which is 

a subset of Condition C4-4. 

Condition C4-4y: in the variation of ψ, there exists an instance of ψ when there are two pairs 

of MMP zeros (termed as dual MMP zeros) in the range (ωu, ωv). 

Note that Condition C4-4y is considered for systems under Assumptions A4-1 to A4-5. In 

addition, Condition C4-4y implies Condition C4-1 to be true. This can be shown using the 

parabola in Eq. (4-3). Condition C4-4y indicates that the two points invariant of αR (i.e., Pu and 

Pv) are on the same side of the horizontal, which implies αu·αv<0. Moreover, the parabola has 

two crossings with the horizontal, and these two crossings are between the horizontal positions 

of Pu and Pv. Therefore, Pu and Pv have to be either above the horizontal line with αR>0 (i.e., 
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αR>0, αu<0, and αv>0), or below the horizontal line with αR<0 (i.e., αR<0, αu>0, and αv<0). This 

indicates that αR, αu, and αv form a sequence of alternating signs. 

Furthermore, since the parabola has two crossings between the horizontal positions of Pu and 

Pv, based on Eq. (4-10), one has b̂2> b̂22, which implies that Condition C4-4 is met. Therefore, 

Condition C4-4y is a subset of Condition C4-4. Next, we have a corollary of Proposition P4-2. 

Proposition P4-2y: for systems under Assumptions A4-1 to A4-5, if Condition C4-3 and C4-

4y are met, then there exists a value ψ=ψx such that CMP-CNMP zeros appear (sufficient but not 

necessary conditions). 

The situation described by Condition C4-4y can be further explained using the technique 

named “sequence of the dominant modes” in Chapter 3. For a system under Assumption A4-1 to 

A4-5, Condition C4-4y indicates a situation demonstrated in Fig 4-4a, where mode R is the 

double integrator, mode u and mode v are the two modes related to curve veering.  

+− +
Mode R 

(Magnitude)
ωu ωv

Mode u
(Magnitude)

Mode v
(Magnitude)

− 

Z1

Z2

G(s)
(Phase) -180° 

-360° 

0° 

− +− 
Mode R 

(Magnitude)
ωu ωv

Mode u
(Magnitude)

Mode v
(Magnitude)

− 

G(s)
(Phase) -180° 

-360° 

− 

-540° (a) (b)  

Fig 4-4 Change of sequence of the dominant mode due to curve veering. (a) dual MMP zeros; (b) CMP-CNMP 

(or dual RMP-RNMP) zeros 

 

Without losing generality, we consider the alternating signs as αR>0, αu<0, and αv>0. 

Therefore, the sign of mode R is always negative (i.e., −180° in phase). Since αu<0, there is a 

crossing between mode R and mode u at Z1, where mode R and mode u have the same 

magnitude but different signs. As a result, Z1 indicates an approximate frequency of a pair of 

MMP zeros in G(s).Similarly, Z2 indicates another pair of MMP zeros. Consequently, the 
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sequence of the dominant modes in Fig 4-4a is “mode R → mode u → mode R → mode v”, 

which is denoted as [R]-[u]-[R]-[v], based on our previous work (see Chapter 3). Since the phase 

of G(s) is the phase of the dominant mode, the phase of G(s) starts at −180° as mode R, drops to 

−360° due to the resonance of mode u, rises to −180° as mode R, moves to 0° as mode v, and 

ultimately drops to −180° due to the resonance of mode v. 

As the variable ψ varies towards the curve veering point (i.e., ψ=ψcv), the spacing between 

mode u and mode v reduces. As a result, the combined contribution of these two modes in the 

frequency range (ωu, ωv) increases, which causes Z1 and Z2 to move towards each other. Since 

the peaks at ωu and ωv are infinite due to zero damping (Assumption A4-2), this combined 

contribution increases dramatically when mode u and mode v are sufficiently close. Therefore, 

there always exists an instance when Z1 and Z2 collocate and disappear, which is demonstrated in 

Fig 4-4b. As a result, the sequence of the dominant mode becomes [R]-[u]-[v]. Based on the 

mapping between the sequence of the dominant mode and the type of zeros (see Chapter 3), this 

sequence indicates the appearance of either CMP-CNMP zeros or two pairs of RMP-RNMP 

zeros (termed as dual RMP-RNMP zeros). Therefore, the phase of G(s) starts at −180° as mode 

R, drops to −360° due to the resonance of mode u, and ultimately drops to −540° due to the 

resonance of mode v. Moreover, for the dual RMP-RNMP case, in the evolution from dual MMP 

zeros to dual RMP-RNMP zeros, there must exist an instance when the zeros are CMP-CNMP 

zeros. Therefore, there exists a value ψ=ψx such that CMP-CNMP zeros appear. 

It is noteworthy that Condition C4-4y or the phase plot of G(s) in Fig 4-4a is commonly 

identified in flexible systems. This is because that the “rigid-body” mode (i.e., the double 

integrator or mode R in this chapter) commonly contributes a significant portion in G(s). If there 

are two closely spaced modes that form a sequence of alternating signs together with the “rigid-

body” mode, then there will likely be two pairs of MMP zeros between the two closely spaced 

modes. Examples will be provided in Section 4.3. 

 

 

  



78 
 

4.2.4. The Signs of the Modal Residues and the Sensor/Actuator Configuration Vectors 

 

Based on the previous discussion, one can see that the signs of the modal residues play an 

important role in determining the types of zeros. This section provides some insights in 

understanding the signs of the modal residues in the view of the sensor/actuator configuration.  

The eigenvalue problem of a system is in the form of (K-ωi
2M)ϕi=0, where M and K are the 

mass and stiffness matrices respectively, ωi is the natural frequency of the ith mode, and ϕi is the 

corresponding eigenvector (mode shape) with its length normalized to unity (i.e., ϕi
T·ϕi=1, for all 

i). Consequently, the modal residual of the ith mode is described as Eq. (4-15). 

 ( ) ( ) ( ) ( ) ( )/ /T T T T T
i j i k i i i j i k i iM mα β φ β φ φ φ β φ β φ= ⋅ = ⋅   (4-15) 

In Eq. (4-15), m̃i is termed as the modal mass of the ith mode. Additionally, βj and βk are 

vectors in the same dimensions as ϕi. These two vectors define the sensor and actuator 

configuration of a system. For example, βj=[1 0 … 0]T indicates that the sensor (or the actuator) 

is located on the point mass referring to the first coordinate. Since modal mass is always positive, 

the requirement that mode u and mode v are out-of-phase is then explained as Eq. (4-16). 

 ( )( ) ( )( ) 0T T T T
j u k u j v k vβ φ β φ β φ β φ   ⋅ <     (4-16) 

Next, the geometrical explanation of Eq. (4-16) is then presented. Fig 4-5a is a projection of 

the two eigenvectors ϕu and ϕv onto a 2D plane. The projection is conducted in a way such that 

the angle between ϕu and ϕv is unchanged on the 2D plane (i.e., cosθ=ϕu
T·ϕv, where θ is the angle 

in the 2D plane). One can then draw two lines L(ϕu) and L(ϕv)  that are perpendicular to ϕu and ϕv, 

respectively. As a result, the 2D plane is split into four quadrants (i.e., I, II, III, and IV). 

Therefore, Eq. (4-16) indicates that if one projects βj and βk onto this 2D plane, the two resulting 

vectors should be separately located in any two quadrants that are adjacent to each other (e.g., 

quadrants I and II in Fig 4-5a). It is noteworthy that due to the existence of curve veering, ϕu and 

ϕv are almost perpendicular to each other, since they are localized and the product ϕu
T·ϕv is 

almost zero (strict perpendicularity is reached in the case of mode crossing, since ϕu and ϕv are 

strictly localized). Moreover, as curve veering proceeds, ϕu and ϕv rotate with their relative angle 
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unchanged [95, 96], thus rotating the quadrants accordingly. As a result, this rotation may change 

the quadrants where the projected βj and βk are located, and may thus change the signs of mode u 

and mode v. 

L(ϕu)

ϕu

ϕvθ I

II III

IVL(ϕv)

P(ϕu)

P(ϕv)
P(ϕR)(a) (b)

A
B

C
D

E
F

G

 

Fig 4-5 The spaces divided by the eigenvectors. (a) two dimensional quadrants; (b) three dimensional octants. 

 

The above-discussed results can then be extended to a higher dimensional system. For 

example, consider a system under Assumption A4-1 to A4-5 (i.e., two 2nd order modes with a 

double integrator). Mode R, mode u, and mode v are the three modes of interest, with their 

natural frequencies (0≈ωR<ωu<ωv). If this system has a sequence of alternating signs (i.e., 

αR·αu<0 and αu·αv<0), the requirement on the sensor/actuator configuration vectors (i.e., βj and βk) 

is visualized in Fig 4-5b. The eigenvectors of ϕR, ϕu and ϕv can be projected onto a 3D space (not 

shown in Fig 4-5b for clarity). There are three planes (i.e., P(ϕR), P(ϕu), and P(ϕv)) shown in Fig 

4-5b that are perpendicular to ϕR, ϕu, and ϕv, respectively. The 3D space is then split by these 

three planes into eight octants. The condition αR·αu<0 requires that the projection of βj and βk 

onto this 3D space should be separately located in two adjacent spaces divided by P(ϕR) and 

P(ϕu), such as A-B, A-C, or A-F; similarly, the condition αu·αv<0 requires that the projection of βj 

and βk should be separately located in two adjacent spaces divided by P(ϕu) and P(ϕv), such as A-

E, A-C, or A-F. Therefore, for the conditions of both αR·αu<0 and αu·αv<0, the projection of βj 

and βk should be located in spaces meeting the requirements of both conditions. For example, if 

the projection of βj onto this space is located in octants A, then the projection of βk has to be 

located in octants C or octants F. 
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4.4. Case Studies 

 

In this section, three examples are presented to demonstrate the correlation between curve 

veering and the presence of CMP-CNMP zeros. All of the examples follow the Assumption A4-1 

to A4-3 (i.e., all of the decomposed modes are 2nd order systems, no unstable poles, and zero 

damping). The actuators considered in these examples are force actuators, while the sensors are 

displacement sensors. 

 

4.4.1. Three DoF Spring-Mass Model 

 

Consider the model shown in Fig 4-1a, using a numerical setting as k1=k2=kb=1 kg/s2, mb=10 

kg, mu=1 kg, and mv=1+0.01 kg. For the variation of parameter, we set k varying from 0 to 0.03 

kg/s2. The presence of curve veering is shown in Fig 4-1b. Next, using the coordinates as [xu, xv, 

xb]T, we consider the sensor/actuator configuration vectors as βj=[0.1148, 0.0733, 0.6873]T, 

βk=[0.1170, 0.2692, 0.5606]T. 

The Bode plot of the relevant transfer function is shown in Fig 4-6a, with k=0 and k=0.02 

kg/s2 (which is close to the curve veering point, see Fig 4-1b). Mode u and mode v are the two 

modes dominated by the oscillations of mu and mv, while mode R is “rigid-body” mode where all 

of the three masses oscillate with almost the same magnitudes. In Fig 4-6a, one can see that 

mode R is well-separated from mode u and mode v. Therefore, in the vicinity of mode u and 

mode v, mode R can be regarded as a double integrator. Next, the poles and zeros related to the 

modes of interest are shown in Fig 4-6b. Note that the full pole-zero map is symmetric w.r.t. the 

real axis. It can be seen that the dual MMP zeros are observed in the range (ωu, ωv) when k=0. 

Therefore, based on Proposition P4-2y, there exists an instance of ψ (which is k in this example) 

when the dual MMP zeros become CMP-CNMP zeros (shown in Fig 4-6 when k=0.02 kg/s2). 



81 
 

-100

-50

0

50

100
M

ag
ni

tu
de

 (d
B

)

10
-0.6

10
-0.4

10
-0.2

10
0

10
0.2

-540

-360

-180

0

P
ha

se
 (d

eg
)

 

 

Frequency  (rad/s)

k=0
k=0.02 kg/s2

-0.02 -0.01 0 0.01 0.02
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

 

 

Real Axis (seconds-1)

Im
ag

in
ar

y 
A

xi
s 

(s
ec

on
ds

-1
)

k=0
k=0.02 kg/s2

Frequency (rad/s)

(a). Bode Plot

Mode R

(b). Pole-Zero Map

Mode v

Mode u

Mode u Mode v

Mode u

 

Fig 4-6 Dynamic properties with different values of k. (a) Bode plot; (b) pole-zero map. 

 

The migration of zeros from k=0 to k=0.02 kg/s2 is shown in Fig 4-6b. One can see that as k 

approaches the curve veering point, the spacing between ωu and ωv reduces (in this example, 

mode u moves towards mode v, see Fig 4-1b). As a result, as shown in Fig 4-6b, the two pairs of 

zeros merge towards each other, collocate, and then split into the complex plane, becoming a 

quartet of zeros symmetric w.r.t. to both the real and the imaginary axes (i.e., CMP-CNMP 

zeros).  

In addition, it is noteworthy that if one continues to increase k, the relevant zeros will move 

back onto the imaginary axis again, but with a frequency higher than mode v, as shown in Fig 

4-6. 

 

4.4.2. Lumped Parameter Model of a Flexure Mechanism (SR4DoF) 

 

Shown as Fig 4-7a, this model is from Chapter 2, which comprises two nominally symmetric 

double parallelogram flexure modules (DPFM). This mechanism allows stage ① to move in the 

X and Y directions. The former is due to the X direction bearings at stages ④ and ⑤ (i.e., 

rollers in Fig 4-7a) and the latter is due to large bending deformation of the beams in the two 

DPFM. The operating point (Y1o) is given by a static displacement of stage ① in the Y direction 
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w.r.t. the ground, which is caused by a constant force FY1o. The five stages have eight 

displacement coordinates as shown in Fig 4-7a; lower case version of these coordinates represent 

the respective deviations w.r.t. to an operating point. Furthermore, each parallelogram (two for 

each DPFM) provides a degree-of-constraint. Therefore, this mechanism has four DoF. 

There are two closely spaced modes (denoted as mode u and mode v) associated the 

oscillation of stages ② and ③. Based on Section 2.2.1, the two closely spaced modes are 

observable if there is certain asymmetric between the two DPFM. For simplicity, we define Δm23 

(=m2/m3–1) as the mass asymmetric value. In this example, we consider Δm23=1%, other 

numerical parameters are chosen based on Section 2.2.1. The natural frequencies of these two 

closely spaced modes are examined in Fig 4-7b, using the operating point as the variation 

parameter. One can see that curve veering is observed (mode crossing is achieved when Δm23=0). 
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Fig 4-7 Lumped parameter flexure model. (a) schematic diagram; (b) natural frequencies of the closely spaced 

modes. 

 

The coordinate chosen is [x1, y1, y2, y3]T. The non-collocated transfer function from an X 

direction force P on stage ④ to the X displacement of stage ① is investigated, under different 

values of Y1o. As a result, the sensor/actuator configuration vectors are computed as βj=[1, α, −2α, 

0]T and βk=[1, 0, 0, 0]T, where α is a variable defined as α=0.6·Y1o /L and L is the length of the 

beams in each DPFM (see Section 2.2.1). 
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The Bode plot of the relevant transfer function is shown in Fig 4-8a, with Fig 4-8b as a 

zoom-in view of the modes of interest. Among the four modes of this model, there is one mode 

that is associated with the oscillations of stages ①, ②, and ③ in the Y direction, making it 

unobservable in the X direction transfer function. Next, one can see that mode R is well-

separated from mode u and mode v, and dual MMP zeros are observed when Y1o=3.3% of L. 

Therefore, based on Proposition P4-2y, CMP-CNMP zeros are observed in Fig 4-8, as Y1o 

increases towards the curve veering point. 
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Fig 4-8 Dynamic properties of the SR4DoF flexure mechanism. (a) Bode plot; (b) zoom-in Bode plot; (c) pole-

zero map 
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The migration of zeros as Y1o varies is shown in Fig 4-8c. Similar to Fig 4-6b, it can be seen 

that the zeros starts as dual MMP zeros, merge towards each other, collocate, split into the 

complex plane (CMP-CNMP zeros), and move back on to imaginary axis (dual MMP zeros). 

 

4.4.3. Four DoF Mass-Spring Model 

 

Consider the lumped parameter model shown in Fig 4-9a. This example is inspired by the 

work of Loix et al. [49], who conducted a numerical study of a 4 DoF mass-spring model and 

observed CMP-CNMP zeros. However, they did not realize the presence of curve veering and 

the correlation between CMP-CNMP zeros and curve veering. 
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Fig 4-9 Four DoF mass-spring model. (a) schematic diagram; (b) natural frequencies of the two modes of interest. 

 

Define the coordinates as [x1, x2, x3, x4]T and consider the dynamics. The numerical values 

used in this example are set as m1=m4=10 kg, m2=m3=1 kg, k12=k34=100 kg/s2, and 

k13=k14=k24=200 kg/s2. k23 is the parameter for variation. One can see that m1 and m4 are set with 

values much larger than the other two, in order to explicitly demonstrate closely spaced modes. 

The two closely spaced modes are dominated by the oscillation of m2 and m3, which are again 

denoted as mode u and mode v. The curve veering is shown in Fig 4-9b. Next, regarding the 

transfer function, the sensor/actuator configuration vectors are βj=[1, 0, 0, 0]T and βk=[0, 0, 0, 1]T, 

which indicates that the sensor and the actuator are located on the lumped mass. 
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The Bode plot of the relevant transfer function is shown in Fig 4-10a. Since there are four 

modes (including a double integrator), one cannot easily determine whether Assumptions A4-4 

and A4-5 apply to this example. However, it can be seen that dual MMP zeros are observed 

between the two closely spaced modes. Therefore, the presence of the dual MMP zeros implies 

that the variation of zeros follows a procedure similar to what is described in Fig 4-4. In other 

words, as the spacing between mode u and mode v reduces due to curve veering, the contribution 

of mode u and mode v in the range (ωu, ωv) is “squeezed”. As a result, the dual MMP zeros 

merge towards each other and split into the complex plane, becoming CMP-CNMP zeros. 
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Fig 4-10 Dynamic properties of the 4DoF model. (a) Bode plot; (b) pole-zero map. 

 

The migration of zeros is demonstrated in Fig 4-10b. It is noteworthy that this migration is 

similar to what are described in Fig 4-6b and Fig 4-8c. However, Proposition P4-2y only 

explains part of the procedure (i.e., merge, collocate, and split) that is related to curve veering, 

while the explanation of the full procedure is currently open and being investigated. 

 

4.5. Contributions and Conclusions 

 

Three main findings are presented in this chapter. First, we demonstrate that under certain 

sensor/actuator configurations, the presence of curve veering in a system guarantees the presence 
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of CMP-CNMP zeros (sufficient condition). However, the presence of CMP-CNMP zeros does 

not guarantee the presence of curve veering (not a necessary condition). We show an example 

where CMP-CNMP zeros appear but there is no curve veering. Second, based on the importance 

of the signs of the decomposed modes, we show the relationship between sensor/actuator 

configuration and the signs of the decomposed modes. This finding provides a useful insight in 

designing the sensor/actuator of a system. Third, three examples are provided showing the 

correlation between curve veering and CMP-CNMP zeros. 
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Chapter 5. Experimental Validation of CNMP Zeros in Flexure Mechanisms 

 

In this chapter, we present an experimental validation on the existence of CMP-CNMP zeros 

in lightly damped, passive stable flexure mechanisms (i.e., there is no right half plane poles of 

the plant). Also, this work validates the model-based prediction of CMP-CNMP zeros in double 

parallelogram flexure module based mechanisms as in Chapter 2. Experimental validation of the 

model is challenging because it requires building an experimental setup that captures the 

dynamics of the theoretical model. However, the dynamic behavior of an actual setup can be 

adversely affected by the several factors that have to be carefully considered, as listed below. 

1. The SR4DoF model is designed for in-plane translational motion. Since there are always 

un-modeled modes in reality, it follows that the un-modeled modes have to be designed 

at frequencies much higher than the modeled modes, so that they have minor contribution 

(to magnitude or phase) in the frequency response at low frequencies (i.e. the frequency 

range of interest). These un-modeled modes include out-of-plane modes, in-plane 

rotational modes, or additional distortion modes due to the compliance of the 

“supposedly rigid” stages of the flexure mechanism. 

2. The CNMP zeros of the SR4DoF model are the results of the superposition of two closely 

spaced modes (i.e., modes of interest) and a non-zero but relatively small contribution of 

all other modes. Therefore, these modes of interest have to be designed to be well-

separated from any “rigid-body” mode at the lower frequencies and the un-modeled 

modes in the higher frequencies.  

3. The CNMP zeros of the SR4DoF model are predicted at various operating points. The 

method to provide a quasi-static actuation to establish the operating point has to be such 

that this actuator minimally affects the dynamics of the flexure mechanism. Providing 

such actuation over a range of displacements in a perpendicular direction can be 

challenging for the setup design. 

4. All bearings have to be designed to avoid nonlinearities such as friction and backlash. 
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To conduct the validation, the design procedure is presented to minimize the extraneous 

factors in order to provide a “clean” observation. First, iterations are discussed on the geometric 

design of the experimental setup. Next, dimensions are optimized in terms of mode orders and 

natural frequencies, in order to isolate the modes of interest from other modeled and not-modeled 

modes. Then, fabrication of this setup is discussed. Then, frequency responses are 

experimentally measured and compiled over a two-variable based grid, which agrees with a 

model based prediction of the existence of CMP-CNMP zeros (i.e., the CNMP map). Via the 

validation of this map, we show that an intentionally asymmetric choice of mass can help 

eliminate the CMP-CNMP zeros. 

Y
X Operating Point

①
②

⑤

③

④

(X1, Y1)

(X2, Y2) (X3, Y3)(X4) (X5)

k24
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k35

k13

P

FY1oY1o

x1

 

Fig 5-1 Simple representative 4 DoF model (recall of chapter 2). 

 

The SR4DoF model is shown again in Fig 5-1 for convenience. The closely spaced modes of 

interest are the modes dominated by stage ② and ③. We have shown in Chapter 2 that these 

closely spaced modes interact as the above mentioned coupling varies with the operating point 

and as the parametric asymmetry varies, giving rise to CMP-CNMP zeros under certain 

conditions. This is again shown in Fig 5-2 for convenience, which maps the existence of CMP-

CNMP zeros against a range of operating points (Y1o normalized with respect to beam length L) 

and parametric asymmetry (Δm23). Black regions on this map indicate the presence of CMP-

CNMP zeros. For ease of presentation, the top view (Fig. 2a) is referred to the CNMP zero map 

for ease of presentation. 
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Fig 5-2 Complex non-minimum phase zero map (recall of chapter 2). 

 

 Two main observations are presented on the CNMP map (Fig 5-2a). First, the map is 

symmetric w.r.t. the operating point (i.e., Y1o). This is due to the fact that different signs of the 

operating point indicate that the relevant beams bend in different directions. Since the same 

amount of bending in different directions results in the same amount and same sign of kinematic 

error motion and the CNMP behavior is related to such kinematic error motion, the discriminant 

function is symmetric w.r.t. the operating point.  

Second, the CNMP phenomenon is directional w.r.t. the parametric asymmetry (i.e., Δm23). 

In other words, when Δm23>0, the CMP-CNMP zeros appear under certain conditions; however, 

when Δm23<0, the CMP-CNMP zeros will not appear. A primary explanation for this directional 

behavior is that the non-collocated actuator/sensor configuration of this system is directional (i.e., 

from the force applied on stage ④ to the displacement sensor on stage ①). The study in 

Chapter 3 shows that the sign of Δm23 is related to the sequence of signs of the decomposed 

modes, which is shown to be relevant to the existence of CMP-CNMP zeros.  

However, the above results and predictions are based on numerical simulations of a model 

with various assumptions. Thus, an experimental validation of this model is of great value to 

corroborate the understanding of the phenomenon related to CMP-CNMP zeros. 
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5.1. Experimental Setup Design 

5.1.1. Flexure Mechanism Geometry 

 

The goal is to design an experimental setup whose low-frequency modes (i.e., main dynamics 

behavior) are the modes of the SR4DoF model, while the un-modeled modes show up at high 

frequencies. As the first step, in order to minimize other extraneous factors such as friction and 

backlash, the roller bearings are replaced with flexure bearing. This enables the setup to be 

manufactured from a flat metal plate. Next, Aluminum 6061-T651 (25.4 mm thick stock plate) 

was selected as the primary option for ease of availability and machining. In addition, voice coil 

motor was chosen for the actuation of the X-axis motion, since it provides a non-contact 

actuation between the ground and the flexure mechanism. 

U

Acuator
Balance 

Mass

(a) (b)

(c)
(d)Minor 

DPFM

Folded 
U-Beam

Y
Z X

Support Beam

L1

LU

L2

 

Fig 5-3 Illustration of geometric evolution. 

 

The initial design shown in Fig 5-3a (namely Design-1) utilizes four simple flexure beams to 

provide flexure bearing for stages ④ and ⑤. A balance mass with the same mass value of the 
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mover of the actuator (i.e., coil) is assigned on the opposite side of the actuator to achieve a 

nominally mass balance between for stages ④ and ⑤. The reason to pursue nominally mass 

balance is to increase the frequencies of several rotational modes, as large mass imbalance could 

lead to dramatic increase in the momentum w.r.t. certain out-of-plane rotation (e.g., pitch) and 

thus reduce the natural frequency of the associated un-modeled mode. However, using the simple 

beams has limited travel range in the X direction due to geometric over-constraint of these 

support beams. 

To relieve the over-constraint in the design shown as Fig 5-3a, the simple beams are replaced 

by folded beams as shown in Fig 5-3b, namely Design-2. To enable the finite element analysis 

(FEA) of the modes shapes and their corresponding orders, we established the dimensions of the 

main flexure beams that were used in our previous investigations [11, 72]. Therefore, as the 

initial trial, the length of the main beam was set at 47.5 mm (i.e., L1 in Fig. 3b) and thickness was 

set at 0.625 mm (denoted as T1). Regarding the folded U-beam, the length was set at 40 mm (i.e., 

LU in Fig 5-3b) and the thickness was set at 0.625 mm. In additional, the masses were designed 

by setting m1=0.2 kg, m2=m3=0.04kg, and m4=m5=0.8 kg (including the mass value of the 

actuator/balance mass). The purpose of employing such parameter choice was to create a desktop 

size experimental flexure mechanism. 

FEA was conducted on Design-2, with stage ① at the nominal operating position (i.e., 

Y1o=0). The nonlinear option of the FEA was turned off; even though our previous studies show 

that the natural frequencies of the two closely spaced modes will have about 7% changes under 

large deformation [72]. The reason is that, the primary objective of using FEA in this study is to 

arrange the un-modeled modes to high frequencies, while the change of the modeled modes’ 

frequencies has minor priority. 

The FEA results of the Design-2 are presented in Table 5-1. The modes in shaded color are 

the un-modeled modes of the abstract model. It can be seen that the first two modes are already 

modeled modes. However, there are several un-modeled modes appearing between the second 

and third modeled modes (i.e., the 2nd and 8th modes). For example, the 3rd mode is the in-plane 

rotational mode as shown in Fig. 4a, while the 7th mode is the out-of-plane rotational mode as 

shown in Fig 5-4b. The reason is that the folded U-beam has low stiffness in both the translation 
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and rotation in the axial direction [97]. However these directions are the bearing directions of the 

SR4DoF model. 

 

Table 5-1 FEA results of each design. Shaded areas refer to the un-modeled modes. The unit of frequency is Hz. 

Order 
Design-2 (Fig. 5-3b) Design-3 (Fig. 5-3c) Design-4 (Fig. 5-3d) Design-4x (Improved) 

Freq. Description Freq. Description Freq. Description Freq. Description 

1 15.2 “Rigid-body” 10.6 “Rigid-body” 14.8 “Rigid-body” 25.2 Vertical[a] 

2 35.5 Vertical[a] 29.7 Vertical[a] 29.7 Vertical[a] 33.1 “Rigid-body” 

3 43.8 In-plane 44.9 Out-of-plane 83.0 CSM1[b] 79.6 CSM1[b] 

4 46.5 In-plane 51.5 Out-of-plane 91.3 CSM2[b] 85.6 CSM2[b] 

5 54.1 In-plane 82.3 CSM1[b] 123.8 Out-of-plane 235.1 Out-of-plane 

6 57.0 Out-of-plane 91.3 CSM2[b] 128.0 Out-of-plane 237.8 In-plane 

7 67.0 Out-of-plane 111.2 In-plane 143.6 In-plane 272.8 In-plane 

8 103.4 CSM1[b] 112.3 In-plane 144.2 In-plane 281.4 Out-of-plane 

9 116.1 CSM2[b] 149.6 In-plane 144.8 In-plane 282.0 In-plane 

10 187.5 Out-of-plane 159.1 Out-of-plane 145.6 In-plane 283.6 In-plane 

Note:  

[a]: Vertical mode is the modeled mode where stages ①, ② and ③ oscillate vertically in the Y-axis. 

[b]: “CSM” refers to the two closely spaced modes dominated by the Y-axis oscillation of stages ② and ③. CSM1 refers to the 

mode where stages ② and ③ oscillate in the opposite directions, while CSM2 refers to the case where stages ② and ③ 

oscillate in the same direction. 

(a) (b)

Y
Z

X

Z

X

Y

 

Fig 5-4 Examples of un-modeled modes in Design-2: (a) 3rd mode; (b) 7th mode. 

 

To increase the stiffness in the relevant bearing directions, the folded U-beam structures in 

Fig 5-3b are replaced with two additional DPFMs as shown in Fig 5-3c (denoted as Design-3). 

The reason is that DPFM offer better stiffness characteristics without sacrificing the travel range 
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[30, 97]. The additional DPFMs are denoted as the minor DPFMs to distinguish from the two 

DPFMs (denoted as the main DPFMs) used in the SR4DoF model. The beams of the minor 

DPFMs were initially designed with the same dimensions as the beams in the main DPFM, with 

length (L2) set as 47.5 mm and thickness (T2) set as 0.625 mm. In addition, in order to reduce the 

frequencies of the two modeled closely spaced modes (i.e., CSM1 and CSM2 in Table. 1), m1 

was increased from 0.2 kg to 0.4 kg, and m2 and m3 were increased from 0.04 kg to 0.06 kg. The 

re-arrangement in mass value was to create a larger frequency separation between the last 

modeled mode (i.e., CSM2) and the next un-modeled mode. 

The FEA results are shown in Table 5-1. It can be seen that the number of un-modeled modes 

between the modeled modes have reduced. However, since the geometry of Design-3 is not 

symmetric w.r.t. both the X and Y axes, the flexure mechanism has an axis connecting the 

grounds (denoted as U-axis in Fig 5-3c) with low rotational stiffness. In fact, the un-modeled 

out-of-plane modes shown as the 3rd and 4th modes in Design-3 are associated with the rotation 

w.r.t. the U-axis. 

An intuitive improvement to Design-3 was to employ four minor DPFMs to achieve 

symmetric w.r.t. both the X and Y axes, resulting to Design-4 as shown in Fig 5-3d. It can be 

seen from the FEA results (Table 5-1) that the rotational modes (w.r.t. the U-axis in Fig 5-3c) 

were effectively eliminated. Moreover, all of the first fourth modes were modeled modes. 

However, frequency separation between the last modeled mode (91.3 Hz) and the first un-

modeled mode (123.8 Hz) has a factor of only 1.35 (123.8/91.3). Moreover, the four closely 

spaced modes (from 7th to 10th) are associated with the oscillation of the secondary stages in the 

four minor DPFMs. These closely spaced modes also need to be re-arranged to higher 

frequencies. Therefore, further considerations are needed to increase all these un-modeled modes’ 

natural frequencies. 

The 5th and 6th modes are shown in Fig 5-5a and Fig 5-5b, respectively. For both the 5th and 

6th modes, the center stage (stage ①) is almost stationary, thus dividing the flexure mechanism 

into two parts symmetric w.r.t. the Y-axis that is located on the center stage. Furthermore, each 

part rotates w.r.t. the Y-axis that is located on the part that connects the minor DPFM and the 

main DPFM (denoted as W-axis, parallel to the Y-axis). The relevant angular momentum of such 

rotations is mainly determined by L3, L4, and L5 as shown in Fig 5-5d. 
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Fig 5-5 Examples of the un-modeled modes in Design-4 and the considerations on dimensions: (a) 5th mode; (b) 

6th mode; (c) 7th mode; (d) dimensions of Design-4 under consideration. 

 

The consideration on L3, L4, and L5 are shown as below. 

1. L3 is the span of the inner parallelogram of the minor DPFM, which affects the stiffness 

of rotation w.r.t. the W-axis. When L3 is closed to zero, the rotational stiffness will be 

dominated by the torsional stiffness of the beam; when L3 is increased, a new factor will 

contribute to the rotational stiffness, which is the Z-axis transverse stiffness of the beam 

and the span of the inner parallelogram. For a single beam with the typical dimension in 

this study (e.g., T=0.625 mm, H=25.4 mm, L=47.5 mm), the rotational stiffness due to 

torsion is 1.099 (N·m/rad) at the tip [98]; while rotational stiffness due to z-axis 

transverse stiffness is 3.714 (N·m/rad) with a lever arm of 1 mm (i.e., half of the span). 

Therefore, increasing L3 will increase the rotational stiffness. However, increasing L3 will 

lead to a larger size of secondary stage of the minor DPFM, which could reduce the 

natural frequencies of the modes associated with the minor DPFM. At this moment, L3 
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was increased from 20 mm to 40 mm. The dimensions of the secondary stage of the 

minor DPFM (i.e., L6 and L7) are discussed later in this section. 

2. L4 and L5 affect angular momentum of the associated rotational mode. Thus, the design 

objective is to have the mass center of stage ④ or (stage ⑤) lie in the W-axis, such that 

one can minimize the angular momentum w.r.t. the W-axis, thus increasing the natural 

frequencies of the corresponding rotational modes. At this moment, we chose L4=85mm 

and L5=30mm. 

The 7th mode is shown in Fig 5-5c, as an example of the four closely spaced modes 

associated with the secondary stage of the minor DPFM. To increase the natural frequencies of 

these modes, one can either increase the transverse stiffness of the minor beams (related to the 

length L2 and the thickness T2), or reduce the mass of the minor secondary stages (related to the 

dimensions L6 and L7). However, there are tradeoffs in both approaches. The considerations are 

show as below 

1. Increasing the transverse stiffness (X-axis) of the minor DPFM also increases the 

frequency of the “rigid-body” mode (i.e., the 1st mode in Design-4 as in Table 5-1). This 

tradeoff was carefully balanced to create a good frequency separation for the modes of 

interest (i.e., CSM1 and CSM2) from both the “rigid-body” mode and the un-modeled 

modes related to the minor DPFMs. By iteratively selecting dimensions and checking the 

mode shapes and frequencies. At this moment, we chose L2=47.5 mm, T2=1 mm. 

2. Reducing L7 results in a smaller span of the outer parallelogram of the minor DPFM, thus 

lowering the rotational stiffness in the Y-axis; reducing L6 increases the compliance of 

the minor secondary stages. This leads to a lower axial stiffness and introduces additional 

un-modeled modes at lower frequencies. At this moment, we chose L7=80 mm, which 

was twice as the inner span L3. Since the lever arm affects the rotational stiffness in a 

quadratic manner, the rotational stiffness of the outer parallelogram was satisfactory and 

will not introduce additional un-modeled modes in low frequencies. In addition, we chose 

L6=3 mm. The compliance due to small value of L6 is discussed next. 

The FEA results of the improved design (denoted as Design-4x) are shown in Table 5-1. The 

first eight modes are shown in Fig 5-6. Several observations are provided as below. 

 



96 
 

XY
Z

1st Mode (25.2 Hz) 2nd Mode (33.1 Hz) 3rd Mode (79.6 Hz) 4th Mode (85.6 Hz)

5th Mode (235.1 Hz) 6th Mode (237.8 Hz) 7th Mode (272.8 Hz) 8th Mode (281.4 Hz)

Red Colors Represent the Largest Displacement while Blue Colors Represent the Least  

Fig 5-6 Mode shapes of Design-4x (final design). 

 

1. It can be seen that the “rigid-body” mode appears as the 2nd mode due to increase in the 

transverse stiffness of the minor DPFMs. However, since the 1st mode is associated with 

the Y-axis oscillation of stages ①, ② and ③, it is nearly unobservable in the frequency 

response measurement at stage ① in the X-axis. 

2. The 3rd and 4th modes are the modes associated with the oscillations of two secondary 

stages (stages ② and ③), which are the modes of interest in this chapter. They are 

closely spaced compared to their adjacent modes (the 3rd and 5th modes). 

3. The 5th mode is an out-of-plane mode in the Z-axis due to the increase in the mass value 

of stage ①. The 6th mode is an in-plane rotational mode w.r.t. the Z-axis, due to the 

compliance of the secondary stages of the minor DPFMs. However, since the 5th and 6th 

modes appear at frequencies around 235 Hz with a factor of almost 3 from the 4th mode, 

their contributions to the low frequencies are minor. 

4. The four closely spaced modes associated with the four minor DPFMs are shown around 

280 Hz. One of these modes is the 7th mode shown in Fig 5-6. Comparing to Design-4, 

they were increased by a factor of two and had a factor of 3.5 from the 4th modeled mode. 

5. The 8th mode in Design-4x is the same as the 5th mode in Design-4, whose frequency was 

increased from 123.8 Hz to 281.4 Hz. In addition, the 6th mode in Design-4 was shown as 

the 13th mode in Design-4x that is not shown in Fig 5-6. 
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In summary, in the final design, there is at least a two-times frequency separation before and 

after the closely spaced modes (3rd and 4th) of interest, offering a satisfactory isolation from the 

other modes. Therefore, the dimensions in Table 5-1 were employed in the fabrication of the 

final experimental setup hardware. 

 

5.1.2. X-Axis Motion Actuation and Sensing 

 

The primary experiment is to conduct system identification at different operating points (Y1o). 

While the range of motion in the Y-axis is large (e.g., ±5 mm, referring to about 10% of the 

beam length), the range of motion for X-axis can be small. This provides convenience in the 

selection of actuator and sensor for the X-axis motion. Based on a factor of two for safety against 

yielding, we designed the range of motion for X-axis as ±1 mm. In addition, a mechanical stop 

was employed to prevent over-ranged displacement. 

Accordingly, the actuation force required for 1 mm displacement is 72 (N). However, the 

experiment did not require the flexure mechanism to be held at 1 mm displacement in the X-axis. 

Instead, the system identification was conducted by sending an up-chirp sinusoid signal with 

zero mean. Therefore, the actuator need not to provide a continuous force of 72 (N). In our 

design, a voice coil motor (BEI Kimco Magnetics, model: LA24-20-000A, force constant: 11.12 

N/A, stroke: ± 8.26 mm, peak force 111 N, continuous force: 26 N) was selected for the X 

direction actuation. An L-shape part was designed to provide connection between the flexure 

mechanism and the mover of the motor. The stator of the motor was directly mounted on the 

ground frame via two X-axis mounting holes. The concentricity tolerance between the mover and 

the stator was allowed by the air gap of the voice coil motor.  

Regarding the sensing, non-contact sensors are ideal for this experiment since they do not 

have friction and backlash. Moreover, the center mass (stage ①) was designed to have 

displacements in both the X and Y axes. The sensor should be able to accommodate large 

displacements in the Y-axis. Capacitance probe (Lion Precision, range: 2 mm; peak-peak 

resolution: 400 nm; RMS resolution: 40 nm) was chosen to measure the X-axis displacement of 
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the center mass (stage ①) w.r.t. the ground. A bridge was designed to mount the capacitance 

probe. Both ends of this bridge were directly connected to the ground frame.  

 

5.1.3. Constant Force Loading Mechanism 

 

For the SR4DoF XY mechanism shown in Fig 5-1, the operating point is set by applying a 

static Y direction force F0. One of the challenges in applying such a constant force on the motion 

stage is that the latter’s position varies along the X and Y axes. During the frequency response 

measurement, the motion stage vibrates in the X direction with a small amplitude in response to 

an excitation in the X direction. Also, due to cross-axis coupling, there can be an even smaller 

but finite Y direction vibration at the motion state in response to an X direction excitation. The Y 

direction actuation system has to accommodate these X and Y direction displacements during a 

frequency response measurement. Furthermore, since this measurement has to be repeated at 

various Y direction operating points (Y1o=±5mm), the Y direction actuation system has to be 

capable of providing the necessary force (F0) over this range and hold it constant at a given 

operating point. 

A potential option is to employ non-contact force actuator such as a voice coil motor or a 

moving magnetic actuator [99]. Apart from the cost consideration, two main challenges exist: 

first, to provide desirable Y-axis displacement, one needs to apply either closed loop position 

control or complex current management for the actuator at different Y-axis displacement. Second, 

it is difficult to guarantee a constant force when the motion stage oscillates in the X-axis with 

different frequencies, such as following an up-chirp sinusoid signal. The solution to these 

challenges will lead to unnecessary complexity of the setup design. 

Instead of employing an electromagnetic actuator to apply a non-contact constant force, we 

chose a relatively simpler actuation method utilizing steel braided cables and free weights, using 

a passive actuation. However, this method requires the use of a pulley to change the direction of 

force provided by the weights. Since a traditional pulley introduces displacement uncertainty in 

the loading direction due to rolling and/or sliding friction, a virtual pulley was employed [3, 100]. 
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Fig 5-7 Virtual pulley with long cable. 

 

Fig 5-7 shows the schematic of the virtual pulley arrangement comprising three cable 

segments: a long horizontal segment, a vertical segment, and a diagonal segment. All three 

segments are connected at a common point. The other end of the horizontal segment is attached 

the motion stage; the other end of the vertical segment is connected to a hanging weight; and the 

other end of the diagonal segment is connected to a rigid extension of the ground reference (e.g. 

optics table). This cable arrangement is called a virtual pulley because it converts the vertical 

force of the weight in the Z direction to a horizontal force F0 on the motion stage in the Y 

direction. The two are simply related by the trigonometry of the cable arrangement. In this 

manner, a constant Y direction force F0 is achieved by a known hanging weight, without the 

need for any active force control. The horizontal section of the cable was selected to be long 

enough so that it can absorb any X direction displacement of the motion stage without 

appreciably impacting the F0 force. Any Y direction vibration of the motion stage is also easily 

accommodated by the virtual pulley. The Y direction operating point is varied simply by 

changing the weight, and keeping track of any change in the cable arrangement trigonometry.   

Thus, the virtual pulley provides a frictionless pulley functionality because it eliminates any 

rolling or sliding interfaces and any associated uncertainties 

The limitation of this design is a relatively low accuracy in the measurement of the operating 

point, comparing to a position sensor such as linear encoder. Since the operating point is derived 

by the applied weight and the angles of the virtual pulley, the relatively bias of the angle 

measurement could lead to a scaling error in the derived operating point. However, since the 
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scaling error does not affect the distribution pattern of the CNMP map, the virtual pulley loading 

mechanism was employed for the experiment. 

 

5.2. Experimental Results and Discussion 

5.2.1. Hardware Fabrication and Assembly 

 

The experimental setup hardware was fabricated and assembled for testing, as shown in Fig 

5-8. The flexure mechanism, along with the reference ground frame, were made monolithically 

from a 25.4-mm thick AL6061-T651 plate using wire-electric discharge machining (EDM), 

which has a global dimensional tolerance of ± 0.005 mm. The other parts for assembly were 

fabricated by traditional machining, such as the coupling between the mover and the flexure, the 

bridge to mount the capacitance probe, and the target block for capacitance probe. Four standings 

were used to connect the ground frame of the flexure mechanism to an isolation table (Newport 

RS1000), in order to minimize the deformation of the ground frame. 

Voice Coil 
Actuator

X

Y

Cap Probe

Motion 
Stage

Mass 
Balance

Minor 
DPFM

Secondary 
Stage

25 mm

Ground Frame
 

Fig 5-8 Experimental setup hardware. 
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Assembly holes were fabricated on the two secondary stages (stages ② and ③), as shown in 

Fig 5-8. The intended mass asymmetry between stages ② and ③ was achieved by adding 

incremental small masses with a value of 0.5 g, which is 0.8% of the secondary stage (60 g). 

A custom-built current amplifier based on a Power OpAmp MP111 amplifier was used to 

drive the current in the voice coil actuator at a bandwidth of 1 kHz [1]. The 1 kHz bandwidth of 

the current loop is sufficient high to avoid interference in the dynamics of the main modes of the 

flexure mechanisms, which are below 100 Hz. The system was controlled using a DSpace 1103 

real-time control system with a loop-rate of 1 kHz. As the sampling rate is the same as the loop-

rate of the control system, this setting provided a Nyquist frequency of 500 Hz, which is 

sufficient for the estimation of the frequency response below 300 Hz (including the un-modeled 

modes shown as Table 5-1).  

 

5.2.2. Experimental Results and Discussion 

 

To conduct the experiment, the frequency response from the actuator force P to the X 

direction displacement (X1) of the motion stage (see Fig 5-1) was examined. The system 

identification was conducted in an open loop architecture. An up-chirp sinusoid signal from 0.1 

Hz to 500 Hz was used as the command signal and was sent to the actuator. The reason to use 

chirp signal instead of white noise signal is that the former approach has lower uncertainty error 

in the estimation of the frequency response, since chirp signal is more concentrated in the 

frequency range of interest. The time domain response of X-axis displacement was collected. 

The frequency response was then obtained by comparing the frequency spectrum of the input and 

output signals, using MATLAB spectrum analysis with frequency-dependent resolution (spafdr). 

A comparison between model prediction and experimental result is presented in Fig 5-9, 

using a representative operating condition where mass asymmetry is +10% and operating point is 

8% of L (beam length, 47.5 mm). The damping ratios of the model were estimated based on 

experimental results, using the model of Rayleigh damping [57]. The estimated damping ratios 

were 0.009 for the “rigid-body” mode and 0.004 for the closely spaced modes (modes of interest). 

The “rigid-body” mode has a larger damping ratio since it is associated with the oscillation of the 
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entire flexure mechanism, which leads to a larger amount of area exposed to the viscous air 

environment. Note that the back electromagnetic force (back EMF) of the voice coil motor does 

not contribute to the damping ratio of the “rigid-body” mode when the current loop is turned on.  
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Fig 5-9 Experimental frequency response, asymmetry = 10%, operating point = 8%: (a) Bode plot; (b) zoom-in 

Bode plot of the modes of interest. 

 

Key observations on Fig 5-9 are presented as below. First, the first four modes in the 

experimental results match well with the theoretical model (SR4DoF). Furthermore, the change 

in the frequencies of the 3rd and 4th modes due to variation of the operating point mostly agrees 

with the model prediction (not shown in Fig 5-9). Second, the modes of interest (the 3rd and 4th 

modes) are shown to be well-separated from other modes, as expected from the design stage. A 

factor of 2.5 in frequency separation was achieved in both directions. Moreover, it can be seen 

from Fig 5-9 that, the higher order modes (i.e., un-modeled modes) have a minor contribution on 

the dynamics at low frequency region. Third, CMP-CNMP zeros were observed as predicted by 

the theoretical model (SR4DoF). It can be seen from Fig 5-9b that the 360° phase drop due to the 

existence of CMP-CNMP zeros are observed. 

In Fig 5-10, multiple experimental results were overlaid on the model predictions (the CNMP 

map in Fig 5-2). The two variables for parameter variations are the operating point and the 

amount of intended asymmetry. The two-variable testing grid has a size of 15 by 10 points. Note 

that only half of the area is tested due to the symmetric properties of the flexure w.r.t. 

positive/negative operating points. The squares indicate the conditions occurring when CMP-
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CNMP zeros are present in the frequency response. As contrast, the solid circles indicate 

conditions occurring when CMP-CNMP zeros are absent (i.e., zeros are minimum phase). Lastly, 

the dashed circle represents the parameter set presented in Fig 5-9.  
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Fig 5-10 Simulation and experimental results of CNMP map. 

 

Fig 5-10 shows that the experimental results match well with the model prediction as 

described below. First, for the situation of negative asymmetry (Δm23<0), the entire operating 

range is free of CMP-CNMP zeros. Second, for Δm23>0, experimental findings largely agree 

with model prediction of the CMP-CNMP zero region and confirm that CMP-CNMP zeros 

appear only when the operating point is larger than a certain value. Third, when the situation is 

nominally symmetric (Δm23≈0), the frequency response is very sensitive to mass parameter 

variation in terms of the existence of CMP-CNMP zeros at large operating points. 

The minor mismatch between the experimental and predicted CMP-CNMP region in Fig 

5-10 could be attributed to the followings.  

1. The CNMP map compiled from the theoretical model was based on the assumption of 

neglecting the damping ratios (see Assumption 3-2). However, as shown in chapter 3.3.1, 

the presence of non-zero damping changes the zero loci, with a tendency of moving all 

of the loci to the left side of the complex plane. This influence is most apparent when the 

zeros of interest are closed to the imaginary axis. In other words, the presence of non-
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zero damping “delays” the zeros to transition from MMP zeros to CMP-CNMP zeros. 

This conclusion agrees with the experimental results shown in Fig 5-10. In Fig 5-10, 

when both the asymmetry and the operating point are small (e.g., asymmetry = 2%, 

operating point = 4%), the predicted CMP-CNMP zeros are not observed in experiments.  

2. There are inevitable manufacturing tolerances that lead to an imperfect symmetry 

between stages ② and ③. A comparison between the theoretical model and the 

experimental result is shown in Fig 5-11. The operating conditions are asymmetry = 0% 

and operating point = 8%. In theoretical model, since asymmetry is zero, the 4th mode is 

completely unobservable regardless of the operating point. However, both the 4th mode 

was observed in the experiment, indicating a non-zero mass difference between stages 

② and ③. The estimated initial mass difference is -2%, which indicates that stage ③ is 

slightly heavier than stage ②. This initial mass difference could shift the overall 

measurements (Fig 5-10) horizontally. 
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Fig 5-11 Experimental frequency response, asymmetry = 0%, operating point = 8%: (a) Bode plot; (b) zoom-in 

Bode plot of the modes of interest. 

 

3. Other factors that could affect the measurements are: the parameter grid resolution used 

in the testing, and the scaling error due to the accuracy of visual measurement of the 

angle used in the virtual pulley. 
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5.3. Conclusion 

 

The conclusions are summarized as below. 

1. This work presents the first experimental validation of a mathematical model that predicts 

CNMP zeros under certain parameter space. Via this validation, we are confirmed that it 

is the geometric arc length conservation that leads to the coupling between motions in 

different axes. And this coupling, together with structural asymmetry, leads to interaction 

of the closely spaced modes. Such interactions under a non-zero contribution of the 

modes other than the modes of interest can give rise to CNMP zeros. This validation 

supports the modeling work and indirectly justifies the assumptions made in the modeling 

process (see chapter 3 and 4).  

2. This work presents several careful design considerations in the setup and the 

experimental procedure to enable the above validation. Via these considerations, we 

successfully fabricated an experimental setup whose major dynamic behavior is the same 

as the theoretical model. The un-modeled modes (e.g., the out-of-plane modes and the 

rotational in-plane modes) were effectively arranged to high-frequency region that is 

irrelevant to the interest of this validation. Therefore, the development procedure from 

the theoretical model to experimental setup can be potentially useful in flexure 

mechanism design.  

3. There always exists the tradeoff between making the stage more rigid and reducing the 

weight of the stage without expensive approaches (e.g., using truss-like structure). The 

key to balance this tradeoff is to come up with a reasonable specification. In this study, 

reducing the size of the secondary stage in the minor DPFM could help increase the 

associated natural frequencies. But this also leads to lower axial stiffness and creates 

additional compliance mode. However, as long as latter modes are still in irrelevant high 

frequencies region, increasing the frequencies of the former ones is more beneficial. 

However, in another example mainly involves quasi-static properties [3, 100] , making 

the stage more rigid become the key consideration. 
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Chapter 6. Mechatronic Design Considerations 

 

So far, we have learned that the presence of CNMP zeros indicates that there are two closely 

spaced modes near the frequency of the zeros (in this thesis, CNMP zeros are mostly referred as 

CMP-CNMP quartet). These two modes are out-of-phase and lead to two resonance circles in the 

Nyquist plot with opposite directions. These circles are potentially problematic for closed loop 

robustness, if one wants to increase the close loop bandwidth.   

In this chapter, two design strategies in setting the closed loop bandwidth are first compared 

with simulations, based on a system with two closely spaced modes (out-of-phase) and a double 

integrator as the remainder (Section 3.2.4). These results are then verified via the experimental 

setup developed in Chapter 5. It is shown that a system with a sequence of alternating signs is 

easier to stabilize than a system with non-alternating signs. Moreover, by intentionally setting up 

an asymmetric mass configuration, one can guarantee that the system has alternating signs. 

Consequently, a higher bandwidth is achieved by phase stabilization, compared to the cases with 

other mass configurations. 

 

6.1. Two Strategies of Setting the Bandwidth 

6.1.1. Bandwidth Lower than the First Resonance Frequency (Slow Control) 

 

A simplified dynamic characteristic of a flexure mechanism is a second order mode (first 

resonance) plus other higher order modes (assumed well-separated from the first mode). 

Regarding the first resonance, there are two main strategies of closed loop classical control 

methods on setting the bandwidth: a bandwidth lower than the first resonance frequency 

(denoted as slow control), or a bandwidth higher than the first resonance frequency (denoted as 

fast control). The former strategy is considered in this section, which is applied in the field of 
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MEMS devices [101] and flexure mechanisms such as optical systems in satellites where 

damping is almost zero [78].  

Two main advantages of the first strategy are as follows. First, high order modes of the plant 

can be effectively suppressed, thus good robustness is obtained against uncertainties. Second, by 

creating a favorable phase (usually with a low pass filter), the first resonance of the plant can be 

“actively damped” [59, 81]. An example is shown below. Consider the plant as Eq. (6-1) with a 

feedback control loop as in Fig 6-1. 
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Fig 6-1 Classic control loop with unity feedback. 

Consider a controller as Eq. (6-2). 
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(6-2) 

The controller is an integrator with a 2nd order low pass filter (one can also consider 

replacing the single integrator with a double integrator). The low pass filter is set at half of the 

frequency of the first resonance with a damping ratio of 0.7. The open loop transfer function L is 

shown in Fig 6-2a. The crossover frequency is then set with a factor of 0.1 of the plant’s first 

resonance frequency. 

To illustrate the idea of “actively damping”, the Nyquist plot of L is shown in Fig 6-2b. 

Consider different damping ratios of the plant P(s). One can see that the modulus margin is 

unchanged regardless of the damping ratio. This design is useful for very lightly damped systems. 

Note that the term “active damping” in this example is not increasing the damping ratio itself. 

Instead, it suppresses the magnitude of the 1st resonance peak to be around 0 dB in the closed 
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loop transfer function T, as shown in Fig 6-2c. Moreover, the smaller the damping ratio, the 

closer the closed loop gain is to 0 dB.  
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Fig 6-2 Characteristics of controller with bandwidth lower than 1st resonance frequency: (a) Bode plot of L; (b) 

Nyquist plot of L, under different damping ratios; (c) Bode plot of T; (d) step response of T. 

 

However, the drawback is obvious. First, the bandwidth is limited by the first resonance 

frequency. For the example above, the maximum bandwidth can only be achieved at 10% of the 

first resonance frequency. To further increase the bandwidth, one can mechanically increase the 

frequency of the first resonance, such as increasing the stiffness or reducing the mass 

corresponding to the “rigid-body” mode of the flexure mechanism. However, there are other 

trade-offs that need to be considered. For example, in order to double the first resonance 

frequency, one needs the stiffness to be four times the original stiffness. As the main stiffness is 
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increased, there is a significant increase in the force required for the actuator to maintain the 

same travel range and to increase the motion speed. Second, there is a residual vibration due to 

the 1st resonance frequency in the step response of T (Fig 6-2d). This residual vibration is lightly 

damped and could adversely impact the positioning ability (e.g., standard deviation). 

 

6.1.2. Bandwidth Higher than the First Resonance Frequency (Fast Control) 

 

In this section, the second strategy is considered. However, this strategy could only be 

achieved with two main consequences. First, there is a limitation on using integrators in a 

controller. To explain, the phase of the plant after the first resonance is already -180°. Thus, to 

avoid adding more phase lag, these integrators need to be compensated via zeros before the 

crossover frequency. However, the poles of the integrators will be trapped by these zeros, 

leading to low frequency poles in the closed loop transfer function. One can increase the open 

loop gain to move these poles closer to the zeros, thus reducing the magnitude of these low 

frequency oscillations to an acceptable level. However, a large open loop gain will amplify the 

plant’s higher order dynamics as well as noise. 

Another consequence, compared to the first class, is the requirement of a better 

understanding of the plant (i.e., a model that captures the first few modes precisely). Ideally, if 

the frequency region between the first mode and the next major mode is “clean”, then the 

bandwidth is limited by the next major mode. However, due to the superposition of relevant 

modes, the presence of lightly damped CMP zeros or NMP zeros imposes complexities on the 

control problem. In this work, we consider a situation that has two closely spaced modes 

appearing together as the second major modes. This situation can be approximated as two modes 

with a double integrator, namely mode u, mode v, and mode R (Section 3.2.4). Therefore, the 

plant considered is shown as Eq. (6-3). For simplicity, we assume that all the modes have 

identical damping ratios, and these damping ratios are sufficiently small. For illustration, 

consider a numerical example where ωu=10, ωv=12, and ζ=0.001. 

 2 2 2 2 2( ) ; 0; 0
2 2

u vR
v u R

u u v v

G s
s s s s s

α αα ω ω α
ζω ω ζω ω
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As discussed in Chapter 3, the sequence of these modes’ signs is critical to closed loop 

robustness, if the crossover frequency increases to approach the frequencies of the two closely 

spaced modes. Among the four sequences of signs, there are two situations where the two closely 

spaced modes are out-of-phase, including the situation that leads to CMP-CNMP zeros (or dual 

RMP-RNMP zeros). These two situations are considered in this section (i.e., αR>0, αu<0, αv>0, 

and αR>0, αu>0, αv<0).  

 

6.1.2.1. Alternating Signs (αR>0, αu<0, αv>0) 

Consider the numerical set where αR=7.98, αu=-1.65, αv=1.52 in Eq. (6-3). The presence of 

CMP-CNMP zeros are illustrated in Fig 6-3a and Fig 6-3b. The dual circles are in opposite 

directions as illustrated in Fig 6-3c, with the slower mode pointing upwards (negative direction). 
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Fig 6-3 Properties of the numerical set αR=7.98, αu=-1.65, αv=1.52: (a) Bode plot; (b) pole-zero map; (c) 

Nyquist plot; (d) desired compensation. 
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Based on the directions of the circles shown in Fig 6-3c, it is desirable to “rotate” the slower 

mode clockwise such that the corresponding circle grows away from the critical point (-1, 0). 

Similarly, it is desirable to “rotate” the faster mode counter-clockwise. Therefore, a phase lag 

compensation is desirable for the slower mode (mode u) while a phase lead compensation is 

desirable for the faster mode (mode v), as shown in Fig 6-3d. 

A notch filter (Fig 6-4a) provides such desirable phase compensations as described above. 

Moreover, the notch filter provides an effective suppression to reduce the magnitude of the peaks. 

However, it is noteworthy that the notch filter has to be set such that mode u and mode v are 

located on opposite sides of the notch center.  
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Fig 6-4 Compensator and open loop transfer function: (a) notch filter; (b) Nyquist plot of open loop L. 

 

The controller considered for the plant in Fig 6-3a is shown as Eq. (6-4), which has the 

above-mentioned notch filter and a lead filter to create enough phase margin around the 

crossover frequency. 
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(6-4) 

The Nyquist plot of the open loop transfer function L=PC is shown in Fig 6-3b, under 

different damping ratios. It can be seen that the modulus margin is unchanged since the circles 

are “rotated” to a safe angular position. In this example, the crossover frequency is around 4 
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rad/s (i.e., 40% of the frequency of the slower mode u), while the modulus margin is around 0.5 

(i.e., the peak of the corresponding sensitivity function is bounded by 6 dB). More modulus 

margin can be obtained with a consequence of reducing the crossover frequency. One can see 

that there is some similarity between this approach and the one discussed in previous section. 

Moreover, the approach discussed in this example can be also applied to systems with the same 

sequence of signs but different types of zeros.  

 

6.1.2.2. Non-alternating Signs (αR>0, αu>0, αv<0) 

Consider the numerical set where αR=7.98, αu=1.65, αv=-1.52 in Eq. (6-3). Note that only the 

signs of αu and αv are changed compared to the previous section. The properties of this plant is 

shown in Fig 6-5a to Fig 6-5c. Note that the slower mode (mode u) is in the positive direction 

and thus points downwards in Nyquist plot (Fig 6-5c). 
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Fig 6-5 Properties of the numerical set αR=7.98, αu=1.65, αv=-1.52: (a) Bode plot; (b) pole-zero map; (c) 

Nyquist plot; (d) Compensation. 
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The approach considered is attempted to achieve “phase stabilization” by adding an 

additional complex minimum phase pole-zero pair to the plant (shown as Fig 6-5b), such that 

both mode u and mode v are in the same directions (shown as Fig 6-5d). If a proper amount of 

phase lead compensation is applied to all of the three modes (including the addition mode), then 

one can “rotate” all of these three modes counter-clockwise to a safe angular position.  

Consider the controller in Eq. (6-5), which has a lead filter and an additional 2nd order mode 

with a damping ratio of ζ. A comparison between two choices of ζ is shown in Fig 6-6. Note that 

all of the poles and zeros of the original plant have almost the same damping ratio as 0.001. 
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Fig 6-6 A comparison between controllers with different damping ratio: (a) Bode plot (ζ=0.001); (b) Nyquist 

plot (ζ=0.001); (c) Bode plot (ζ=0.01); (d) Nyquist plot (ζ=0.01). 
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From Fig 6-6a and Fig 6-6c one can see that the lead filter provides approximately a 

constant phase compensation around 10 rad/s (about 45° from -180°). In this situation, If the 

damping ratio of the additional mode is the same as those of the plant’s poles and zeros, then all 

of the resonances start and end at the same phase (i.e., -135°, see Fig 6-6a). As a result, all of the 

circles start and end at the same angular position, growing away from the critical point (-1, 0), as 

shown in Fig 6-6b. However, if the damping ratio of the additional mode is larger than those of 

the plant’s poles and zeros, then there is not enough phase compensation for the faster mode 

(mode v), as shown in Fig 6-6c and Fig 6-6d. As a result, the circle corresponding to mode v 

cannot be “rotated” to a safe angular position, leading to a stability problem.  

Therefore, if the phase compensation is constant around the frequencies of mode u and mode 

v, then it is important to have the damping ratio of the additional mode no larger than the 

damping ratio of mode u and mode v (i.e., the damping ratio of the plant’s poles and zeros). A 

larger damping ratio of the additional mode may lead to an unsafe angular position of the circle, 

corresponding to the faster mode v. Moreover, if the phase compensation drops monotonously 

around the frequencies of mode u and mode v, then an even smaller damping ratio of the 

additional mode is required. 

Based on the above-discussion, since the damping ratio of the closely spaced mode is very 

small in lightly damped systems (e.g., 0.004 in the experiment in Chapter5), it is difficult to both 

implement an additional mode with small damping ratio and precisely predict the damping ratios 

of the corresponding modes. Furthermore, the controller Eq. (6-5) also amplifies the magnitude 

in high frequencies due to the additional mode. Therefore, it is not recommended to consider the 

controller Eq. (6-5). Instead, it is recommended to apply a conventional controller (e.g., lead + 

2nd order low pass with 0.7 damping ratio), with the consequence of achieving a lower bandwidth 

(usually 10% of the slower mode u). However, the conventional approach requires a larger 

“clean” frequency region before the two closely spaced modes. In Section 6.2, we will see that it 

is difficult to implement a conventional controller since the “clean” region is limited. 
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6.2. Implementation based on SR4DOF 

6.2.1. Model-based Controller Design 

 

Consider the SR4DoF model discussed in Chapter 2 (shown in Fig 2-2), but with the 

dimensions used in Chapter 5. Fig 6-7 demonstrates a comparison between the model and 

experimental results, using mass asymmetry as +10% and the operating point as 8% of L (beam 

length, 47.5 mm). The damping ratios of the model are adjusted based on experimental results by 

applying a damping matrix proportional to the stiffness matrix (i.e., Rayleigh damping). CMP-

CNMP zeros are observed. The first resonance frequency is measured at 179 rad/s with a 

damping ratio of 0.009; the closely spaced modes (i.e., mode u and mode v) are measured with 

almost the same damping ratios as 0.004. One can see from Fig 6-7a that there are high 

frequency modes with significant peaks after 1000 rad/s. These high frequency modes have to be 

suppressed effectively for robustness consideration. 
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Fig 6-7 Frequency response of SR4DoF, model vs. experiment: (a) Bode plot; (b) zoom-in version. 

 

The first controller tested is stated as Eq. (6-6) based on Section 6.1.1. 

 ( ) ( )
( )

22

22 2 2

179 / 20.12
2 0.7 179 179 / 2

lp

lp lp lp

KC s
s s s s s s

ω
ζ ω ω

= ⋅ = ⋅
+ + + ⋅ ⋅ +

 
(6-6) 
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Based on the model discussed above, the Bode plot and the Nyquist plot of the open loop 

transfer functions are shown in Fig 6-8a and Fig 6-8b, respectively. One can see that the 

bandwidth is 10% of the first resonance (i.e., 18 rad/s), with a phase margin of 70°. 
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Fig 6-8 First controller (slow) open loop transfer function: (a) Bode plot; (b) Nyquist plot. 

To increase bandwidth, the sequence of the decomposed modes’ signs is considered first. 

Based on Chapter 2 and Chapter 5, CMP-CNMP zeros are observed when asymmetry is positive, 

while CMP-CNMP zeros are eliminated when asymmetry is negative. These are illustrated in Fig 

6-9. Based on Chapter 3, one can see that alternating signs (i.e., αR>0, αu<0, and αv>0) are 

obtained when asymmetry is positive, while non-alternating signs (i.e., αR>0, αu>0, and αv<0) are 

obtained when asymmetry is negative. 
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Fig 6-9 The closely spaced modes under an increasing operating point: (a) asym>0; (b) asym<0. 
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Based on Section 6.1.2, since the closely spaced modes are measured around 500 rad/s and 

the 1st mode is measured at 178 rad/s, there is a factor of 2.5 as frequency separation. Therefore, 

the situation of alternating signs (i.e., αR>0, αu<0, and αv>0) is favorable. Thus asymmetry is 

chosen with 10% for illustration. The controller tested is stated as Eq. (6-7). 

( )
2 2 2 2

2 2 2 2

51110 88.7 1 2 0.4 175 175 2 0.01 520 520
625 893 2 0.7 700 700 2 0.1 555 555

s s s s sC s
s s s s s s s

+ + ⋅ ⋅ + + ⋅ ⋅ +
= ⋅ ⋅ ⋅ ⋅

+ + + ⋅ ⋅ + + ⋅ ⋅ +
 

(6-7) 

In Eq. (6-7), there is a lead (88.7 rad/s and 625 rad/s); a 1st order low pass filter (893 rad/s); 

a complex zero-pair (175, damping 0.4) to provide additional phase margin; a 2nd order low pass 

filter (700 rad/s, damping 0.7); and a notch (520 rad/s, the poles are shifted to 555 rad/s in order 

to provide additional phase margin for crossover). The Bode plot and the Nyquist plot of the 

open loop transfer function are shown in Fig 6-10a and Fig 6-10b, respectively. The crossover 

frequency is set at 287 rad/s with a phase margin of 42°. 
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Fig 6-10 First controller (fast) open loop transfer function: (a) Bode plot; (b) Nyquist plot. 

 

A comparison between the slow controller and the fast controller is provided in Fig 6-6. 

From the closed loop transfer function shown in Fig 6-6a, one can see that the fast controller has 

a certain frequency region below 0 dB before the crossover frequency. This is due to the region 

closed to 0 dB before the 1st resonance frequency as shown in Fig 6-10a, which is a result of the 

three zeros smaller than the 1st resonance frequency in the controller shown in Eq. (6-7). This 

“deep” in the closed loop transfer function will slow down the settling time in the step response. 
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The step responses of the two controlled systems are shown in Fig 6-10b. The system with the 

slow controller has a settling time of 0.1663 seconds while the system with the fast controller has 

a settling time of 0.0858 seconds. 
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Fig 6-11 Comparison between fast and slower controller: (a) Bode plot; (b) step response. 

 

6.2.2. Experimental Implementation 

 

In this section, we apply the model-based controllers to the experimental setup developed in 

Chapter 5. A systematic comparison is shown in Fig 6-12. These plots are generated using the 

ideal controllers and the frequency response of the experimental setup. One can see a good match 

between the results from a physical model and the ones from a real plant, which again validates 

the model developed in Chapter 2. In the fast control case, the dual circles corresponding to 

CMP-CNMP zeros are “rotated” to safe angular positions as shown in Fig 6-12d. The third major 

circle in Fig 6-12d is due to the non-collocation between the poles and the zeros of the notch 

filter. Since the damping ratio of these poles is controllable (i.e., 0.4 in this example), this circle 

is not a major stability problem. 

It is noteworthy that for the fast controller (Fig 6-12c), the high order modes have significant 

amplitudes, which corresponds to the various circles in mixed directions as shown in Fig 6-12d. 

These modes can lead to stability problem if one further increases the loop gain.  
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Fig 6-12 Comparison between fast and slow controller (estimated results with setup): (a) Bode plot (open loop, slow 
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The step response of the two control methods are compared in Fig 6-13a, which agrees with 

the model prediction shown in Fig 6-10b. The distribution of the positioning error in a steady 

state is shown in Fig 6-13b. The data collected for the estimation of the probability density has 

16,000 points (i.e., 3 seconds with a sampling time of 0.2 milliseconds). Thus, it is shown that 

the fast controller has smaller standard deviation (0.050 μm) than the slow controller (0.066 μm). 

This result is consistent with Fig 6-12f, indicating that the fast controller has better disturbance 

rejection ability at low frequency than the slow controller. 
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Fig 6-13 Experimental comparison between fast and slow control: (a) step response; (b) positioning error of steady 

state. Note that the bars indicate the quantization of the sensor, with a size of 0.030 μm. 

 

Next, the fast controller is examined over the range of the operating point (Y1o). In this test, 

the range is defined from 0 to 8% of L. We found that the standard deviation of the positioning 

has a minor change over the workspace, with the best achieved at Y1o=0 as 0.048 μm and the 

worst achieved at Y1o=8% as 0.050 μm. This is because the circle corresponding to mode u has 

smaller magnitude and a safer angular position at Y1o=0. As the operating point increases, the 

magnitude increases and the circle “rotates” counter-clockwise, thus degrading the steady state 

standard deviation. However, since mode u and mode v have damping ratios of about 0.004, the 

size of the circle is not significant. Thus, such degradation is not apparent in experimental results. 

On the other hand, this observation highlights the importance and effectiveness of adding 

damping to the two closely spaced modes for robustness consideration. 
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6.3. Considerations on Mechanical System Design 

 

Based on the above discussions and going back to the mechanical system design level, there 

are two main directions in improving the plant dynamics.  

First, one can re-design the resonance frequencies. Rather than simply increasing the first 

resonance frequency, we can consider lowering the first resonance frequency while increasing 

the second major resonance frequency. Therefore, it is favorable to create a “clean” segment, 

similar to procedure discussed in Chapter 5 [102]. There are already some recent studies that 

look promising. For example, Panas shows a nested linkage that can effectively increase the 

resonance frequency of a mode associated with the under-constraint effect [103]. This idea is 

implemented in another XY-stage design [104]. However, the consequence is a larger setup size 

and extra undesired modes due to the additional mass of the nested linkage.  

The second direction is to increase the damping ratio of the relevant lightly damped modes. 

Increasing the damping ratio of these lightly damped modes will result in smaller size of the 

corresponding resonance circles and increase the speed of decaying the corresponding residual 

oscillations. The increase in the overall damping ratio for all higher order flexible modes will 

also improve the robustness [78]. There is also some research on damping methods, such as 

adding a sandwich viscous layer [105] or using the eddy current [106].  

Lastly, even if it is theoretically possible to increase the bandwidth, there are other 

mechatronics problems need to be solved. These problems include the following: (1) 

environment conditioning to control the noise and disturbance down to an acceptable level; (2) 

choosing or developing proper actuators, sensors, and amplifiers, and (3) other associated control 

algorithms like command shaping and feedforward control. The advancement of the overall 

performance requires the improvement in all associated areas. The shortage on any of these areas 

will become the next bottleneck. The discussion in this section (plant dynamics and feedback 

controllers) is just on one of these such areas. 
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6.4. Conclusion 

 

In this chapter, two strategies of setting the closed loop bandwidth are considered. These 

two strategies are characterized by the frequency of their corresponding bandwidth w.r.t. the 1st 

resonance frequency, namely slow control and fast control. The slow control has good robustness 

against high frequency uncertainties while suffers from low bandwidth. The fast control has a 

higher bandwidth but requires a good understanding of the high frequency dynamics. 

Regarding the fast control, two types of systems are considered. Both systems have the same 

system type (i.e. two closely spaced modes that are out-of-phase and a double integrator as a 

remainder) but different sequence of the decomposed modes’ signs. It is shown that in lightly 

damped systems, the system type with a sequence of signs that are alternating has better 

robustness against uncertainties in damping ratios. 

The SR4DoF model in Chapter 2 and the experimental setup in Chapter 5 are used for 

validation. It is shown that by assigning intentionally positive/negative mass asymmetry, one 

obtains a system with alternating/non-alternating signs, respectively. Therefore, positive 

asymmetry is favorable, even in the case when CMP-CNMP zeros are observed. This finding is 

counter-intuitive since NMP zeros are generally unfavorable. It is shown that it is the sequence 

of signs rather than the presence of NMP zeros that determines whether the plant can be 

controlled with better robustness. The presence of NMP zeros, instead, is the consequence of 

certain sequence of dominant modes and the sequence of the decomposed modes’ signs (as 

discussed in Chapter 3). 
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Chapter 7. Conclusion and Future Work 

7.1. Conclusion 

 

In, Chapter 2, a lumped-parameter modeling approach is proposed to analytically model the 

dynamics of flexure mechanisms comprising the DPFM. This model captures the key relevant 

geometric non-linearity (i.e. arc length conservation) in large displacement flexure mechanics. 

Linearization about any arbitrary operating point enables frequency domain analysis. Based on 

this model, we are able to predict previously unexplained CNMP zeros seen experimentally. The 

model establishes the existence of CNMP zeros under certain combinations of operating point 

and parametric asymmetry in the non-collocated transfer function of a simple representative XY 

flexure mechanism. This finding helps generate the design insight that, rather than an intuitively 

symmetric design. 

In Chapter 3 and 4, a theoretical model is proposed to explain the conditions (when), the 

mechanisms (how), and the physical interpretations (why) on the occurrence of the CNMP zeros 

in flexure mechanisms. The zero crossing and undershoot of the step response of a system with 

real/complex NMP zeros are explained in view of modal decompositions. The root locus 

technique is used to find the migration of zeros. Particularly for CNMP zeros, the impact of 

damping ratio is discussed. As CNMP zeros and curve veering both exist in closely spaced 

modes, the connection between CNMP zeros and curve veering is explored. 

In Chapter 5, the above modeling work is validated experimentally. The experiment is 

carefully designed to isolate the features of interest (i.e. the closely spaced modes) from other 

factors (e.g. parasitic dynamics). The existence of CNMP zeros are validated in lightly damped, 

passive stable flexure mechanisms. This work also shows that via an intentionally asymmetric 

structure, the CNMP zeros can be eliminated completely. 

In Chapter 6, the knowledge developed in Chapter 2-4 is used in a mechatronics design 

consideration, with the purpose to increase closed loop bandwidth of flexure based motion stages. 
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Using the SR4DoF model as an example, it is shown that if the two closely spaced modes are 

out-of-phase, a system with a sequence of alternating signs is easier to stabilize than a system 

with a sequence of non-alternating signs, even when CNMP zeros appear in the former one. 

Additionally, an intentionally positive mass asymmetry configuration can guarantee a sequence 

of alternating signs. In both simulation and experiments, we demonstrate a closed loop control 

with the bandwidth around the 1st resonance frequency with positive mass configuration. 

 

7.2. Future Work 

 

Based on discussion in this thesis, three main future directions are considered. All these 

future tasks indicate the next significant breakthrough on the overall performance of flexure 

based motion stages. 

First, for establishing physical models (i.e., Chapter 2), the SR4DoF model is a simplified 

model of the XY flexure stage. It is valuable to understand the behavior of a more complicated 

XY flexure stage. This requires a further study on a higher dimensional model.  

Second, for understanding the zeros on a more fundamental level (i.e., Chapter 3), it is 

valuable to extend the investigation to a more general system (e.g., non-zero damping systems or 

continuous systems). In addition, it is of great interest to study the propagation of energy from 

the actuator to the sensor, which paves the road to further understand the physics of NMP zeros.  

Lastly, as shown in Chapter 6, other than simply looking for a high first resonance frequency 

of a flexure system, it is desired to have a design that has lower first resonance frequency, higher 

second major resonance frequency, and “clean” dynamics in between the first two major modes. 

In addition, adding passive damping can help stabilize the system with a more aggressive 

controller. Further methodologies can be obtained to form a more detailed design guideline. 
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