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ABSTRACT

This thess presents an accurate tachometer model that takes into account the effect of
magnetic coupling in a DC motor-tachometer assembly. Magnetic coupling arises due to
the presence of mutud inductance between the tachometer winding and the motor
winding (a wesk trandformer effect). This effect is modded and experimentaly verified.
Tachometer feedback is widdy used for servo-control of DC motors. The presence of
compliant components in the drive system, eg., shafts, bets, couplings etc. may lead to
close-loop ingability which manifests itsdf in the form of high frequency ringing. To be
able to predict and diminate these resonance related problems, it is essentid to have an
accurate tachometer model. This thess points out the inadequacies of the conventiond
tachometer modd, which treats the DC tachometer as a ‘gain’ completely neglecting any
associaed dynamics. It is shown that conventional modes fal to predict the experimenta
sysem dynamics response for high frequencies. The exact tachometer modd identified in
this research is incorporaed in the modding of a sysem tha has multiple flexible
dementss and is used for parameter identification and feedback motion control.
Predictions usng this new modd ae found to be in excdlent agreement with
experimentd  results. The effect of the tachometer dynamics on controller design is
discussed in the context of system poles and zeros.

Key words: DC Tachometer modd, DC motor motion control, shaft flexibility, sensor
dynamics, system poles and zeros, shaft ringing.



1. INTRODUTION

Closed-loop servo control of a DC motor-load system is a very common industrid and
research application. Very often DC tachometers are used to provide velocity feedback
for motion contral [3, 4, 5]. In the presence of flexibility in the system, eg., a compliant
motor-load shaft or a flexible coupling, this exercise in servo control becomes quite
involved gnce finite shaft diffness introduces resonance and shaft ringing. These are
highly undesrable effects tha can be diminaed by means of gppropriate controller
design. To be able to modd, predict, and diminate these high-frequency resonance
problems, it is essentid to have an accurate mode for the entire sysem including the

SeNnsor.

There are papers in the literature that discuss the control system design for systems with
mechanical flexibilities [4, 6, 8, 10]. There are dso extensve discussons on colocated
and non-colocated control in the literature. The problem is explained in terms of poles
and zeros of the system [6, 7, 8, 9, 10]. All these discussons assume that a ‘perfect’
postion or velocity sgnd is avalable for feedback and that sensor dynamics is
negligible. Such an assumption might be acceptable for routine gpplications, but is not
useful for high-performance gpplications. It is emphasized in this thess that an accurate
model for the sensor dynamics is necessary and should be incorporated in the control
system design.

In the case of DC motor postion and/or velocity control using tachometer feedback, the
conventional tachometer modd [1, 2, 3] is adequate for less demanding motion control
exeacses, but is ineffective for rendering high-speed and high-precison motion contral.
In fact, when this modd was used to predict the frequency response of a system with
multiple shaft flexibilities, it yidded eroneous rexults that did not agree with the
experimental measurements. This led to an invedtigaion leading to a more exact and
accurate model for the DC tachometer. A thorough modding andysis was carried out and
it was found that the mutud inductance between the tachometer and motor windings,
however week, results in a magnetic coupling term in the expresson for the voltage
output of the tachometer. This effect is quantitativdly studied and derived in this thesis,



and an enhanced tachometer mode is obtaned usng the basc principles of
electromagnetism. This modd is then used to andyze a DC tachometer-motor-load
sysem with multiple flexible dements. It is found that the new andyticd predictions are

in excellent agreement with the experimental measurements.

The consequence of this tachometer dynamics on the over-dl system response is
explained. It is seen that the tachometer dynamics influences the system trandfer function
in a way tha is sysem dependent. This shdl become dear in the following sections. We
find that the tachometer dynamics contributes some additiona zeros to the overdl system
trandfer function. The number of these additiona zeros depends on the system itsdlf. The
location of these zeros in the s-plane is determined by the reative orientation of the
tachometer sator fidld with respect to the motor dator field. Having experimentdly
confirmed the moded, we subsequently incorporate it in the feedback control design for
DC motor motion control, which is the find objective of this entire exercises  The
ggnificance and implication of these additiond zeros in terms of controller design is
discussed in detall.

This thess is organized in the following manner. Section 2 describes the experimenta
setup used for this research. Section 3 invedtigates the inconsstency presented by
convention DC tachometer modd. It is explaned why the conventiond modd is
inadequate for high performance servo-control desgn. A detalled description  of
Permanent Magnet DC machines is presented in Section 4. This covers the exigting
modd and the derivation of a more accurate modd. The experimental vdidation of the
new mode obtained in Section 4 is presented in Section 5. Section 6 describes the
goplication of this modd to an actud system with multiple flexible dements. Section 7
introduces the control design problems and issues related to it. A detailed discusson on
colocated and noncolocated system is presented. These concepts are then extended to the
tachometer-motor-load system, and the influence of tachometer dynamics on the control
sydem dedgn is explaned. Findly, compensator desgns for diminating close-loop
indability problems in the tachometer-motor-load system are discussed. Section 8

summarizes this research and lists the conclusions from this work.



2. EXPERIMENTAL SET-UP
2.1 System Description

To sudy and andyze the close-loop ingability problems like sheft ringing in servo-
gysems, we used a Pitney-Bowes experimental test set-up. It condsts of an integrated
Permanent Magnet DC motor-tachometer assembly which drives a load inetia A
voltage-to-current PWM amplifier is employed to operate the motor in current mode. The
system input is in the form of motor current. The system output, which is the tachometer
voltage sgnd, may be used for system identification or for feedback mation control.

PM DC Motor-Tachometer Assembly

Tach Motor
Rotor Rotor
Winding Winding
A
CW
I Rotation
Load
Vtach Imotor
Voltage to Current
Amplifier (K )
A
Bode
System Output Siglab Output Plots
Siglab Input System Input IN1/IN2
A A 4 =
SigLab .
Computer with SCS
card

Figure 2.1 Schematic of the Experimental Set-up



The firgt phase of experimentation is performed to obtain frequency response plots for the
above-described system, which is an exercise in system identification. For this purpose,
we use a DSP tool, SigLab. SigLab sends a sine sweep over a user-specified frequency
range as the system input in the form of a voltage sgnd to the current amplifier. At the
same time it dso collects the system output, which is the tachometer voltage in this case.
Based on this input-output data, SigLab congtructs the frequency response plots for the
system. A schematic of this set-up isshown in Figure 2.1.

Motor polarity is chosen such that a positive motor current (1) leads to a CW rotation of
the rotor. Tachometer polarity is chosen such that a CW rotation of the rotor produces a
positive tachometer voltage (Vtach).

2.2 Component Specifications
1) DC Motor-Tachometer Assembly.
The motor and tachometer used for this set-up is a Permanent Magnet Brushed DC

Motor-Tach assembly, Model No. 0288- 32-003 from Electro-Craft Servo Products.

Table 2.1 Specifications of the Electro-Craft 0288-32-003 DC Motor with

Tachometer
Motor Characteristics Units Values
Rated Voltage (DC) valts 60
Rated Current (RMYS) amps 4
Pulsed Current amps 29
Continuous Sl Torque 0z-in 50
Maximum Rated Speed RPM 6000
Back EMF Congtant volts-/krpm 8.7
Torque Congtant oz-infamp 11.8
Termina Resstance ohms 1.0
Rotor Inductance mH 3.3




Visoous Damping Coefficient oz-infkkrpm 11.3

Rotor Inertia (including Tach) 0Z-in-sec” 0.0078
Stetic Friction Torque Ib-in 0.19

Tachometer Voltage Congtant voltskrpm 14

2) Power Amplifier

The power amplifier used in this sysem is the Advanced Motion Controls PWM
servo-amplifier, Modd 25A8.

Table2.2 Specifications of the Advanced Motion Controls Model 25A8 PWM

Amplifier
Power Amplifier Characterigtics Values
DC Supply Voltage 20-80V
Maximum Continuous Current +125A
Minimum Load Inductance 200 mH
Switching Frequency 22 Khz + 15%
Bandwidth 2.5 KHz
Input Reference Signa + 15V maximum
Tachometer Signd + 60 V maximum

3) Power Supply

A DC power supply is used to drive the system.

Table2.3 Specifications of CSI/SPECO Modd PSR-4/24 Power Supply

Power Supply Characterigtics Values
Supply voltage +24 Volts

Maximum Continuous Current 4 amps

Maximum Pegk Current 7 amps




4) DSP Tool

The DSP used for this experiment is the SigLab 20-42 hardware/software tool from
DSP Technology Inc. This DSP tool has the following features:

DC to 20 kHz frequency range

Fully diasprotected two or four-channd data acquistion sysem in one smdl

enclosure
Expandable from two to sixteen channels

Ready to use Windows-based measurement and andyss software, coded in
MATLAB

On board red time sgna processng provides 90dB dias protection and frequency
trandation (zoom)

Integrated multifunction sgnd generation

Further information is available on the company website: hitp://www.dspt.com




3. CONVENTIONAL D.C. TACHOMETER MODEL AND ITSDEFICIENCIES

Table3.1 List of symbolsused in this section

Variable/Parameter Symbol Value
Motor angular pogition Om -
Tachometer angular position gt -

Motor armature inertia Jn 43.77e-6 kg-m2
Tachometer armature inertia J 11.35e-6 kg-m?
Motor-Tach shaft siffness K 1763 N-m/rad

Motor current im -

Motor torque Tm -
Motor torque constant Kt 8.33e-2 N.m/A
Tachometer voltage Vtach -
Tachometer congtant K'tach 0.137 V/(rad/s)

For smplicity, we congder a DC motor-tachometer assembly without any externa load
inetia A ghaft of finite giffness connects the tachometer armature and the motor

amature. A physcad modd of this assembly with lumped parameters is shown in Figure
3.1

gm
)
G
T
N
K
Jt I

Figure3.1 Physical Modd of Motor Tachometer assembly



By drawing free-body diagrams for the two inertias & and J,, and applying Newton's
Second Law, we obtain the following transfer function:

K
$*[3, 3,8+ K(3, +3,)]

1“_—; = (3.)
It is worth-mentioning here that in the derivaion of the above trander function dl
frictional losses (Coulomb, viscous and structurd) have been neglected. As shdl become
cdear later in this thess the effect of damping terms is not important for the primary
investigation that is being carried out. We are trying to identify the complex conjugate
poles and zeros of the motor-tachometer system that arise due to the mechanicd and
eectrical characterigtics of the sysem. From a frequency response perspective, damping
does not govern the exisence of these poles and zeros. It only tends to reduce their
intengity. Thisisilludrated in Figure 3.2.

50 T

40} 1

Undamped System Response

30

Magnitude (dB)

50 -

-60

10"

frequency

Figure 3.2 Effect of damping on the zeros and poles of a system



By presenting this argument, we justify the dropping out of damping terms in our mode
for the mechanicd sysem at this dage. In the later part of this thess though, when we
tak about control system desgn, the sgns of the damping terms become critica in terms
of andyzing the cdoseloop sysem dability. At that stage, damping terms shdl be
introduced with due judtification provided.

We now proceed with the pertinent andyss. Using the conventiond DC motor and
tachometer modds, commonly found in text-books,

Tm :KI im

) (3.2
Vtach = Ktach qt

to modd the motor-tachometer system described in Section 2, and the following overdll
system transfer function is obtained,

\Y/ Ko K

tach — amp tach Kt K

V, s[J I, s°+K (J +K_)]

in

(3.3)

This expresson indicates the presence of one complex-conjugate pole pair. We get the
frequency response plots for this trandfer function usng MATLAB. At the same time, we
dso obtan the experimentd frequency response plots usng Siglab as described in
Section 2. The two sets of plots: andytica and experimental, are compared to check how
well the theoretica transfer function predicts the actua system response (Figure 3.3).
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Figure 3.3 Comparison of analytically-predicted and experimentally-obtained
frequency response plots of the motor-tach system

The following interesting observations are made from the above plots:

1.

The andyticaly-predicted results match the experimentd results in the low frequency
range (< 100Hz).

For higher frequencies the experimenta results distinctly deviate from the predicted
results and hence the modd breaks down in the high frequency range.

The experimenta results seem to indicate the presence of two pairs of complex-
conjugate zeros in the system transfer function that are not predicted by the anaysis.

The andyds does predict the sysem pole frequency quite accurately. The
experimenta results reved one complex-conjugate pole pair and this is very close to
the pole-pair predicted by the andysis.

In the experimenta plot, we notice that the phase drops by 180° at the firs zero
frequency. This implies that the corresponding complex conjugate zero pair lies on

10



right Sde of the imaginary axis in the s-plane. This indicates the presence of negative
damping term, which is unusud in amechanicd system.

Evidently, there are many discrepancies noticed in the aove comparison that remain
unexplaned by the present andyticd mode for the sysem. This demands a closer
ingoection of the sysem modding. Since expresson (3.1) is deived by gpplying
Newton's Second Law to a widdy accepted physca modd of a two-mass-one-spring
gydem, its vdidity is dmost certain. On the other hand, expressons (3.2) represent
textbook models of idedized ‘dectromagneticaly uncoupled motor and tachometer
regpectively, which might be an over-amplification. Since their accuracy is questionable,
we proceed to identify any eectromagnetic phenomena that might give rise to some
unidentified dynamics.

11



4. MODELING OF D.C. MACHINES

We follow a thorough approach in deriving models for DC machines in order to make
sure that we do not miss the influence of any wesk, yet dgnificant eectromagnetic effect.
We dat from the fundamentas of eectromagnetism to study the operation of DC
machines. In the following andyss we have been paticulaly caeful with the sgns
associated  with  various quantities, as any inconsgencies will lead to erroneous

predictions.

In the following discusson, the fundamentd laws of eectromagnetism will be invoked
frequently. These principles are listed here for the convenience of the reader:

1. Faraday’s Law of Induction: The induced dectro motive force, or emf, in a circuit is
equd to the rate at which flux through the circuit changes.

2. LenZs Law: As an extenson to Faraday’s Law, Lenz's Law dates tha the emf
induced will be such tha the resulting induced current will oppose the change that
produced it.

3. A combination of the above two lawsis expressed in Maxwel’ s Third Equation

_9F
dt

4.1)

where e isthe induced emf in volts, while phi is magnetic flux in webers.

4. Kirchoff's Voltage Law (KVL): The dgebrac sum of the changes in potentid
encountered in a complete traversa of the circuit must be zero.

5. Kirchoff's Current Law (KCL): The dgebraic sum of the currents a any junction in a

circuit must be zero.

12



4.1 D.C. Motor

Table4.1 List of symbolsused in this section

Variable/Parameter Symbol Units
Permanent Magnet Stator Field of the B, Whin?
Motor
Armature Fidd of the Motor Ba wh/n?
Armature Current in the Motor la A
Torque Congtant of the Motor K+t_motor N.m/A
Torque generated by the Motor Tm N.m
Hux linkage in Armature Cail due its F. webers
own Current
AreaVector of Armeture Coail (pointing A >
in the same direction as B,)
Armature Resistance Ra ohms
Armature Inductance La henry
Number of Armature Coils N -
Input Termind Voltage to the Motor Vin \
Back emf generated in the Motor Vpackemf \
Angular velocity of the Armature w rad/s
Back emf Congtant Kb_motor V.srad

A commonly encountered description for a DC motor is illusrated in the following
circuit, with armature res stance and inductance modeled as lumped quantities.

13



Figure4.1 Electrical Circuit for aD.C. Motor

Applying KVL to the above circuit leads to the well-known DC motor dectrical equation,

Vin - Kb_motor W - La dta = Ra Ia (42)

To understand the significance of each term in the above equation, it is dedrable © take a
look the derivation of this eguation from a much more fundamentd level. Condder the
following physicd modd for a DC moator,

B_(PM Field)
Field Axis
>

B, (Armature Field)
Quadrature Axis

\4

Figure 4.2 Physical Model of aD.C. Motor

14



The permanent magnet dtator fidd (Bnm), the direction of which is cdled the ‘fidd axis,
is fixed in space. The amaure fidd (Ba), generated due to the armature current, is
orientated in a direction cdled the ‘quadrature axis. Despite the armature rotation, the
Quadrature axis retains its orientation in space due to commutation. If we assume a
perfect commutation, then the armature field aways remans perpendicular to the dator
fidld. Repulson between these two magnetic field vectors produces a clockwise torque
on the rotor that is proportiond to the product of By, and B, B remains congtant and B,
islinearly dependent on Imotor-

N \' Torque on armature

N » S B,
k |
Torque on armature s
B

a

Figure 4.3 Interaction between two magnetic fields

Hence, the motor torque generated can be expressed as,

T =kB,"B,=m B,

(4.3)

where mis the magndic dipole moment resulting from the armaure fidd, and is

proportiond to and in the same direction asB;, .

15



kB,=m
m=N 1, A (by definition of magnetic dipole moment)
P T =NI A B,
bT=NAB_I,

(4.4)

Defining the motor torque constant K¢ motor = N A By, we arive & the following smple

expression for motor torque

T =K

m

| (4.5)

t_motor "a
Applying KVL and Ohm'’s Law, the governing electrical equation is expressed as,

dF
Vin - Vbackemf - N dta = Ra Ia (46)

As is evident from the above equation, there are two effects that oppose \M,: a back emf
that arises due to the armature motion in the gator field By, and an induced emf due to
the sdf-inductance of the armature coil. Both these effects are impeding effects, which is
reflected by the negative sgn associated with them (Lenz’s Law). Also, usng the
following standard relationships,

|
|

F a = a X
NF, =L, I, (4.7)
Visdert = Kb mtor W (geNErator effect, derieved in Section 4.2)
we can reduce equation (4.6) to,
dl
Vin - Kb_motor W - La dta = Ra Ia (48)

which is the same as eguation (4.2). This is the commonly accepted mode for an
‘electromagnetically isolated D.C. motor. Now we proceed to take a look at the model
for D.C. tachometer.
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4.2 D.C. Tachometer

Table4.2 List of symbolsused in this section

Variable/Parameter Symbol Units
Permanent M Tagghe(t) rﬁtgteorr Field of the B, Whin?
Armeture Field of the Tach Ba wh/n?
Load Current drawn from the Tach I A
Torque Congtant of the Tach Kt _tach N.m/A
Retarding T?Qﬁﬁ r?g;rated by the Tt N.M
Fux IinkageintheTach Armeature Cail F. webers
dueits own Current
AreaVector of Arméture Coail (pointing A >
in the same direction as B,)
Armature Resistance Ra ohms
Armature Inductance La henry
Number of Armature Coils N -
Back emf generated in the Tach Vb \%
Angular velocity of the Armature w rad/s
Generator Congtant for the Tachometer Kb _tach V.qrad
Load Resstance R. ohms
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+ Ba (Armature Field)
A Quadrature Axis

Bm (PM Field)
fild Axis

[
»

Figure 4.4 Physical model of a D.C. tachometer

In this case, a CW rotation of the rotor in the presence of the permanent magnet stator

fidd Bnm, produces an emf of Vp across the armature terminds (Faraday’s Law of

Induction: Generator Effect).

Usng Faraday’s Law, we know that the emf induced in a conductor of length |, moving
with aveocity v, in auniform magnetic B fidd, is given by,

emf =1 v B (4.9)

It can be shown that for a coil rotating in a radidly uniform sator fidd Bn,, the induced
emf isgiven by,

V,=N 2| (wr) B,
bV,=N (2r)B,w (4.10)
bV,=NAB,w

Defining the generator constant (or the tachometer constant) as Ky tach = N A By , leads us
to the following smple relaionship for the generator (or tachometer),

Vo = Ky _an W (4.11)

18



This induced emf causes a current I in the load resistor, R.. I dso flows through the
tachometer armature, thus producing an armature fidd B, dong the ‘quadrature axis.
Once again due to commutation, the orientation of the armature fidd dways remans
perpendicular to the stator field and hence is fixed in space. This current aso produces a

retarding torque on the tachometer rotor, which as earlier can be derived to be the

following,
Ttach = Kt_tach IL (412)
KVL and Ohm’s Law for the above tachometer circuit leads to,
v, - NO'O'Fta:(Fea+RL)|L (4.13)
Using equations (4.11) and (4.7), this equation further reducesto,

dl, _
Kb_tach w - La (Ra + RL) IL (414)

o
The firg term on the LHS represents the voltage induced across the armature due to its
mation in the permanent magnet fidd Bn,. Consequently, since the circuit is closed by
means of the externd ressance R, a current I flows through the dircuit. The sdf-
inductance of the coil tries to oppose the emf that causes I, hence the negaive sSgn
asociated with the second term (Lenz's Law). The terminad voltage as seen by the
resistor R_ isgiven by,

di,
dt

Vtach = RL IL = Kb_tach w - La - F{d IL (415)

If R is extremely large, then the arrent drawvn from the tachometer is negligible and the
above expression is reduced to,

V,

tach

= Kb_tach W (4 16)

This is the modd for an ‘dectromagneticdly isolated tachometer that we encounter in
al textbooks and references. Now we proceed to investigate how this changes when a DC
tachometer is placed close to a DC motor.
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4.3 Coupled D.C. Motor-Tachometer System

Table4.3 List of symbolsused in this section
(unitsarethe same asearlier)

Variable/Par ameter for Motor for Tach
Permanent Magnet Stator Field Bm1 Bm2
Armature Field Ba1 Ba2
Armeature Current I I>
Torque COﬂSta”]t K t_motor K t_tach
Torque generated Tm Ttach
Hux linkage in Armature Cail dueits = =
1 2
own Current
AreaVector of Armature Cail (pointing A A
in the same direction as armature field) ! 2
Armature Resistance Ry Ro
Armature Inductance Ly Lo
Number of Armature Coils N, \P)
Angular velocity of the Armature Wm Wiach
Back emf Congtant / Generator
K b_motor K b_tach
Constant

All the preceding discussons were carried out assuming that both devices are ectricaly
and magneticaly isolated. Now condder a mechanically coupled motor-tachometer
sysem like the one shown Figure 4.5(a). The two armature rotors are connected by a
ghaft of finite siffness. In generd, there can be an angular offset between the motor stator
field and the tachometer Sator field, say, a inthis case.
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Q Tach Armature
Motor Armature
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Tachometer

the common
rotor

Motor

Figure4.5 (a) Angular orientations of the Motor and Tachometer per manent
magnets (b) Motor and Tachometer Fields
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We notice that the armature field of the motor produces a flux linkage in the tachometer
winding and smilarly the armature fidd of the tachometer produces a certain flux linkage
in the motor winding, which in effect leads to mutud inductance between the two coils.
This effect is better understood from Figure 4.5(b), which shows al the fidds tat play a
role in the motor-tachometer interaction.

In the Figure 4.5(b), we indicate the respective dator fieds, Bma and B2, and the
amature fields, Ba1 and Bao, of the motor and tachometer. Directions of By and By, are
defined by the orientation of permanent magnet stators. For clockwise rotation of the
rotors, directions of Ba; and B, are obtained from Figures 4.2 and 4.3 respectively. Since
the two devices are not magneticdly insulated, the tachometer armature (coil 2) sees a
week field, Bai2, due to the motor armature current. Thus, Baio is defined as the magnetic
field due to motor armature current (1) experienced by the tachometer armature (coil 2).
Obvioudy, Bai2 is in the same plane as Ba1, but is oppodite in direction. The tachometer
aso experiences the effect of the permanent magnets of the motor. This appears in the
form of a wesk fidd B2, resulting from the leskage flux of the permanent magnets of
the motor. Bpy12 is in the same direction as Byi. We summarize dl these fidds in the

following vector diagram for the tachometer, derived from Figure 4.5(b).

’/-—-b

a
B,

m2

% A Pmi

Figure4.6(a) Magnetic Fields present in the Tachometer
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In a very smilar way, the motor winding (coil 1) experiences a magnetic fidd, Ba2i, due
to the current i; in the tachometer armature (coil 2). Once again, the direction of Bao1 is
oppogite to the direction of Bgy. There is dso an effect of the tachometer permanent
magnets that is seen by the motor in the form of a wesk fidd, Bm21, acting in the drection
of Bmi1. As discussed in Sections 4.1 and 4.2, these directions remain fixed in space. From
Figure 4.5(b), dl the magnetic fidds that gopear in the motor are shown in the following

figure.

N

A Bml
2 Ba/ ]
Bm21 % N
' >
Bal Al

Figure4.6(b) Magnetic Fields present in the Motor

It is worth-mentioning here that the effect of Byiz on the tachometer equations is
negligible. It does not lead to any dynamic effects; it only changes the dtator fidd that the
tachometer armature rotates in, by a very smadl amount. This in turn causes a dight
vaiation in the torque congtant and the generator/tachometer constant. Neverthdess, the
governing rdationships given by equaions (4.11) and (4.12) reman undtered. Smilarly,
Bm>21 is of little consequence in the motor equations, except for causng a smdl change in
the torque congtant and back-emf congant. For the case of the motor, equation (4.5) is
gill vdid.
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The presence of the armature fields By> and By lead to mutud inductance between the
two coils Let us look at this transformer effect between the two armature coils motor
amature (coill) and tachometer armature (coil 2), in terms of flux linkages. The
magnitudes of the armature fidds are linearly dependent on the respective armature
currents. Therefore the following holds,

B

al

B32:k2|2 .

Ba12 = k12 I,

wherekq, ko, k12 and ko; are constants.

1:k1|1

In this case we have a wedk trandformer effect unlike that in an ided transformer. An
ided transformer has the following properties

1. Winding resstances are neglligible

2. All fluxes are confined to the core and link both windings. There are no leskage fluxes

present and core |osses are assumed to be negligible.

3. Permeability of core is infinite. Therefore, the excitation current required to establish
flux in the coreis negligible.

When these properties are closdy satisfied, then the following relationships hold,

v, N,
N

2 % (4.18)
L_N,
i2 1

Referring to Figure 4.7, which illudrates the case a hand, the Studion is very different
from an ided transformer, since none of the above requirements are met. There is no core
between the two cails, the permesbility of ar is very low, and mogt part of the flux linked
with eech coil is leskage flux and mutud flux is smal. Hence the rdationships (4.18) do
not hold in this case.
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Figure 4.7 Transformer effect between the motor armatur e coil and tachometer
armature coil
In the above figure,
F 1 istheflux linkagein coil 1 dueto current in coil 1 (11)
F 21 isthe flux linkage in coil 1 dueto current in cail 2 (1)
F 2 isthe flux linkage in coil 2 due to current in cail 2 (I2)
F 12 istheflux linkage in coil 2 dueto current in coil 1 (11)

Then, by referring to Figures 4.6 () and (b), and expressions (4.17), we conclude that

Fo=BoA=(k1)A (4.19)
F,= éaz X'EE =k, 1,) A (4.20)
Fou= B6121 X'El =(ky 1,) A cos@) (4.21)
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Fi, =By A = (k, 1,) A cosla) (4.22)
Conseguently, the resultant flux linkage in motor armeture (coill) =F 1+ F 21
and, the resultant flux linkage in tachometer armature (coil2) =F >+ F 12

Applying KVL and Ohm's Law to the éectrica circuit comprisng coil 1, i.e. the motor
armature, we get

d(F,+F,)

=R, (4.23)

Vin - Vbackemf - Nl

This is dmilar to eguation (4.6) in Section 4.1, with the only difference being that, in
equaion (4.6) the mutud flux term was missing. The dgnificance and sgn of each term
in the above equation has been explained in Section 4.1.

The gpplication of KVL and Ohm's Law to the dectricad dircuit contaning the
tachometer armature (coil 2) in Figure 4.7, leadsto

N O(FLF

) _
v, = (RAR) L, (4.24)

Once again, this is gmilar to equation (4.13) derived in Section 4.2. Equation (4.24)
includes a mutud flux term which equation (4.13) was lacking. The sgnificance and Sgn
of each term in the above eguation has been explained in Section 4.2.

Using equations (4.19)-(4.22), we are now in a position to define inductances,

NF, =N(K ) AZL I (4.25)
N,F, =N, (K,I,) A =L, 1, (4.26)
N,F,, =N, (K,l,) Acos@)2M,, I,cos@) (4.27)
N,F,, =N,(K, ) Acos@)2 M, I, cos@a) (4.28)
My, =M, (4.29)
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L1 and L, are the sdf-inductance vaues for the motor and tachometer coils respectively.
M1z ( = My ) is the mutua inductance value between the motor and tachometer coils,
whena =0°.

Furthermore, using the previoudy derived expressions,

Vbackemf = Kb_motor Wm
Vb = Kb_tach Wtach

and results (4.25) - (4.28), the motor equation (4.23) reduces to,

Vi Ky e W - L2 M, costa) Sz =R 1, (430)
- dt dt
and the tachometer equation (4.24) reduces to,
dl, dl, _
Kb_tach Wiaeh - L2?' M12 COS(a) dt - (Rz +RL) I2 (4-31)

The tachometer termind voltage measured by an externd deviceisR_ I,

dl dl
\ Vtach = R_ I2 = Kb_tach Wiach - L2Tt2_ M12 COS(a) dtl - Rz I2 (432)

This is the enhanced tachometer modd that includes the effect of mutua inductance
between motor and tachometer armatures, which is ignored in the conventiona modéd.
Torque models for the motor and tachometer are reatively smple. The retarding torque
produced by the tachometer is given by,

Ttach = Kt_tach I 2 (433)

and the toque generated by the motor can be expressed as,

T,=K

m t_motor I1

(4.34)

The derivation of these rddionships has been covered in Section 4.1. Thus, the net
torque output by the motor-tachometer assembly is,

Touw = Kt_rmtor !L - Kt_ tach I2 (435)

out
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Equations (4.30) through (4.35) ae the find reslts of this deivetion. The dgns
associaed with each term in these equations are very important, as they can significantly
effect the sysem dynamics. At this sage we can consder making some smplifications.
A pragmatic observetion is that I, (load current) is much smaler than k (motor current).
In fact, if R, the input impedance of the voltage-measuring device (eg. SigLab) is high,
which it is in this case (~ 1 Mohm), then the current drawn from the tachometer is amost
negligble We can therefore diminate terms containing 1, wherever it occurs in
equations (4.30) - (4.35), which leads to some samplification. At this point however, we
dhdl retain the term *-Ry 12" in the Viaen expresson from equation (4.32). This is done to
resolve a gngularity & a later dage.  Since this term conditutes a damping term, the sgn
asociated with it is very important in determining the phase change & zero and pole
frequencies. In the absence of this term, the modd sees a gngularity and abitrarily
assgns ether a +180° or —180° phase change. A damping term, however smadl (even
negligible), resolves this sngularity and determines whether this phase change has to be
+180° or —180°, depending upon the sign associated with this damping term. Thus, this
term is retained only to predict the phase plot in frequency response. It has no effect on

the magnitude plot whatsoever.

A find observation is made regarding the ‘-R, 12’ term. Had the transformer effect been
an ided one, the rdationship (4.18) would hold, i.e, 12 = (N1/N2) l1. In the present case,
this is not true, snce the transformer effect is a weak one. Neverthdess, |, may be weskly
related to 13 by some empiricd constant. Based on this argument, we suggest that ‘R 12’
may be replaced by ‘K, I’ where K is an experimentaly determined empirical constant.
The vdidity of this empirical conjecture, though questionable a this stage, shdl be
confirmed experimentd measurements.  Experimentd  verification is covered in the
following section.

Implementing these discussions, the motor-tachometer equations reduce to,
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dl,
dt

M,, cos@)

Motor Equation: V. - K

n

Wi, - Ll

=R

dl,
ct

b_ motor

Tachometer Equation: V, R, I, (4.36)

tach

= Kb_tach W

tach ~

o]

Torque Equation: Tout = K¢ motor 11

Comparing these results with the previous results, we notice that the motor mode and the
torque expresson remain the same, while the tachometer mode has additiond terms in it,

that were missing in the conventiona modd.

Rewriting the tachometer equation,

di,
Vtach = Kb_tach Wigen + Km dt - I'<r ll

K, =-M,,cos@) (magnetic coupling constant) (4.37)
K, 2R, (I,/1) (loading effect constant)

This is find form of the enhanced tachometer modd. Note that since the tachometer is
megneticaly coupled to the motor, the motor current influences the tachometer termina
voltage despite the fact that the two are dectricdly insuated. This mode reduces to the
conventiond mode, given by equation (4.16), if the magnetic coupling congant Ky, = 0,
and the loading effect congant K, = 0. These two congants are easly determined
experimentaly, as shdl be described in the next section. K is dways postive, while K,

may be positive or negetive depending on the anglea.
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5. EXPERIMENTAL VERIFICATION OF THE PROPOSED MODEL

Table5.1 List of symbolsused in this section

Variable Symboal

Motor angular position Om

Tachometer angular pogition gt

Motor current Im

Motor torque Tm

Tachometer voltage V'tach
Par ameter Symboal Value Source

Motor armature inertia Jn 43.77e-6 kg_mz Manf. Specs.
Tachometer amature inertia N 11.35e-6kgm?2 | M anf. Specs.
Motor- Tachometer shaft iffness K 1763.2 N-m/rad | Parameter ID
Motor torque constant Kt 8.33e-2 N-nm/A Manf. Specs.
Tachometer congtant K'tach 0.1377 Virad/s Manf. Specs.
Magnetic Coupling congtant Km 8.8852e-5Henry | Parameter ID
Loading effect constant Ky 2.6656e-2 Ohms | Parameter ID

We now incorporate the tachometer modd obtained in Section 4.3, in the andysis for the
motor-tachometer system that we studied earlier in Section 3. The transfer function of
mechanica system from equation (3.1) remains unchanged,

G- K (5.1)
T, s [J,3,8 +K(J,+J,)]

DC motor operating in current mode can al'so be modeled as eaxrlier,

Tm = Kt im

i =K ap Vi (5.2
Tm :Karrp Kt \/in
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Based on Section 4.3, the tachometer output is now expressed as,

V,

tach

=K G +K,, (di_/dt)- K, i, (5.3)

The expressons (5.1)—5.3) yidd the following overdl transfer function for the unloaded

motor-tachometer system,

Karp [K, (den) s*- K, (den) s+ Ki Kian K]
(den) s

Vtach —
\/i

n

(5.4)
(den)2[J,J,, *+K (I, +J,)]

This andyticaly obtained transfer function for the tachometer-motor system is used to
generate the frequency response plots in MATLAB. These plots are then compared to the

experimentaly obtained plots
Experimental: Solid Line Theoretically Predicted: Broken Line
10 T I I1] :
o 0 . Analvticaly Predicted | N :‘x._
o Experimentally Obtained ¢ | | | | | | | =7 -wf\s
% 10— /—'_’_.__,,r' -
"3 < - -’d/"’ﬂ"
5, -20 =g \/ S -
m '\\\\ ’ s
= 30 S :
\\
-40
2 3
10 10
0
g -100 ] Analytically Predicted
>
2 N\ \
T -200
% \‘\h"i_::;:_—,__ X/ __|
£ 300 Experimentally //,’ == e
o obtained
-400 ‘
2 3
10 10
Frequency (Hz)

Figure 5.1 Viacn/Vin : Comparison of analytically predicted and experimentally
obtained frequency response plotsfor the motor-tachometer system
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Some interesting observations made from the above comparison are listed here:

1.

The new mode predicts the experimenta observation even for the high frequency
range very accuraely. The analytica plot does indicate the presence of two complex-
conjugate zeros that are observed in the experimenta plots.

Looking a the sysem trandfer function given by equation (5.4), we can now explan
the presence of the additional zeros. It is evident that a podtive Ky, leads to complex
conjugate zero pairs in the system. Clearly, these zeros will disgppear for K»=0. In
this particular case we have two complex conjugate zero pairs which is one more than

the number of complex conjugate pole pairs.

The presence of K, with a negative Sign explains why the phase drops by 180° at the
fird zero frequency. The loading effect pushes the firs complex-conjugate pole pair
to the right Sde of the imaginary axis on the splane. The importance of the negative
dgn associated with K, becomes evident here, which is why dgns were dedt with

care during the derivation of the tachometer mode!.

Although the conventiond modd predicted the sysem poles accuratdy, it faled to
explan the presence of sysem zeros. The new modd addresses this inconsstency

very well.

Once the new tachometer mode is experimentaly confirmed, the results of the above

experimental plots are then used to back-caculate the exact vaues of the parameters K
(shaft diffness), Ky (magnetic coupling congant) and K, (loading effect corgtant). In
Figure 5.1, the first zero frequency is 247 Hz, and the second zero frequency is 2200 Hz.

The pole next to the second zero is a 2230 Hz. Equating the predicted pole frequency

expresson to experimentaly obtained frequency, we get K=1763.2 N-m/rad. Equating

the predicted zero frequency expressions to experimentally obtained zero frequencies, we

get Kn8.62565e-5 Henry. From the experimentd plot, the damping at the first pole is

estimated to be z= 0.098. Equating this to the theoretically predicted expresson for

damping, we get Ky=2.6656e-2 Ohms. Note that K, and K are very smal numbers.

32



5.1 Discussion on the proposed tachometer model

We thus see that for an accurate prediction of experimenta results, the smple ‘gain’

modd for tachometer is not sufficient. An accurate tachometer model is developed in the

preceding sections. We now dsate some observations/conclusions based on the new

modd:

1. The mogt noticeable enhancement in the new tachometer mode is the presence of a
magnetic coupling constant, Kn,. If Ky, were made zero, which happens when a = 90°,
or when the two coils are magneticdly insulated, i.e. the mutud inductance M2 = O,

we see that the trandformer coupling vanishes Taking a closer look a the magnetic
coupling factor Ky,

K, =- M, cosa

where a is the angular misalignment between motor fiedld and tachometer fidd, and
Mi2 is the mutud inductance between motor winding and tachometer winding for
a=0. Ky, is a geometry dependent parameter and is best determined experimentdly.
This paameter has a very dgnificant influence on tachometer dynamics, as it
determines the strength and sign of coupling. For example,

ifa = +/- 90 °, the effect of coupling is annulled,

if a=0° Ky ismaximum negative, which leads to red zeros and thus a non-minimd
phase system,

if a =180 °, K is maximum postive, and this leads to complex-conjugate zeros lying
close to the complex conjugate poles of the system.

Whatever this angle a is, it has a sgnificant influence on sysem poles and zeros, and

hence the design of a contraller.

2. Because of the magnetic coupling term, the denominator of the sysem trandfer
function finds a place in the numeraor, as is evident in equaion (5.4). Hence the
additional zeros that appear are strongly dependent on the system poles. If dl poles
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are complex-conjugate pairs, and if Ky is pogtive, then al the resulting zeros are dso
complex conjugeate pairs, and the number of these zero pairs is one greater than the

number of complex conjugate pole pars (excluding the poles at the origin).

. The other important parameter that appears in proposed tachometer expression is the
empiricd congant K, which is dways podtive. Once again, snce K; is dependent on
the experimentd sat-up, it is best obtained experimentdly. If the additional zeros are
complex conjugate, the negative sgn associated with K, pushes them dightly into the
right haf of s-plane. This phenomenon helps in predicting the phase change a the

zero frequenciesin the phase vs. frequency plots.

. The dggnificance of the sgns associaied with K, and Ky, is now evident since these
sgns dictate the nature and location of the additiond zeros. This is the reason why the
importance of Sgnswas emphasized during the derivation of the tachometer modd.
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6. TYPICAL APPLICATION: MOTION CONTROL IN ARESENCE OF SHAFT
COMPLIANCE

Table6.1 List of symbolsused in thissection

Variable Symbol
Motor angular position Om
Tachometer angular position gt
Inertia 1 angular pogition 01
Inertia 2 angular position o2
Motor current Im
Motor torque Tm
Tachometer voltage Vtach
Parameter Symbol Value
Motor armature inertia N 43.77e-6 kg-m2
Tachometer armature inertia J 11.35e-6 kg-m?
Inertia 1 J 18.77e-6 kg-mP
Inertia 2 N 18.77e-6 kg-m?
Motor-Tachometer shaft siffness K 1763 N-m/rad
Tordgond stiffness of Shaft 1 K shaft1 623 N-m/rad
Tordond diffness of Shaft 2 K shaft2 1063 N-m/rad
Torsond diffness of coupling K coupling 1500N-m/rad
T e |G | s
Torsgond stiffness of Shaft 3 K2 249 N-m/rad
Motor torque constant Kt 8.33e-2 N-m/A
Tachometer constant Ktach 0.1377 Virad/s
Magnetic Coupling congtant Km 8.8852e-5 Henry
Loading effect constant K, 2.6656e-2 Ohms
Voltage to current amplification K amp 05 ANV
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We now consder a typical problem in DC motor motion control usng tachometer
feedback. The integrated motor-tachometer assembly described in Section 2 is used. The
motor shaft is now connected to a load by means of a flexible coupling of known
diffness. Furthermore the load is in the form of two inertia’'s connected by a shaft. Thus
the system has multiple flexible dements.

Shaftl Shaft2

Shaft3
P A 1 X X
Tach _ Flexible L w W

Coupling ; ;
Motor Inertial Inertia2

Figure6.1 Motor-tachometer-load System

A lumped parameter mode is used to describe the above system, with the assumption
that disspation tems (i.e Coulomb friction, viscous damping and materid damping)
hardly influence the exigence of system poles and zeros. As was discussed in Section 3,
the purpose of the present invedtigation is to identify the poles and zeros of the overal
system that arise due to the mechanicd and dectromagnetic characterigtics of the system.
From a frequency response perspective, mechanicd damping does not govern the
exigence of these poles and zeros. It only tends to reduce their intendty as was illustrated
in Figure 32. A more rigorous didributed parameter modd with &l disspation terms
included can be used to get a much more exact match between the zero and pole locations
in the experimental and predicted plots. We do not use such a mode here because the
ample lumped parameter model with no disspation assumption is sufficient to capture al
the prominent atributes that are noticed in the experimentd results. Our objective here is
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to show the dgnificant extent by which the new mode changes the andyticd predictions
and indeed brings them very close to the experimenta observations.

A physicd mode of the above system is shown below,

gm
.
Q Q. Q-
0599
Ji I Js J:

Figure6.2 Physical Model of the motor-tachometer-load system

Drawing free-body diagrams for each of the four inertias and gpplying Newton's |1 Law,
we arrive a the following transfer function for mechanicad system,

G - _num (6.1)
T, s fden]
where,
[um]=K P, J, s"+ (3, K, +J, K, + J, K,) 8 + K K, ]
[den] =s° [J, J,J,3,] +
UK, 3, 3,0 +K 3 30, +K, 0 3 L+
KJ.J,J,+KJ, J,3,+K,K, J, 3]+ 62

S [K Ky 3, J, +KK,J, I +KKJI,J

KK,J,J +KK,J, J+K K JJ,

KK;Ji 3, +K K 3 i+ KK 3 3, + K, K 3y T
+ [KK K, (J+3,+3,+3))]

The motor mode is same as eaxlier,
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T =K,i

m t'm
i =K, V (6.3)

amp Vin

T =Koy K Vi

The new tachometer modd is given by equation (4.37),

Vi =Ko Q + K, (di/dt)- K, i (6.4)
All these expressions (6.1)-(6.4) lead to the following overdl system transfer function,

V,

tach —

Karp [K S” (den) - K, s (den) + K, Ky (num)]
s (den)

(6.5)

in

On the other hand, if we were to obtan the sysem trander function usng the
conventiona tachometer modd, given by equation (4.16), we get the following

V,

tach —

V.

n

Karrp Kt Ktach (num)
s (den)

(6.6)

Comparing the two transfer functions (6.5) and (6.6), it is clear that the new mode
captures some dynamics that is missing in the old modd. Note thet, in (6.5) if K, = Ky, =
0, then (6.5) reducesto (6.6).

Next we perform a sne-sweep experiment on the actud system to obtain its frequency
response experimentaly. We compare the experimentaly obtained frequency plots with
those predicted by the two modes. Figure 6.3 presents a comparison of the experimenta
frequency plots with those predicted by the old mode, expresson (6.6). Figure 6.4
presents a comparison of the experimenta results with the predictions of the new moded,

expression (6.5)
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Experimental: Solid line  Theoretically predicted: Broken Line
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Figure 6.3 Viacn/Vin : Comparison of experimental frequency response and predicted
frequency response using conventional model
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Figure 6.4 Viach/Vin : Comparison of experimental frequency response and predicted
frequency response using proposed model
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Table6.2 Comparison of experimentally observed and theor etically predicted
(using the proposed model) zero and pole frequencies

cor(lj?;gatpleexpair Experimental Theoretical
Zero 178 Hz 170 Hz
Pole 420 Hz 416 Hz
Zero 455 Hz 449 Hz
Pole 762 Hz 860 Hz
Zero 782 Hz 862 Hz
Zero 2200 Hz 2217 Hz
Pole 2230 Hz 2231 Hz

From the above comparison plots, we make the following observations

1. The andyds based on the conventiond mode completdy fals to predict the
experimentd results a frequencies higher than 100 Hz. On the other hand the new
mode performs extremey well in explaining the experimenta observation

2. The conventiond modd predicts only two complex conjugate zero pars while the
experimental results indicate that the system has four complex-conjugate zeros pairs,
(one more in number than the complex conjugate pole pars). The new modd is able

to successfully predict al these four complex conjugate zero pairs.

3. We ds0 natice that the andyss based on conventiond modd successfully predicts
the system poles but not the zeros.

Thus the overdl sysem model, with the new tachometer modd incorporated, can be now
used for System Identification and Control Sysem Dedgn. We can conduct an
experiment smilar to the one described above for the purpose of parameter identification.
Each of the complex conjugate pole pairs in the sysem trandfer function represents a
resonance mode of the sysem aising from the flexible dements (eg., compliant shaft,
flexible coupling ec.). Thus if the diffness of some flexible member is unknown and
can't be measure directly, it can be easly back-cdculated from the pole frequency
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locations obtained from experimenta data and an accurate knowledge of the complete
system modd. This was done in Section.5, where the motor-tachometer shaft giffness
was edimated from the frequency response plots. Apat from parameter identification,
the new tachometer mode has sgnificant implications in terms of controller design for
achieving close-loop stability. Theseissues are discussed in the following section.
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7. CONTROL SYSTEM DESIGN
7.1 Introduction

The objective of this exercise in control system design is to achieve a closed loop stable
servo sysem for pogtioning the load inertia accurately using tachometer feedback, with
reference to the system described in Section 6 (Figure 6.1). We know that compliance in
a sygem, if not accounted for adequately in the controller design, leads to closed loop
ingahility [4, 6, 9, 10], which in this case manifestsitsdf as a high-pitch ringing.

We want to make sure that the compensator addresses dl the high frequency open-loop
poles and zeros reaulting from flexible dements and that the compensated close-loop
sysem has no poles on the right sde of s-plane. It is observed thet, if there is a high
frequency pole in the opertloop system, its effect can never be completely diminated.
Since close-loop poles lie on the root-loci emanating from open-loop poles, there will a
corresponding  high frequency poles in the close-loop sysem as wel. This is further
clarified in the following sections. Neverthdess, by means of gppropriate compensator
desgn, we usudly can ensure that the effect of these closed-loop poles on system
dability is not detrimental. For close-loop gability, the closed-loop poles should dl lie on
the left sde of the splane. If, for any reason, the closed-loop poles get too close to the
imaginary axis or, even worse, Suill over into the right sde of the s-plane, then we can
expect the undesrable phenomenon of high-frequency ringing in the cdosed-loop
operation of the sysem. Snce the objective is to diminate this high frequency ringing
during high-speed and high-precison closed loop operation, we shal proceed with the

above discusson in mind.

The following three issues meke the control desgn for the sysem in congderation

interesting as well as complex:

1) This is a case of multiple inertiass connected by flexible dements, with the sensor and
actuator being noncolocated. While the torque is applied to the motor rotor, the
angular measurement is made at the tachometer rotor. This necesstates the study of
colocated and non-colocated systems.
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2) The tachometer does not precisdy measure the tachometer-rotor angular velocity. The
tachometer has sensor dynamics, which adulterates the veocity signd and reshuffles
the system zeros (as discussed earlier in Section 5). In fact the tachometer dynamics
makes the system a non-minmum phase system, since some zeros introduced by the
tachometer lie on the right hand sde of the s plane.

3) Although while measuring the tachometer rotor angle, we are trying to postion the
load inertia Normdly, it is possble to control only those system dates that can be
measured or estimated. In this case we are trying to control the load postion, which is
not actudly being measured. In this context, it is important to note that, snce the
sysem is raively very diff, postioning the motor/tachometer rotor will leed to a
positioning of load inertia. It tachometer angle is used for feedback control, then the
tachometer rotor will attain the commanded postion very quickly, while the load
inatia may have a dightly higher sdtling time. If ensuring closed-loop stability is the
primary objective (i.e diminate high-pitch ringing) then this is not a problem. As
long as any one trandfer function (say tachometer angle vs. motor input torque) is
used for designing a stable closed loop, the entire ysem is Sabilized. All poles of dl
the close-loop transfer functions will have poles redtricted to the left sde of the s
plane. Despite this, if very fas and accurate podtioning of the load inertia were the
main concern, then it is a better choice to measurements a the load end rather than
the motor end. Once again if we design a suitable controller to make the load-angle
vs. motor-torque transfer function stable in close-loop, the entire system becomes
dable i.e, there are no ungtable poles in any trandfer function of the sysem, and
hence no high frequency ringing. But now motor and tachometer inertias shdl have a
longer sttling time.

Before we ded with the actud system, let us investigate the above three issues one by

one for ease of comprehenson. Once we understand each one of these individudly, we

shdl be able to study the combined effect of dl these on the system in consideration.
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7.2 Colocated and Noncolocated Control
7.2.1 Two-masssingle-spring system

Although there will be damping (materid, viscous or Coulomb) present in any red
system, for the following discusson the damping terms have been neglected. Since the
present objective is to study the occurance and significance of poles and zeros in a
system, this assumption is acceptable.

Throughout the following discussion, the term ‘pol€ should be interpreted as a complex-
conjugate pole pair and ‘zero’” should be interpreted as a complex- conjugeate zero pair.

For dmplicty, initidly the following two-mass gngle-goring system is considered. Free
body diagrams for each mass are drawn.

= =
k
m —A\NN— ™
_
Fin
K(X,-X,) K(X,-X,)
m, — - m,
e

Figure7.1 Two-masssingle-spring system
Application of Newton's Il Law leadsto,

Fo + k(X - %) =m¥%
(X - %) = Mm%, (7.1)
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After afew agebraic manipulaions, we obtain the following transfer functions

X _ m,s” +k

F,  sImms +k(m +m,)]
X, _ k

F, SImms +k(m +m,)]
X _ k

Z_ ms’ +k

.|k & mo0 .|k
Thus, the pole frequency is , |— ¢l+—==+, and the zero frequency is , |[—
Mme Mg m,

Bode Diagrams
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Fig 7.2 Bodeplot for x; / Fi, transfer function
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Fig 7.3 Bodeplot for x,/ F, transfer function

In this two-mass dngle-spring case, the )% trandfer function is referred to as a
in
colocated transfer function, since the actuator and sensor are mounted on the same mass.

Whereas the % transfer function is referred to as the noncolocated transfer function

since the sensor and the actuator are mounted on different masses. It is important to note
that for the colocated case, each pole is preceded by a zero, and hence there are
dternating poles and zeros dong the imaginary axis in the root-locus diagram. Quite
unlike this, for the noncolocated case, every pole is not preceded by a zero. Since, poles
are characterigtic of the system, each transfer function in the system (colocated as well as
non-colocated) exhibits the same poles. On the other hand, zeros depend upon the sensor
and actuator location. If the two are colocated then, as mentioned earlier, there are as
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many zeros as the number of poles. If the two are not colocated then the number of zeros
fdls short of the number of poles of the system.

7.2.2 Open-loop characteristics. Physical significance of poles and zer os

Let us try to understand the physcd dgnificance of poles and zeros and subsequently
relate this underdanding to the mathematicaly obtained conclusons. Based on the

discussonsin Section 7.2.1, we make the following observations

1. For the two-mass system described earlier, while both the masses experience the
pole, only mass-1 experiences a zero. Mass-2 doesn't see this zero. This is an

interesting phenomenon. If welook at the Free Body Diagrams of the two masses

K(X;-X)) K(X;-X,)
my +— —— m,
e
F

we notice that, for mass-1 there can arise a dtuaion, when the phases and
magnitudes of the excitation force and the spring force are such that they exactly

canced out, i.e.
Fn = k(X - %)

In such a gtuation (the resson why such a Stuation HAS to arise shdl be
discussed in the next point), mass-1 experiences a zero. Since mass-2 does not see
the excitation force directly, it can never witness a complete force cancdlation
and hence never sees a zero. All that this argument says is, if a dl a zero occurs,
it shdl be experienced only by mass1 and not by mass-2. The following point
explanswhy azero HAS to occur.

2. A poe in a mechanicad sysem represents a frequency a which some flexible

element in the sysem is in a date of resonance. Hence the number of poles in the
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sysem trandfer function is equa to the number resonance modes of the system.
Poles are characterigtics of the system and are therefore experienced by dl the
masses. Once agan referring to the two-mass sngle-soring sysem which has only
one pole corresponding to a resonance in the spring. Let us firg try to understand
what this resonance physcdly means. At the resonance frequency, an
infinitesmaly amdl exdtaion force produces a large sustained motion in the
sysem. Idedly, if there is no energy loss, then the system should exhibit violent
oscillations even for zero excitation force. If the excitation force, which is dso the
net externd force on the system, is zero, then totd momentum of the system has

to be conserved, i.e.,
mx +mx, =0 P mx =-mXx,

during resonance. This shows that a the resonance frequency, the two masses

move 180° out of phase.

k
m —A\\NN— ™

-
—_

Now let us take a look a what happens a lower frequencies, and visudize the
date of the system while gradudly increasing the frequency.

Stage |: Rigid Body; excitation frequency closeto O

L A VAVAV e

— —

At low frequencies the two bodies move in phase with each other & though they
were rigidly fixed. This is cdled the rigid body mode (% =X,). Referring to

equations Error! Reference sour ce not found., we conclude the fallowing
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)(1:)(2:)(

7.5
F, =(m +m,) (73

Sage I1: Resonance; excitation frequency close to pole frequency

Between the initid stage (Stage |) when the two masses move in phase, and the
resonance stage (Stage 11) when the masses move out of phase, there has to be an
intermediate dage where a trandtion from synchronism to asynchronism occurs.
One d the two masses that are moving in phase has to come to a complete stop
and then stat moving in the opposite phase. This stage corresponds to a zero
occurs a the zero frequency. As explained in the previous section, if there is a

zero stage, the zero shdll be experienced by mass-1 and not mass-2.

m — AN ™

—_—
Very Low Frequency
LN AVAVAVn I
| —
Zero Frequency
L e AVAVA Vo L
D — —_—
Pole Frequency

Figure 7.4 System frequency response when excitation forceisapplied on

mass-1
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This observation is verified by the transfer function between x, and x,

X% __ Kk
x, ms +k

and it becomes very clear from the Bode Plot presented in the following figure

Bode Diagrams
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Figure 7.5 Bodeplot for x,/ x; transfer function

Thus, zero frequency is the frequency at which the masses lose synchronism and fal out
of phase. This leads to a very dgnificant concluson: For a purdy mechanicd system, a
resonance frequency is aways preceded by a zero frequency. For a resonance to occur,
the two masses have to be out of phase, and this happens only a the zero frequency.
Hence, since the zero sets the stage for the resonance, it has to occur before the pole. In
other words, the zero frequency is dways less than the pole frequency. Wha we have
concluded by physicd ressoning is exactly the same as wha was predicted by
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mathematical derivation in expressons (7.2)-(7.4). A Smilar discusson on poles and
zerosis provided by Welch [4].

7.2.3 Closed-loop characteristics: Stability Analysis

In the previous sub-section, we discussed the opentloop characterigtics of the two-mass
dngle-spring system. In this section we shdl try to concentrate on the closed-loop
characteridics of the same sysem. We shdl invedigate the dability of the closed loop
system by looking at the root-locus and frequency plots of the open loop system. Once
agan, let us rewrite the two rdevant trandfer functions for the system

2,2
B> a Colocated Case

l:in SZ(SZ + pl )

% :LZ Noncolocated Case
l:in SZ(SZ + pl )

z<p (snown earlier)

x -1 Rigid Body Case
Fn S

where z; isthe zero and p; isthe pole, as given by expressons (7.2)-(7.4).

Each of these cases is sudied individudly and the compensator designs that make the
respective systems stable in close-loop are presented. We aso consider the case of arigid
body that has no flexible dements and compare it with the above two cases in terms of
closed loop sability.

Rigid Body Case: Fi ==

Without any compensator the root-locus and frequency plots for the sysem ae as
follows,
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Fig. 7.6(a) Root-locusfor therigid body case(ysz)
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Fig. 7.6(b) Bode plotsfor therigid body case(ysz)
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From the root locus it is clear that the system is margindly dable for any vdue of gan,
snce the close-loop poles dways lie on the imaginary axis. This is confirmed from the
Bode plots, which indicate that for any gain, the Phase Margin is dways zero. Hence the
sysem is a the margin of dability. If we add a lead compensdtion to the plant, then the
above two plots get modified asfollows:
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Fig. 7.7(a) Root-locusfor therigid body case with lead compensation (

)

+
SZ
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Gm=-319.09 dB (at 0 rad/sec), Pm=38.668 deg. (at 1.6005 rad/sec)
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Fig. 7.7(b) Bode plot for therigid body case with lead compensation (

)

From these new plots it is clear that the lead compensator (red zero in the numerator)
dabilizes the closed loop system by adding phase to the openloop system. In the root-
locus plots, the compensator zero has pulled the root-loci branches to the left sde of the
s-plane, thus making the closed loop sysem gable for any gain. On the other hand
looking a the Bode plot we see that the system has infinite Gain Margin, since the phase
asymptoticaly approaches —180°. Also for any gain and therefore for any cross-over
frequency, there is a podtive Phase Margin. When the gain is very low, the cross-over
frequency is dso low which leads to a very smdl Phase Margin. This corresponds to the
fact that now the closed-loop poles on the root-locus plot are very close to the imaginary
axis. For high gains, the Bode plots predict a maximum phase margin of 90°. On the root-
locus this corresponds to the fact that now the close-loop poles lie on the negative red
axis, thus meking the sysem very dable. In any case, we notice that it is very easy to
dabilize the rigid body mode transfer function. Thus if there are no flexible dements in a
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system, then close-loop ingtabilities are easily avoided. Now let us see how the presence
of agpring in the system changes this Situation.

Colocated Case:

For the colocated case we observe that other than the two poles a the origin, the system
aso has a pole-zero pair. As was observed earlier, the zero frequency is dways less than
the pole frequency. In the case of multiple flexible dements, an important feature of the
colocated trandfer function is the pole-zero dternation as one moves dong the imaginary
axis. This property will be of immense use in the desgn of a compensator as shdl be seen
shortly.
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Fig. 7.8(a) Root-locus plot for the uncompensated colocated system (m
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Bode Diagrams
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Note that a smdl amount of damping has been added (athough not indicated in the
trander function) while obtaining these plots to make them more redigtic. From the root-
locus of the uncompensated colocated system, it is evident that the sysem will only be
margindly stable for any vaue of gan. Smilaly, the Bode plots show that for any opent
loop gain the Phase Margin will be very smdl, nevertheless pogtive. Next, we study the
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effect of alead compensator on this system.
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Fig 7.9(a) Root-locus plot for the compensated colocated system: (s+ 2)-2-(;2-1--25
S Py

Here the root-locus indicates that the system will be unconditiondly sable for dl gains.
For very low and very high gains the closed-loop poles are quite close to the imaginary
axis. These observations are confirmed from the Bode plots as well. For any vaue of gain
the sygdem has a podtive gan magin. For a low openloop gan, resulting in a low
crossover frequency, the phase margin (athough postive) is very close to zero. Once
agan, for the colocated case we see that it is fairly easy to dabilize the closed loop
system by means of a smple lead ontroller. It is important to mention here that this has
been possible only due to the fact that the zero occurs before the pole, which adds phase
to the system a the right frequency. Had this not been the case, close-loop ingtability

would have exised.
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Fig. 7.9(b) Root-locus plot for the compensated colocated system: (s+ 2)-2-(;2-1--25
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Noncolocated Case:

In the noncolocated case, a digtinct feature is that not al poles have a zero that precedes
them. In fact for the two-mass sngle-spring case, the noncolocated transfer function has
no zeros a al. The root-locus and bode plots for this case are presented in the following
figures. Clearly, from the root-locus the uncompensated system is ungable for any gain,
high or smdl. At the same time, Bode plots indicate that for any openloop gain, the
Phase margin will be negative. For extremdy smdl gains the phase margin gpproaches
zero but from the negative side. Hence the system is aways ungtable.
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As a next gep, let us see what happens to the stability of this noncolocated system in the
presence of the same lead compensator that worked well for the previous two cases of
rigid body system and colocated system.
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Fig. 7.11(a) Root-locusplot for thelead compensated noncolocated system

((s+2) )

(s + p,")
The root-locus reveds that the lead compensation is of little use in ensuring close-loop
dability. Except for very andl gans (that too only when damping is present in the
system), a couple of close-loop poles dways lie in the right hand sde of the s-plane.
Looking a the corresponding Bode plots, we can make smilar conclusons about the
close-loop dability. The gain margin is completely dependent upon damping of the poles.
If there were no damping a dl, then the gan margin would be less than unity for any
vaue of openloop gain. In case damping is present, we can reduce the open-loop gain
enough so that there is some gain margin. But this stability comes at the cost of system
gpeed. Reducing the opentloop gain reduces the cross-over frequency which in tumn limits
the closed loop bandwidth. Thus makes the system response very dow. While this might
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be too dow to meet the sdiling-time specification, a low cross-over frequency is

unavoidable if we expect to keep the gain at the resonance frequency below unity.

Bode Diagrams

20

22 e h\

-40

-60

Phase (deg); Magnitude (dB)

-150 \

-200 \
-250
- ug

-300

10

Frequency (rad/sec)
Fig. 7.11(b) Bode plotsfor the lead compensated noncolocated system

((s+2) )

So right away we redlize that achieving closed loop stability for a noncolocated system is
not a dl as ample as it is for a rigid body sysem or a colocated system. We have to
explore other compensators for stabilizing the system. Essentidly we need to add more
phase to the sysem. Learning from the colocated system transfer function, one option is
to place external compensator zeros next to poles in the noncolocated system and make it
behave like a colocated sysem. This is cdled a notch-filter compensator [4,10]. The
compensator zero frequency has to be lower than the plant resonance frequency. Let us
se the effect of a notch filter compensator on the dability of the sysem. The
(s°+7)

compensator isnow given by: (s+2) (5525°

where z is compensator zero such that z< p,
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The overdl open-loop transfer function for the compensated system now becomes

(s> +7°) 1

(s+2) > 5
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Fig. 7.12(a) Root-locusplot for the notch compensated noncolocated system
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Bode Diagrams
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Fig. 7.12(b) Bode plotsfor the notch compensated noncolocated system

The two red poles in the compensator are necessary because the compensator zeros add
gan to the sysem a high frequencies thus making it susceptible to noise. The two poles
are placed far enough on the red axis so that ther effect on sability is minimd, but a the
same time they ensure noise rgection a high frequencies. The zeros essertialy add a 180
degrees phase a frequencies close to the system resonance frequency thus making it
close-loop sable. The problem with the resonance pole is that it leads to a phase lag of
180 degrees, which becomes detrimental for the close-loop stability.

From the above root-locus plots we conclude that the system is now sable except for
extremely high gains. The bode-plots indicate a pogtive phase margin for most vaues of
open-loop gan. For very high gans though, the phase margin becomes negetive. The
notch-filter compensator for noncolocated systems is robust as long as the compensator
zero frequency is less than the plant resonance frequency. In case some parameter
vaiation causes the compensator zero to fdl after the pole, a phenomenon caled zero-

pole flipping, the system dability is jeopardized. Such an effect is extremdy detrimenta
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for the sygem as is shown in the following figures. Pole-zero flipping may aso occur
with the naturd zeros in a nonrcolocated system. This issue is discussed in the following
sections.
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Fig. 7.13(a) Root-locusfor the notch compensated noncolocated system in the

presence of pole-zero flipping
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Bode Diagrams
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Fig. 7.13(b) Bode plotsfor the notch compensated noncolocated system in the

presence of pole-zero flipping

As is clear from the above plots, the compensator zero does add phase to the system, but
a such a frequency that the phase margins are not improved at dl. In fact, when a pole-
zero flipping occurs, the syssem becomes unconditiondly unstable. In case the ystem has
some damping, the closed-loop sysem may be dable for very low or very high gains.
This is evident from the Bode plots which show that a podtive phase margin exids for
very low and high gains

In such a dtuation the compensator is no longer bust. Hence care should be taken while
implementing a notch+filter controller. In fact, for a robust compensator design, many
authors recommend the use of an optima date-space controller [6,10]. A robust Linear
Quadratic Guassian (LQG) compensator design is presented by Cannon [10].
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7.2.4 Multiple Mass Systems

We now extend the ideas developed in Sections 7.2.1-7.2.3 to multiple mass systems. For
amultiple-mass system with multiple flexible dements, like the one shown in Fig. 7.14

Xy X2 Xn1 Xn
— - — -
kl kn—l
m FVWH m | === m, VW my

Fig. 7.14 Multiple-mass multiple-spring system

the sysem has as many resonance modes as the number of flexible ements (as long as
there are no closed chains in the system). Each of these resonance modes corresponds to a

complex-conjugate pole pair.

From another perspective, the syssem has as many modes of motion as the degrees of
freedom of the sysem. Thus if the sysem has four masses then there will be four
complex-conjugate pole pairs (including the par a origin which corresponds to the rigid
body mode). Excluding the rigid body mode, the system therefore has three resonance
modes. These resonance modes are characteristics of the system and hence are
experienced by each massin the system.

If an excitation force is gpplied on one of the masses in the above system, then we can
obtain trandfer functions between the various sysem coordinaes (X;,X2...%,) and the
input force. One of these will be a colocated case, wherein the actuator and sensor are
mounted on the same mass. All other transfer functions are the noncolocated cases.
Neverthdess, the poles of each of these trandfer functions are the same, since poles are
characteristic of the entire system. As was discussed in Section 7.2.1, to set the stage for

each pole (i.e resonance) a zero has to precede the resonance. Now this zero is
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experienced only by some of the masses depending upon the actuator location, giving rise
to colocated and noncol ocated cases.

For the colocated case, the mass on which the actuator force is applied experiences dl the
zeros that precede the poles and hence the number of zeros in the colocated transfer
function is equa to the number of non-zero poles of the system. It is important to note
that for the colocated case, since each pole is preceded by a zero, there are dternating
poles and zeros dong the imaginary axis in the root-locus diagram. As seen earlier, this
makes the control desgn problem very amendble. Even a smple lead compensator

provides arobust control action.

On the other for the non-colocated cases, the number of zeros experienced by any mass
fdls short of the maximum possble number, by the number of coordinates (or masses)
that separate the sensor and the actuator. Also in this case parameter variation can lead to
the undesrable phenomena of pole-zero flipping. As an example consder the following

four-mass system.

Fig. 7.15 Four-massthree-spring system

The sysem has three resonance modes and hence 3 nonzero complex-conjugate pole
pars. It dso has one rigid body mode which results in a pole par a the origin. While
mass-2 experiences three zeros since the actuator force acts on it, the other masses
experience fewer zeros. The xi/Fin and xo/Fi, transfer functions have two zeros esch,
while the x4/Fi, transfer function has only one. The three resonance modes of the system
can occur in any order depending upon the mass and spring diffness values. The single

zero in the x/Fi, transfer function corresponds to a zero before one of the three resonance
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modes. Since the order of the resonance modes can vary depending upon the system
parameters, the single zero can occur before the first resonance, or between the first and
second resonance, or between the second and third resonance. This phenomenon is
known as pole-zero flipping and as was demondrated earlier can jeopardize the close-
loop sysem dability since it dradticaly changes the root-locus and frequency response
plots. Therefore, during the compensator design for non-colocated systems it is necessary
to be aware of this problem and make sure that the compensator is robust enough to
handle this sudden change in phase and gain plots.

Let us see the close-loop behavior of this noncolocated transfer function in the presence
of a lead compensator (which of course is not sufficient to Stabilize the sysem). In the
firs case the zero lies between the first two resonance poles while in the second case it

lies between the last two poles.

i
Bk

Fig. 7.16(a) Pole-zero flipping in a noncolocated system
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Fig. 7.16(b) Pole-zero flipping in a noncolocated system
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7.3 Tachometer-M otor-L oad System

Now that we have understood the fundamentals of colocated and noncolocated controls
with reference to multiple-mass multiple-gpring systems, we are in a postion to focus our

attention on the system in consideration, the tachometer-load-inertia system.

Shaftl Shaft2

Shaft3
P A 1 X X
—— Flexible L w w
reen Coupling  |nertia1 Inertia2
Motor
qm
/“ Tm ql qz

@@@

Fig. 7.17 Physical System and Physical M odel

Since the actuator torque is applied at the motor rotor, and the speed is sensed at the
tachometer, the transfer function is noncolocated. Referring to Section 6 and equations
(6.1)-(6.2), we have the following transfer function for this system,

G __[num] (7.6)
T, s den] '
where,
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[num] =K [‘Jl J s+ (‘]1 Ko+, K+, Kz) s+ Ky Kz]
[den]=s°[J, J.J,J,]+
K, 3 J +K 3 J I, +K, 3+
KJ J,J,+KJ J J,+K, K J J,]+
K K, 3, +KK,J,J +KKJ,J
KK,J,J +KK,J J+K K JJ,
KKz‘Jt J, +K, KZ‘Jt JHKK g J+K K2J1J2]
+ [K KK, (I +3,+3,+3,)]

(7.7)

Plugging in the parameter vaues liged in Table 6.1, we obtain the following poles and

zeros for the system,
Poles Zeros
0
0
-25 + 2615i -25+ 2017i
-25 - 2615 -25-2017i
-10 + 5406i -10 + 5297i
-10 - 5406i -10 - 5297i
-25 + 14019i
-25 - 14019

The open-loop gain is 5.7. Since the system is noncolocated, only the first two resonance
poles are preceded by zeros, the last one is not. If the tachometer had no dynamics then,
expresson (7.6) would represent the overdl sysem trander function and we would
proceed to find a suitable controller that stabilizes the system in close-loop.

It should be mentioned here tha in the modeling we have not accounted for any sort of
damping for reasons stated earlier (Section 3). But at this stage we do introduce some
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empiricd vaues of damping a each of these poles and zeros to avoid sngulaities in the
root-locus and bode plots. These damping vadues are edimated by matching the
experimenta frequency plots with the andyticaly predicted ones.

The actua root-locus for the open-loop system is asfollows.
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Imag Axis
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-500 -400 -300 -200 -100 0 100 200 300 400 500
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Fig. 7.17(a) %—: Root-locusfor the tachometer-motor-load mechanical system

m

For ease of visudization, the following exaggerated (yet quditatively correct) plot (Fig
7.18(a)) of the same system. This provides a better picture of the pole and zero locations.
Clealy the system is margindly sable in close-loop. In Fig. 7.18(b), we investigate how
and to what extent can alead controller help stabilize this system.
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Fig. 7.18 Root locusfor (a) Uncompensated system (b) L ead compensated system
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Fig 7.19 Bode Plotsfor the system with lead compensation

As expected, since the system is noncolocated, a lead compensator does not make sure
that al the root-loci branches are on the left-hand side of the splane. Depending on the
lead zero location, the root-locus can teke various forms but there are two braches
emanatiing from the lagt poles tha dways sill into the right-hand side. Neverthdess, it is
interesting to note that since the pole and-zero frequencies are so high and because there
is some damping present a the poles, we can get a reasonable closed-loop bandwidth
without destabilizing the system. Since the poles lie so far out on the frequency scde, the
open-loop gain can be increased gill maintaining acceptable phase and gain margins. In
the particular case illustrated in the bode plots above, a crossover frequency of 100
rad/sec is achieved using the following lead controller,

s+15
s+1500

This may or may not meet the desired rise time specifications. To achieve an even higher
bandwidth without causing the system to go ungable, it may be advisable to use a rotch
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compensator or a state-space controller (as was discussed in Section 7.2.3). It is dso
noteworthy that the settling time is dependent on the first pole-zero par location, since
the corresponding close-loop pole will lie close to this pole-zero pair.

But, we have to step back and redlize that the tachometer does not act as a pure gain; it
adds sensor dynamics to the sysem. The fact that the tachometer reshuffles the origind
zeros of the sysem and adds further zeros to the overdl transfer function changes the
scenario completdy. Referring back to Section 6, the overdl transfer function with the
tachometer dynamicsincluded is given by

Vtach - Karrp [KmSZ (den) - Kr S (den) + Kt Ktach (num)]

v, s (den)

(7.8)

where (hum) and (den) are the same as defined in expression(7.7)

Referring to Section 5 of this thess, we know that the tachometer dynamics causes the
system to have as many zeros as are the number of poles (including the pair a the origin).
If there are four pairs of complex conjugate poles (and if Ky, is podtive, which it is for
this particular set-up) then there will be 4 complex-conjugate zeros in the overdl system
trander function. Since the sysem is no longer a purdy mechanicd but is now
electromechanicd in nature, the dternating sequence of poles and zeros on the imaginary
axis is not assured. In fact we do observe the previoudy discussed phenomenon of pole-
zero flipping in this case. Furthermore, some of these new zeros lie on the right-hand side
of the splane making the sysem non-minmum phase and thus making the control
sysem design much more difficult. Now the zeros no longer add phase to the system,

they rather reduce phase from the system, which is a very unhedlthy development.

Thus we notice that the tachometer dynamics complicates the matters to quite an extent.
We will see that while it was redively easy to get an acceptable bandwidth had there
been no tachometer dynamics, in a rea world case, the presence of tachometer dynamics
svedy limits the controller cgpability. The following block diagram presents a
schematic of the overall opentloop system.
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Torque
' Motor Constant (Kt)

cyrrent (Im)
Vin 1 i '—V|>—>Motor Torque Tach Speed

Input Voltage v/ qtage to current Motor Model
amplifier

Tach-motor-load
Mechanica System

——|Tach speed

Tachvoltage T—— | Vtach
»Motor Current

i Tachometer

1 Output Voltage
1
1
1
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Fig 7.20 Block-diagram based representation of the openloop tachometer-motor-
load mechanical and electrical system

All the blocks ingde the dotted square can be combined into one tachometer-motor-load
system that includes both the mechanica as well as dectromagnetic mode of the entire
system.

Motor
current (Im)

Vin ' Motor Current Tach Voltage ~»| Vtach

Input Voltage Volt Tachometer
age to current
amplifier Output Voltage

Tach-Motor-Load
Electromechanical System

G(9)H(s)

Fig. 7.21 The tachometer-motor-load electromechanical system
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The tachometer autput does not represent the actua tachometer speed since the signa has
been adulterated due to tachometer dynamics. Therefore the tachometer output gives us a
‘measured’” speed, which is different from the actual speed. When the system is operated
in dosed loop, it can be described by the following block diagram,

—» w_actua
+ Vin
0_desired —b@—b G —pl G M Us || q actud
- Mechanica
Compensator System
q_measured 1/(Ktach*s) HS |&¢—
Tachometer

Vtach

Fig. 7.22 Close-loop block diagram of the tachometer-motor-load electr omechanical

system

G(9)H(s) isthe overdl open-loop system function, and is equa to Viach/Vin

The close-loop trandfer function is then,

(S)o
q_actual _ G.(9) & s
q_desired 14G,(9 o ae{;(s)H(s)o
e KtachS ﬂ
where,
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G(9H(S) _ V,

ach —

Karp [KS* (den) - K s (den) + K, K

tach

(num)]

s sV,

s (den)

Plugging the parameter vaues liged in Table 6.1, this opentloop trandfer function yields

the following openloop poles and zeros. The open-loop gain is 58.

Poles Zeros
0 118.5 + 1060i
0 118.5 — 1060i
-25 + 2615i 31.8 + 2814
-25 - 2615 31.8 - 2814i
-10 + 5406i 2 + 5419
-10 - 5406i 2 - 5419
-25 + 14019i -2.3+ 13934
-25 - 14019i -2.3- 13934

Figures 23(a) and 23(b) provide the root-locus and Bode plots respectivey for the

uncompensated

tachometer modd incorporated.
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Fig. 7.23 (a) Root-locus plot (b) Bode plotsfor the uncompensated system
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Because of the openloop zeros on the right hand sde of the plane the uncompensated
sysem is dways ungable in close-loop for however low gains. From the bode plots it is
evident that the phase margin approaches zero for low gans but is never podtive. The
fact that there is pole-zero flipping doesn't have too much of an influence since the pole
and zero are very closgly placed.

Next we investigate the influence of alead controller on the stability of the system.
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Fig. 7.24(a) Root-locus plot for the lead compensated tachometer-motor-load
electromechanical system
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Fig. 7.24(b) Bode plotsfor the lead compensated tachometer-motor-load
electromechanical system

These plots reved some interesting information. The root-locus plots tells us that the
system is close-loop sable only up till a certain vaue of gain, beyond which the root loci
branches soill over into the right-hand Sde of the s-plane. This is confirmed from the
Bode plots. The crossover frequency can be raised only to a certain extent, by increasing
the gain, beyond which the phase margin becomes negative. Since this is a non-minimum
phase system, it is phase-deficient and hence the smple lead compensator is only of
limited help. Neverthdess, a bandwidth of agpproximately 200rad/sec is redizable as
shown in the above case, using the following lead compensator,

0 S+6
s+185

Once agan, the sdtling time is limited by the location of the closest pole-zero pair, as
was explained earlier. One influence of the tachometer on the opentloop system is that it
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brings the amdlest zero closer to the origin. Consequently, the resulting close-loop pole
is closer to the origin, thereby increesng the stling time margindly. Overdl the
tachometer dynamics has a deteriorating effect on the close-loop performance of the
tachometer-motor-load system. To achieve better time-response characteridtics, it is
essentid to look into other possible controller designs. Clearly a notch-filter is of no use
in this case. The possihility of using a state-space controller can be explored.
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8. CONCLUDING REMARKSAND FUTURE WORK

The conventiond DC tachometer model was found to be inadequate for predicting the
high-frequency responses, in cases when the tachometer is integrated with a DC motor.
This led to the invedtigation of a more accurate tachometer model. Based on fundamental
principles of dectromagnetism, a new tachometer modd was derived that includes the
effects of mutud inductance between motor and tachometer windings, and the loading of
the tachometer. In the high frequency domain, the tachometer can no longer be treated as
a smple gain; it introduces some additional zeros in the feedback path. This leads to

interesting consequences that are described in thisthess.

It is shown that, if high-speed servo-control is desired, the tachometer dynamics can play
a ggnificant role in the control system design. Since the tachometer-motor-load system is
a multiple inertia sysem with multiple flexible dements, the concepts of colocated and
noncolocated controls are revisted. The physica interpretation of poles and zeros in
colocated and noncolocated transfer functions are sought using a smple sysem. These
concepts are then extended to the case at hand. Once the mechanica system has been
understood, the influence of tachometer dynamics on the overal system is discussed. The
tachometer dynamics makes the sysem non-minimum phase, which makes the control-
sysdem desgn more complicated. It is found that the tachometer dynamics limits the
performance of the close-loop sysem when lead controller is used. The bandwidth of the
ovedl sysem cannot be increased beyond a certan limit without risking the system
gability.

For future work, it is a very good exercise to desgn a robust state-space controller for
this sysem that may dlow for better a time-domain peformance. Also it would be very
indructive to build an experimentd multiple-mass and multiple-spring system (preferably
a four-mass three-goring system). This would be of much hdp in devedoping a physica
understanding of poles and zeros of such a system. Without an actua experimental test-
bed, it is difficult to visudize the various resonance modes for such a sysem, dnce a
resonance mode in genera involves resonance in more than one spring.
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With reference to new tachometer model, some observations that are not modeled are
aso presented. A dight droop observed in the experimentd phase plot may be due to
dead time effect towards the higher frequency range. This effect is not included in the
modd.

Also, we have not accounted for any dynamics associated with the drive circuitry
including sarvo amplifier. We developed the sysem mode assuming that the drive
circuitry has infinite bandwidth. A comparison of the predictions of this modd with the
experimenta results showed little discrepancy. Based on this, we concluded that for the
frequency range over which we are tesing the system, the assumption regarding the
driver dynamics is acceptable. The dight droop in the phase plot, mentioned earlier, may
be due to asmal delay time associated with the drive circuit.

During the derivaion of sysem trander functions we have neglected mechanica
damping. This is judified by the argument tha mechanicad damping does not affect the

existence of system poles and zeros; it only reduces their intengity.

The purpose of this research was to point out an important eectromagnetic phenomenon,
which shouldn't be neglected without due consderdion. It can gSgnificantly affect the
sysem performance. The tachometer dynamics is certainly not negligible because the
firg tachometer-induced zero occurs much before the fird sysem pole. But, the
tachometer dynamics identified in this thess is extremdy sendtive because Ky, and K,
can vay from case to case and this change can dgnificantly dter the high-frequency
System dynamics.

84



REFERENCES

1.

0.

Fitzgerdd, A.E. and Kingdey, C., 1961, Electric Machinery: The Dynamics and
Statics of Electromechanical Energy Conversion, McGraw-Hill Book Company.

Sen, P.C., 1989, Principles of Electric Machines and Power Electronics, John
Wiley & Sons.

McLean, D., 1978, “Mathematicdl Models of Electricd Machines,” Measurement
and Control, Val. 11, June, pp. 231-236.

Wedch J., RH., “Mechanicdl Resonance in a Closed Loop Servo System”,
Tutoria for Motion Control Expo.

Ogata, K., 1998, Modern Control Engineering, Prentice-Hal

Cannon, R.H. J., and Rosenthd, D.E., 1984, “Experiments in Control of Flexible
Structures with Noncolocated Sensors and Actuators” Journal of Guidance,
Voal.7, No.5, Oct., pp. 546-553.

Miu, D.K., 1991, “Physcd Interpretation of Transfer Functions Zeros for Smple
Control Sysems With Mechanicad Hexibilities” ASME Journal of Dynamics
Systems, Measurement and Control, Vol.113, Sept., pp. 419-424.

Spector, V., and Fashner, H., 1990, “Modding and Desgn Implications of
Noncolocated Control in Fexible Systems” ASME Journal of Dynamics Systems,
Measurement and Control, Vol.112, June, pp. 186-163.

Friedland, B., 1996, Advanced Control System Design, Prentice-Hdl

10. Franklin, G.F. and Powdl, J.D., 1994, Feedback Control of Dynamic Systems

Addison-Wedey Publishing Company

85



	thesis_part1
	thesis_part2

