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A Generalized Constraint Model
for Two-Dimensional Beam
Flexures: Nonlinear Strain Energy
Formulation
The beam constraint model (BCM), presented previously, captures pertinent nonlineari-
ties to predict the constraint characteristics of a generalized beam flexure in terms of its
stiffness and error motions. In this paper, a nonlinear strain energy formulation for the
beam flexure, consistent with the transverse-direction load-displacement and axial-
direction geometric constraint relations in the BCM, is presented. An explicit strain
energy expression, in terms of beam end displacements, that accommodates generalized
loading conditions, boundary conditions, initial curvature, and beam shape, is derived.
Using energy-based arguments, new insight into the BCM is elucidated by fundamental
relations among its stiffness, constraint, and energy coefficients. The presence of axial
load in the geometric constraint and strain energy expressions—a unique attribute of
distributed compliance flexures that leads to the elastokinematic effect—is highlighted.
Using the principle of virtual work, this strain energy expression for a generalized beam
is employed in determining the load-displacement relations, and therefore constraint
characteristics, of a flexure mechanism comprising multiple beams. The benefit of this
approach is evident in its mathematical efficiency and succinctness, which is to be ex-
pected with the use of energy methods. All analytical results are validated to a high
degree of accuracy via nonlinear finite element analysis. �DOI: 10.1115/1.4002006�

Keywords: nonlinear strain energy, beam flexure, beam constraint model, beam charac-
teristic coefficients, elastokinematic effect, nonlinear beam mechanics, flexure
mechanisms
Introduction and Background
The beam constraint model �BCM� is a closed-form, paramet-

ic, and generalized model that captures the constraint character-
stics of a beam flexure in terms of its stiffness and error motions.

hile the background and motivation for this model are presented
n a preceding paper �1�, a brief review is provided in the follow-
ng paragraphs.

Figure 1 illustrates a simple beam �initially straight, uniform
ross section� of length L, thickness T, and depth H, interconnect-
ng rigid bodies �1� and �2�. The beam is subject to generalized
nd loads FXL, FYL, and MZL, which result in end displacements
XL, UYL, and �ZL with respect to the coordinate frame X-Y-Z.
ransverse-direction displacements UYL and �ZL can be recog-
ized to be the degrees of freedom �DoF� of this flexure unit,
hile the axial-direction displacement UXL represents a degree of

onstraint �DoC�.
The BCM, expressed in terms of the transverse-direction end

oad-displacement relation and the axial-direction geometric con-
traint relation for the above beam flexure, has been derived pre-
iously �1,2�. It captures the nonlinearities associated with apply-
ng load equilibrium in the deformed state but neglects those
ssociated with beam curvature. It has been shown that the former
re crucial in accurately capturing the constraint characteristics of
beam flexure in terms of its stiffness and error motions over a

ractical range of loads and displacements. The BCM has also
een extended to include beams with a wide range of end loads,

1Corresponding author.
Contributed by the Mechanisms and Robotics Committee of ASME for publica-

ion in the JOURNAL OF MECHANICAL DESIGN. Manuscript received October 16, 2009;
nal manuscript received May 16, 2010; published online August 18, 2010. Assoc.

ditor: Ashitava Ghosal.

ournal of Mechanical Design Copyright © 20

ded 19 Aug 2010 to 141.212.136.216. Redistribution subject to ASM
initial and boundary conditions, and beam shapes. Furthermore, it
has been employed to accurately determine the load-displacement
relations, and therefore constraint characteristics, of more com-
plex flexure mechanisms that comprise beam flexures �3,4�. How-
ever, the direct application of the BCM for this purpose proves to
be mathematically tedious since all the internal loads and dis-
placements associated with each beam have to be taken into ac-
count.

This limitation provides the motivation for the energy-based
formulation of the BCM presented in this paper. In particular, the
principle of virtual work �PVW� is employed because it eliminates
the need to consider internal loads and load equilibrium for each
constituent beam in a flexure mechanism �5�. The first require-
ment for applying PVW on an elastic system is the determination
of the strain energy corresponding to an arbitrary deformed state.
This is nontrivial because we want to capture a certain class of
nonlinearities in the BCM while neglecting others. Furthermore,
the assumptions in the strain energy formulation have to be con-
sistent with those made in the direct determination of the trans-
verse and axial relations in the BCM. This is addressed in Sec. 2
of this paper, where nonlinear strain and strain energy expressions
are developed.

In Sec. 3, we derive expressions for the transverse-direction
load-displacement relation, axial-direction geometric constraint
relation, and total strain energy explicitly in terms of the end loads
and end displacements for a variable cross-section beam. Upon
simplification �series expansion and truncation�, these three ex-
pressions reveal beam characteristic coefficients, which may be
classified as stiffness, constraint, and energy coefficients, respec-
tively.

In Sec. 4, we make use of two separate energy-based arguments

to establish fundamental relations between the beam characteristic
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oefficients. The first is based on the PVW, and the second is
ased on the conservation of energy. The application of PVW at
his stage also provides a consistent truncation scheme for the
nfinite series in the transverse load-displacement, axial geometric
onstraint, and strain energy expressions, as shown in Sec. 5.
ince both the axial constraint and strain energy expressions ex-
ibit a dependence on the axial load, the two expressions are
ombined to yield a strain energy expression free of any axial load
erms. The resulting expression represents the energy formulation
f the BCM. This strain energy expression for a single beam is
ow in a form that may be employed in conducting the load-
isplacement analysis of a multibeam flexure mechanism using
nergy methods. This is covered in Sec. 6, where the effectiveness
nd utility of the BCM energy formulation is highlighted using the
VW. In Sec. 7, the BCM energy formulation is further general-

zed to incorporate an initially slanted and/or curved beam. The
aper concludes in Sec. 8 with a summary of contributions.

Nonlinear Strain and Strain Energy Formulation for
he Beam Flexure

Figure 2 illustrates the neutral axis of a simple beam �initially
traight and uniform thickness� in its undeformed �dashed line�
nd deformed �solid line� geometries, with respect to the indicated
-Y-Z coordinate axes.
UX�X� and UY�X� represent the X and Y direction displacements

f any point Ai on the beam’s neutral axis. An element AiBi along
he undeformed beam neutral axis assumes a new position and
rientation AfBf after deformation. Therefore, the axial strain
�xx� at location X along the neutral axis can be stated as:

�xx�X,0� =
AfBf − AiBi

AiBi
= ��1 + UX��2 + UY�

2�1/2 − 1

= UX��1 −
7

16
UX�

2 −
1

2
UY�

2 + ¯�
+

UY�
2

2
�1 −

5

16
UX�

2 −
1

4
UY�

2 + ¯�
� UX� +

UY�
2

2
�1�

It is physically obvious that the axial displacement UX� is much
maller than the transverse displacement UY� . For UY� less than 0.1,
econd and higher power terms in UX� and UY� may be dropped
ith respect to 1 in the infinite series expansions above, with less

han 1% error. Note, however, that in the final form of the strain

UXL

FYL
MZL

�ZL
X

Y

Z

L

UYL
FXL

1

2

Fig. 1 Simple beam flexure

X

Y

Z

X dX

Ai Bi

Af
Bf

Cf

Df� (X)
Fig. 2 Undeformed and deformed beam geometries
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expression, the second-power UY�
2 term has been retained with

respect to the first-power UX� —a key aspect of the nonlinear strain
formulation. This second-power UY�

2 term appears because the de-
formed geometry �translation and rotation� of the beam neutral
axis has been considered in the strain formulation; this term is
comparable to the first-power UX� even for small displacements.
This expression for strain represents the true stretch of an element
along the neutral axis and inherently captures the kinematics as-
sociated with the geometric constraint in the beam, i.e., beam arc
length conservation.

Next, the axial strain of an element at distance Y from the
neutral axis, along the Y direction, may be determined by calcu-
lating the additional length change of the element CfDf with re-
spect to element AfBf �Fig. 2�. Assuming that plane sections re-
main plane and normal to the neutral axis after deformation
�Bernoulli’s assumptions�, Eq. �1� may be augmented to show that

�xx�X,Y� � UX� +
UY�

2

2
−

Y

��X�
= UX� +

UY�
2

2
−

UY�

�1 − UY�
2�1/2Y

� UX� +
UY�

2

2
− UY�Y �2�

where ��X� is the curvature of the beam’s neutral axis at a location
that was originally at X before deformation �6�. Consistent with
the previous approximations, the second and higher power terms
in UY� are neglected with respect to 1 in the curvature expression
in the final step above.

For a linear elastic material, the net strain energy in the beam is
given by

V =���
Volume

E

2
�XX

2 dAdX �3�

where E represents the Young’s modulus of the material for an XY
plane-stress condition and the plate modulus for an XY plane-
strain condition. Note that there is no strain energy contribution
from the out-of-plane components in either of these two condi-
tions. Furthermore, because plane sections remain plane and per-
pendicular to the neutral axis after deformation, the in-plane shear
strain �XY is zero, and given the small Y direction thickness of the
beam, �YY is also zero. Substituting Eq. �2� in Eq. �3� yields

�4�
The key difference in this strain energy expression, compared

with a linear formulation, is the presence of the second-power UY�
2

term in the first integral above, which inherently captures the geo-
metric constraint of beam arc length conservation. Expression �4�
is also in agreement with previous nonlinear strain energy formu-
lations �7�.

With the strain energy thus determined and the geometric

boundary conditions known at the beam root �UX�0�=0, UY�0�
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0, and UY��0�=0�, the PVW may be applied to the beam flexure
Fig. 1� to yield the following beam governing equations and
atural boundary conditions:

• governing equations:

EIZZUY
iv − FXLUY� = 0 �5�

UX� +
1

2
UY�

2 =
FXL

EA
�6�

• natural boundary conditions:

− EIZZUY��L� + FXLUY��L� = FYL �7�

EIZZUY��L� − MZL = 0 �8�

Equation �5� provides the recognizable transverse-direction
eam governing equation. This fourth order linear differential
quation in UY is exactly the same as the one obtained in the
irect formulation �1�, which is to be expected because the set of
ssumptions made in both cases are identical. Equation �6� pro-
ides the axial-direction geometric constraint equation for the
eam flexure. This reaffirms that the geometric constraint associ-
ted with the beam arc length is inherently captured in the above
train and strain energy formulations. Equation �6� may be inte-
rated once to yield the following axial-direction relation, which
s the same as the result from the direct formulation �1�:

UXL =
FXLL

EA
−

1

2�
0

L

UY�
2dX = UXL

�e� −
1

2�
0

L

UY�
2dX �9�

The first term above represents the linear elastic stretching of
he beam in the axial direction in response to an axial force FXL

nd is denoted by UXL
�e�. The second term captures the geometric

onstraint associated with beam arc length conservation. Equation
6� also corroborates the fact that its left hand side represents the
rue axial strain in the beam due to stretching, which remains
onstant throughout the beam length since the axial load and,
herefore, stress, given by the right hand side of this equation,
emain constant.

For a subsequent application of the PVW, the strain energy
xpression of Eq. �4� may be further simplified by employing Eq.
6� and invoking the definition of UXL

�e� to yield

V =
EIZZ

2 �
0

L

UY�
2dX +

AE

2
�UXL

�e��2 �10�

This clearly identifies the separate contributions to the nonlin-
ar strain energy from beam bending and beam axial stretching. It
ill be seen later that the first term includes not only the bending
eformation induced by the transverse loads but also that induced
y the axial load.

Having thus established the consistency of the nonlinear strain
nergy expressions �4� and �10� with the previously reported
ransverse-direction beam governing equation, axial geometric
onstraint relation, and associated boundary conditions that led to
he BCM �1�, we now proceed to use these strain energy expres-
ions as the basis for an energy-based BCM formulation.

At this stage, a normalization scheme is introduced to simplify
athematical expressions and their manipulation in the rest of this

aper. All loads, displacements, position coordinates, stiffness, en-
rgy, and work terms are normalized with respect to the beam
eometry and material parameters as follows:

fx1 � FXLL2

EIZZ
, fy1 � FYLL2

EIZZ
, mz1 � MZLL

EIZZ
,

x � X
, ux�x� � UX�X�

, uy�x� � UY�X�
, ux1 � UXL ,
L L L L
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uy1 � UYL

L
, �z1 � �ZL = UY��X�

3 Load-Displacement, Geometric Constraint, and
Strain Energy Expressions in Terms of End Loads and
Displacements

For a simple beam, the beam governing equation �Eq. �5�� and
associated geometric boundary conditions may be solved in closed
form:

uy�x� = c1erx + c2e−rx + c3x + c4 where r2 � fx1

c1 =
r�e−r − 1�uy1 + �e−r + r − 1��z1

r�r�er − e−r� − 2�er + e−r� + 4�
,

�11�

c2 =
r�er − 1�uy1 − �er − r − 1��z1

r�r�er − e−r� − 2�er + e−r� + 4�

c3 = r�c2 − c1�, c4 = − c1 − c2

The intermediary variable r��fx1
1/2� is introduced temporarily for

mathematical convenience. The application of natural boundary
conditions �7� and �8� in the above expression yields the following
transverse-direction end load-displacement relations:

	 fy1

mz1

 = �

r3 sinh r

r sinh r − 2 cosh r + 2
−

r2�cosh r − 1�
r sinh r − 2 cosh r + 2

−
r2�cosh r − 1�

r sinh r − 2 cosh r + 2

r2 cosh r − r sinh r

r sinh r − 2 cosh r + 2
�

�	ux1

�z1

 �12�

In this nonlinear formulation, the stiffness terms are no longer
simply elastic terms as in the purely linear case but are instead
functions of the axial load fx1. These transcendental expressions
may be expanded in fx1 to yield the following infinite series:

	 fy1

mz1

 =  12 − 6

− 6 4
�	ux1

�z1

 + fx1�

6

5
−

1

10

−
1

10

2

15
�	ux1

�z1



+ f x1
2 �−

1

700

1

1400

1

1400
−

11

6300
�	ux1

�z1



+ f x1
3 �

1

63,000
−

1

126,000

−
1

126,000

1

27,000
�	ux1

�z1

 + ¯ �13�

In the BCM, the first matrix in the above series captures the
elastic stiffness and the second matrix captures load stiffening,
which quantifies the change in DoF direction effective stiffness in
the presence of a DoC load �2�. Higher power terms are found to
have negligible contributions ��1%� for fx1 less than �5.0, which
is a practically relevant range in flexure mechanisms.

Next, the solution given by Eq. �11� may be substituted in Eq.
�9� to obtain the axial-direction geometric constraint equation in
terms of end loads and displacements:

ux1 = ux1
�e� + �uy1 �z1 �g11 g12

g21 g22
�	uy1

�z1

 �14�
where
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g11 = −
r2�cosh r + 2��cosh r − 1� − 3r sinh r�cosh r − 1�

2�r sinh r − 2 cosh r + 2�2

g12 = g21 =
r2�cosh r − 1� + r sinh r�cosh r − 1� − 4�cosh r − 1�2

4�r sinh r − 2cosh r + 2�2

�15�

g22 =
r3 − r2 sinh r�cosh r + 2� + 2r�2 cosh r + 1��cosh r − 1� − 2 sinh r�cosh r − 1�

4r�r sinh r − 2 cosh r + 2�2

ux1
�e� =

fx1

k33
and k33 =

12

t2
This axial-direction relation for the DoC end displacement ux1

n terms of DoF end displacements, uy1 and �z1, and DoC end load
x1 is as expected �2�. Since this expression arises from the purely
eometric constraint of the constant beam arc length, the presence
f the axial load fx1 in the constraint terms g is initially surprising.
hile uncommon in mechanics, this does highlight the unique

ttributes of distributed compliance mechanisms and will be
hown to be responsible for the elastokinematic effect in the
CM. The transcendental expressions for the constraint terms
ay be expanded in terms of fx1 to yield the following infinite

eries:

ux1 = ux1
�e� + �uy1 �z1 ��−

3

5

1

20

1

20
−

1

15
�	uy1

�z1



+ fx1�uy1 �z1 ��
1

700
−

1

1400

−
1

1400

11

6300
�	ux1

�z1



+ fx1
2 �uy1 �z1 ��−

1

42,000

1

84,000

1

84,000
−

1

18,000
�	ux1

�z1

 + ¯

�16�

The first term in this series expansion �zeroth power of fx1�
ndicates a component that is explicitly and exclusively dependent
n the transverse end displacements uy1 and �z1 and is indepen-
ent of any loads. Therefore, this term is referred to as the kine-
atic component of the axial displacement and is denoted by ux1

�k�.
he next term, although small compared with the first term, is
omparable to the purely elastic term ux1

�e� and therefore cannot be
gnored. Even though this term arises from the geometric con-
traint of beam arc length conservation, it does have a linear de-
endence on fx1 and therefore contributes to the compliance along
he DoC direction. This term, referred to as the elastokinematic
omponent in the BCM and denoted by ux1

�e−k�, is unusual and a
nique outcome of distributed compliance. The consideration of
he beam in its deformed configuration in formulating the nonlin-
ar strain and strain energy in Sec. 3 ensures that the contribution
f the axial load fx1 to the bending moments at any given beam
ross section is appropriately captured. Because of the beam’s
istributed compliance, this additional bending moment causes a
hange in its deformation, which produces the elastokinematic
isplacement ux1

�e−k� along the DoC direction, even as the DoF

isplacements uy1 and �z1 remain constant.
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Second and higher power fx1 terms in the above expression
have a negligible contribution ��1%� in the load and displace-
ment ranges of interest.

Next, we proceed to determine the strain energy in terms of end
displacements. Note that it would be incorrect to simply employ
the stiffness expression �12� determined above to find the strain
energy. The stiffness given by this expression is the effective stiff-
ness in the sense that it also captures load stiffening, which is a
consequence of the geometry and not deformation, and therefore
does not contribute to the strain energy. The strain energy may be
accurately determined by substituting the beam deformation ex-
pression �11� in Eq. �10�,

v =
1

2
�uy1 �z1 �v11 v12

v21 v22
�	uy1

�z1

 +

1

2
k33�ux1

�e��2

where

v11 =
r3�sinh r − r��cosh r − 1�
�r sinh r − 2 cosh r + 2�2

v12 = v21 = −
1

2

r3�sinh r − r��cosh r − 1�
�r sinh r − 2 cosh r + 2�2 �17�

v22

=
1

2

�r3 sinh r − 2r2 cosh r + 2r sinh r��cosh r − 1� − r3�sinh r − r�
�r sinh r − 2 cosh r + 2�2

The first term above represents energy due to beam bending,
while the second term represents energy due to the axial stretching
of the beam arc length. What is unusual is that the bending strain
energy is not simply dependent on the transverse end displace-
ments uy1 and �z1, but also on the axial load �fx1�r2�. This is
simply a consequence of the fact that even when the transverse
end displacements are held fixed, the axial load can produce ad-
ditional bending moment along the beam shape, which results in
an additional bending deformation of the beam, thus contributing
an additional component of energy. This is the manifestation of
the elastokinematic effect in the strain energy domain. The tran-
scendental terms in Eq. �17� may be expanded in fx1 to yield the

following infinite series:
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v =
1

2
k33�ux1

�e��2 +
1

2
�uy1 �z1 � 12 − 6

− 6 4
�	uy1

�z1



+
1

2
fx1

2 �uy1 �z1 ��
1

700
−

1

1400

−
1

1400

11

6300
�	uy1

�z1



+
1

2
fx1

3 �uy1 �z1 ��−
1

31,500

1

63,000

1

63,000
−

1

13,500
�	uy1

�z1

 + ¯

�18�

For an axial load range of practical interest �fx1 less than �5.0�,
nly the first load term, which is quadratic in fx1, is significant,
nd the higher power terms may be neglected. Moreover, there
ppears to be some similarity between the stiffness and energy
oefficients of the corresponding powers of fx1 in Eqs. �13� and
18�. In fact, the zeroth-power coefficients are the same, showing
hat the biggest portion of the strain energy comes from the elastic
tiffness in the transverse direction. Interestingly, there is no first-
ower term in the energy expression corresponding to the first-
ower term in the stiffness expression, which is associated with
he load-stiffening effect. This agrees with a physical understand-
ng of the system—since the load-stiffening effect is a conse-
uence of geometry and not deformation, it should not contribute
ny strain energy. Subsequent stiffness and energy coefficients of
orresponding powers of fx1 show some similarity but are not
dentical. Furthermore, there also appears to be some similarity
etween the stiffness coefficients of a certain power of fx1 in Eq.
16� and the constraint coefficients associated with one lower
ower of fx1 in Eq. �18�. Thus, the natural question that arises is
hether there is some underlying relationship between these stiff-
ess, constraint, and energy coefficients of the various powers of
x1 in Eqs. �13�, �16�, and �18�, respectively, or if this similarity is
erely a coincidence.
Another question that remains to be answered is where to trun-

ate the infinite series associated with the stiffness, constraint, and
nergy expressions for the purpose of obtaining an accurate yet
ompact beam constraint model. In the explicit formulation, we
ealt with only two relations—the transverse-direction load-
isplacement relation and the axial-direction geometric constraint
elation. Both relations were truncated to keep only the first-power
erm in fx1, and it was noted that this led to errors less than 1%
ver an axial load range of �5 and transverse displacement range
f �0.1 �1,2�. Now, we have a third relation that captures the
train energy of the beam flexure. It is not clear if this third ex-
ression, or even the first two, can be truncated independent of
ach other or if a certain scheme has to be followed so that the
runcated expressions are “consistent” with respect to each other.
he similarity between the coefficients noted earlier seems to in-
icate that there should be a consistent truncation scheme that at
east ensures that the PVW is valid even for the truncated expres-
ions.

However, before taking up the above two questions in Sec. 4,
e first proceed to show that the format of Eqs. �13�, �16�, and

18� accommodates any general beam shape and not just a
niform-thickness beam. The beam deformation, end loading, and
nd displacement representations for the variable cross-section
eam remain the same as in Fig. 1. The modeling assumptions are
lso the same as earlier, except that the beam thickness is now a
unction of X: T�X�=T0	�X�, where T0 is the nominal beam thick-
ess at the beam root and 	�X� represents the beam shape varia-
ion. Thus, the second moment of area becomes IZZ�X�
IZZ0	3�X�. The normalization scheme remains the same as ear-
ier, with the exception that IZZ0 is now used in place of IZZ.
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Following a PVW procedure analogous to the one outlined in Sec.
2, one may derive the following normalized governing equations
and natural boundary conditions for this case:

• governing equations:

�	3�x�uy��x��� − fx1uy��x� = 0 �19�

ux��x� +
1

2
uy�

2�x� = fx1
t0
2

12	�x�
�20�

• natural boundary conditions:

− �	3�1�uy��1��� + fx1uy��1� = fy1 �21�

	3�1�uy��1� − mz1 = 0 �22�

Given the arbitrariness of 	�x�, a closed-form solution to this
ordinary differential equation with variable coefficients �Eq. �19��
is no longer possible. Nevertheless, the equation and boundary
conditions remain linear in the transverse loads �fy1 and mz1� and
transverse displacements �uy�x� and its derivatives�. This implies
that the resulting relation between the transverse end loads and
end displacement also has to be linear, of the form

	 fy1

mz1

 = k11�fx1;	�x�� k12�fx1;	�x��

k21�fx1;	�x�� k22�fx1;	�x�� �	uy1

�z1

 �23�

The effective stiffness terms �k’s� will now be some functions
of the axial load fx1, dictated by the beam shape 	�x�, and might
be difficult or impossible to determine in closed form. Neverthe-
less, these functions may certainly be expanded as a generic infi-
nite series in fx1,

	 fy1

mz1

 = k11

�0� k12
�0�

k12
�0� k22

�0� �	uy1

�z1

 + fx1k11

�1� k12
�1�

k12
�1� k22

�1� �	uy1

�z1



+ fx1
2 k11

�2� k12
�2�

k12
�2� k22

�2� �	uy1

�z1

 + ¯

= �
n=0




fx1
n k11

�n� k12
�n�

k12
�n� k22

�n� �	uy1

�z1

 �24�

Similarly, it may be shown that irrespective of the beam shape,
the constraint equation may be stated and expanded as

ux1 = ux1
�e� + �uy1 �z1 �g11�fx1;	�x�� g12�fx1;	�x��

g21�fx1;	�x�� g22�fx1;	�x�� �	uy1

�z1



= fx1
t0
2

12	�
0

1
dx

	�x�
 + �uy1 �z1 �g11
�0� g12

�0�

g12
�0� g22

�0� �	uy1

�z1



+ fx1�uy1 �z1 �g11
�1� g12

�1�

g12
�1� g22

�1� �	ux1

�z1



+ fx1
2 �uy1 �z1 �g11

�2� g12
�2�

g12
�2� g22

�2� �	ux1

�z1

 + ¯

=
fx1

k33
+ �

n=0




fx1
n �uy1 �z1 �g11

�n� g12
�n�

g12
�n� g22

�n� �	uy1

�z1

 �25�

Along the same lines, the strain energy for a variable cross-
section beam may be shown to be quadratic in the transverse
displacements, uy1 and �z1, and some unknown function of the

axial load fx1. This expression may be expanded as follows:
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=
1

2
�uy1 �z1 �v11�fx1;	�x�� v12�fx1;	�x��

v21�fx1;	�x�� v22�fx1;	�x�� �	uy1

�z1

 +

1

2
k33ux1

�e�2

=
1

2
�uy1 �z1 �v11

�0� v12
�0�

v12
�0� v22

�0� �	uy1

�z1

 +

1

2
fx1�uy1 �z1 �v11

�1� v12
�1�

v12
�1� v22

�1� �
�	uy1

�z1

 +

1

2
fx1

2 �uy1 �z1 �v11
�2� v12

�2�

v12
�2� v22

�2� �	ux1

�z1

 + ¯

+
1

2
k33ux1

�e�2
=

1

2�
n=0




f x1
n �uy1 �z1 �v11

�n� v12
�n�

v12
�n� v22

�n� �	uy1

�z1

 +

1

2
k33ux1

�e�2

�26�

Fundamental Relations Between Beam Characteris-
ic Coefficients

Having derived the generic expressions �24�–�26� for the trans-
erse stiffness, axial constraint, and strain energy for an initially
traight beam with any generalized shape, the next step is to de-
ermine if there are any fundamental relations between these three
xpressions and their associated beam characteristic coefficients.
o do so, we employ the PVW once again. These three expres-
ions, explicit in terms of the end loads and end displacements,
ave been derived from the implicit expressions �5�, �6�, and �10�,
espectively. Since these implicit expressions were shown to be
onsistent with each other via PVW in Sec. 2, the resulting ex-
licit expressions should also be consistent with regard to PVW.

Thus, a variation in the strain energy, given by Eq. �26�, keep-
ng the external loads constant, in response to virtual displace-

ents �ux1, �uy1, and ��z1 that satisfy the geometric constraint
ondition �25�, can be equated to the virtual work done by the
xternal forces over these virtual displacements. This implies that

�v = fx1�ux1 + fy1�uy1 + mz1��z1

⇒ �
n=0




f x1
n ��uy1 ��z1 �v11

�n� v12
�n�

v12
�n� v22

�n� �	uy1

�z1

 + k33ux1

�e��ux1
�e�

= 2�
n=0




f x1
n+1��uy1 ��z1 �g11

�n� g12
�n�

g12
�n� g22

�n� �	uy1

�z1



+ fx1�ux1
�e� + fy1�uy1 + mz1��z1 �27�

Since the virtual displacements �ux1, �uy1, and ��z1 are arbi-
rary, their respective coefficients may be set to zero. This leads to
he following end load-displacement relations:

fx1 = k33ux1
�e� �28�

	 fy1

mz1

 = v11

�0� v12
�0�

v12
�0� v22

�0� �	uy1

�z1



+ ��
n=1




fx1
n v11

�n� − 2g11
�n−1� v12

�n� − 2g12
�n−1�

v12
�n� − 2g12

�n−1� v22
�n� − 2g22

�n−1� ��	uy1

�z1


�29�

Equation �28� is an expected result and provides no new infor-
ation. However, a comparison between Eqs. �29� and �24�, both

f which should be identical, given the above-mentioned consis-
ency in the energy formulation, reveals a fundamental relation
etween the stiffness, constraint, and energy coefficients,

k�
�0� = v�

�0�

�30�
k�

�n� = v�
�n� − 2g�

�n−1�, ∀ n = 1, . . . ,


here � and  both take indicial values of 1 and 2. This explains
ome of the similarities observed at the end of Sec. 3. The above

elations may be readily verified for the case of a simple beam
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using the known results �Eqs. �13�, �16�, and �18��; however, it
should be noted that these are valid for any general beam shape,
as proven above.

A second argument based on the conservation of energy pro-
vides yet another fundamental relation between the beam charac-
teristic coefficients. Since a given set of end loads �fx1, fy1, and
mz1� produces a unique set of end displacements �ux1, uy1, and
�z1�, the resulting strain energy stored in the deformed beam is
also unique, as given by Eq. �26�. This strain energy remains the
same irrespective of the order in which the loading is carried out.
Therefore, we consider a case where the loading is performed in
two steps: �1� End loads fy1 and mz1 are applied to produce some
end displacements ūx1, uy1, and �z1. �2� While holding the end
displacements uy1 and �z1 fixed, end load fx1 is applied to change
the axial displacement from ūx1 to ux1.

The sum of energy added to the beam in these two steps should
be equal to the final strain energy given by Eq. �26�. Energy stored
in step 1 is simply obtained by setting fx1=0 in Eq. �26�,

v1 =
1

2
�uy1 �z1 �v11

�0� v12
�0�

v12
�0� v22

�0� �	uy1

�z1

 �31�

The axial displacement at the end of step 1 is given by setting
fx1=0 in Eq. �25�,

ūx1 = �uy1 �z1 �g11
�0� g12

�0�

g12
�0� g22

�0� �	uy1

�z1

 �32�

Next, assuming a conservative system, the energy added to the
beam in step 2 may simply be determined by calculating the work
done on the system when force fx1 causes the beam end to move
from ūx1 to ux1 in the axial direction. An integral needs to be
carried out since the relation between fx1 and ux1 is nonlinear.
However, since inverting Eq. �25�, which provides displacement
in terms of force, is not trivial, determining the work done in this
fashion is difficult if not impossible. Therefore, instead we choose
to determine the complementary work, which is readily derived
from Eq. �25�:

v2
��fx1� = w2

��fx1� =�
0

fx1

�ux1 − ūx1� · dfx1 �33�

This result is then used to calculate the strain energy stored in
the beam during step 2 as follows:

v2�ux1� = �ux1 − ūx1� · fx1 − v2
��fx1� �34�

Substituting Eqs. �25� and �32� first in Eq. �33� and then all
these three in Eq. �34� yields

v2 = fx1
fx1

k33
+ �

n=1




f x1
n+1�uy1 �z1 �g11

�n� g12
�n�

g12
�n� g22

�n� �	uy1

�z1

 −

fx1
2

2k33

− �
n=1



1

n + 1
f x1

n+1�uy1 �z1 �g11
�n� g12

�n�

g12
�n� g22

�n� �	uy1

�z1



=
fx1

2

2k33
+ �

n=1


 � n

n + 1
f x1

n+1�uy1 �z1 �g11
�n� g12

�n�

g12
�n� g22

�n� �	uy1

�z1

�

=
fx1

2

2k33
+ �

n=1


 �n − 1

n
f x1

n �uy1 �z1 �g11
�n−1� g12

�n−1�

g12
�n−1� g22

�n−1� �	uy1

�z1

�

�35�

Since v=v1+v2, Eqs. �26�, �31�, and �35� imply that there is
another fundamental relation between the energy and constraint
coefficients, given by

v�
�n� = 2�n − 1�g�

�n−1�, ∀ n = 1, . . . ,
 �36�

n
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Expressions �30� and �36� may be further manipulated to yield
he following relations between stiffness and constraint coeffi-
ients, and energy and stiffness coefficients:

k�
�n� = −

2

n
g�

�n−1�, ∀ n = 1, . . . ,
 �37�

v�
�0� = k�

�0�

�38�
v�

�n� = − �n − 1�k�
�n�, ∀ n = 1, . . . ,


Together, Eqs. �36�–�38� present the far-reaching conclusion
hat the stiffness, constraint, and energy expressions are all inter-
elated; any one can be expressed in terms of any of the other two.
hese relations may be readily verified for the known case of a
imple beam via Eqs. �13�, �16�, and �18� but are true for any
eneral beam shape, as proven above. Moreover, these relations
ffer considerable insight into the nature of the nonlinear results
or variable cross-section beam flexures. Some specific observa-
ions are noted below:

1. Equation �38� indicates that no matter what the beam shape
is, v�

�1� is always zero. This simply implies that while all
other stiffness coefficients contribute to the strain energy, the
stiffness coefficient associated with the first power of fx1,
which represents a load stiffening, does not.

2. Equation �37� shows that k�
�1�=−2g�

�0�, irrespective of the
beam shape. This indicates that the load-stiffening effect
seen in the transverse-direction load-displacement relation
and the kinematic component seen in the axial-direction
geometric constraint relation are inherently related. In hind-
sight, this is physically reasonable because both these effects
arise from the consideration of the beam in a deformed con-
figuration.

3. The above relations also highlight the fact that the transverse
load-displacement expression �24�, the axial geometric con-
straint expression �25�, and the strain energy expression �26�
for a generalized beam are not entirely independent. The
geometric constraint expression captures all the beam char-
acteristic coefficients, except for the elastic stiffness k�

�0�.
The strain energy, on the other hand, captures all the beam
characteristic coefficients except for load stiffening and ki-
nematic ones. However, the transverse-direction load-
displacement relation is the most complete of the three in
that it captures all the beam characteristic coefficients. This
is reasonable because as per the PVW, both the strain energy
and geometric constraint relations are used in deriving the
transverse load-displacement relation.

This last observation leads to an important practical advantage.
t implies that in the derivation of the nonlinear transverse stiff-
ess, constraint, and energy relations for a beam, which ultimately
ead to the BCM, it is no longer necessary to determine all three
ndividually. In fact, solving for the constraint and energy rela-
ions individually is mathematically more tedious because of the
ntegration steps and the quadratic terms in uy1 and �z1 involved.
nstead, one may simply derive the transverse load-displacement
elation and determine the constraint and energy relations indi-
ectly using Eqs. �37� and �38�. This finding has been employed in
eriving the BCM for generalized beam shapes �1�.

BCM Energy Formulation for Initially Straight
ariable Cross-Section Beams
In this section, we employ the results from the previous two

ections to present an energy formulation associated with the
CM for a variable cross-section beam. One of the questions

aised at the end of Sec. 3 was how to determine the truncation of
he transverse load-displacement �Eq. �24��, axial geometric con-

traint �Eq. �25��, and strain energy �Eq. �26�� expressions, all of

ournal of Mechanical Design
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which are expressed in the form of infinite series in the axial load
fx1. Observation 3 from the previous section helps provide an
answer. Since these three expressions are all inter-related, their
truncation should be such that the expressions remain consistent
in terms of PVW even after truncation. Maintaining this consis-
tency is important because ultimately we plan to use only the
truncated strain energy of a generalized beam in deriving the load-
displacement relations for more complex flexure mechanisms con-
structed from multiple such beams.

It has been identified analytically as well as experimentally
�1–4� that terms up to the first power in fx1 have to be retained
both in the constraint expression to capture the kinematic and
elastokinematic effects, and in the transverse load-displacement
expression to capture the elastic and load-stiffening effects. Based
on these requirements, a consistent BCM, comprising transverse
load-displacement, axial constraint, and strain energy relations,
that captures elastic stiffness, load-stiffening, kinematic, and elas-
tokinematic effects is given by

	 fy1

mz1

 = k11

�0� k12
�0�

k12
�0� k22

�0� �	uy1

�z1

 + fx1k11

�1� k12
�1�

k12
�1� k22

�1� �	uy1

�z1



+ f x1
2 k11

�2� k12
�2�

k12
�2� k22

�2� �	uy1

�z1

 �39�

ux1 = ux1
�e� + �uy1 �z1 �g11

�0� g12
�0�

g12
�0� g22

�0� �	uy1

�z1



+ fx1�uy1 �z1 �g11
�1� g12

�1�

g12
�1� g22

�1� �	ux1

�z1

 �40�

v =
1

2
k33ux1

�e�2
+

1

2
�uy1 �z1 �v11

�0� v12
�0�

v12
�0� v22

�0� �	uy1

�z1



+
1

2
f x1

2 �uy1 �z1 �v11
�2� v12

�2�

v12
�2� v22

�2� �	uy1

�z1

 �41�

subject to the following relations between the beam characteristic
coefficients:

k�
�0� = v�

�0�, g��
�0� = − 1

2k��
�1�, g��

�1� = v�
�2� = − k��

�2� �42�

Note that, originally, we did not include the second-power term
in fx1 in the BCM �1,2� because its contribution was found to be
practically negligible. However, based on the new insight gained
in the previous section regarding consistency in the formulation, it
becomes essential to include this second-power fx1 term in the
transverse load-displacement and strain energy expressions if we
are to correctly retain the elastokinematic effect �first-power fx1
term� in the constraint expression.

To employ the above results in an energy method such as PVW,
we need to know the strain energy and geometric constraint ex-
pressions for any constituent flexure beams in terms of displace-
ments only. However, in their present forms, both these expres-
sions exhibit the presence of the axial load fx1. Therefore, further
modification of these two expressions is carried out by making the
logical substitution fx1=k33ux1

�e� to yield

v =
1

2
k33ux1

�e�2�1 + k33�uy1 �z1 �v11
�2� v12

�2�

v12
�2� v22

�2� �	uy1

�z1

�

+
1

2
�uy1 �z1 �v11

�0� v12
�0�

v12
�0� v22

�0� �	uy1

�z1



ux1 = ux1
�e��1 + k33�uy1 �z1 �g11

�1� g12
�1�

g12
�1� g22

�1� �	ux1

�z1

�

+ �uy1 �z1 �g11
�0� g12

�0�

g�0� g�0� �	uy1

�z1



12 22
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Now, these expressions are in the desirable form, i.e., free of
ny load terms. The independent displacement variables in this
ase are ux1

�e�, uy1, and �z1; and ux1 is a dependent displacement
oordinate related to the former three via the second of the above
wo equations. Alternatively, the constraint equation may be sub-
tituted into the strain energy expression while employing relation
42� to yield

v =
1

2
k33

�ux1 +
1

2
�uy1 �z1 �k11

�1� k12
�1�

k12
�1� k22

�1� �	uy1

�z1

�2

�1 − k33�uy1 �z1 �k11
�2� k12

�2�

k12
�2� k22

�2� �	ux1

�z1

�

+
1

2
�uy1 �z1 �k11

�0� k12
�0�

k12
�0� k22

�0� �	uy1

�z1

 �43�

This is the final nonlinear expression for strain energy that is
onsistent with the BCM. In this form, the strain energy may be
sed directly in an energy-based analysis of multibeam flexure
echanisms, without the need for an additional constraint expres-

ion. Since the constraint is implicit here, ux1, uy1, and �z1 repre-
ent three independent displacement variables.

Multibeam Parallelogram Flexure Analysis Using
he BCM Energy Formulation

A multibeam parallelogram flexure mechanism is shown in Fig.
. A rigid stage is connected to the ground via parallel and iden-
ical beams, not necessarily uniform in thickness, numbered 1
hrough n. External loads fx, fy, and mz, normalized as per the
reviously described scheme, act at point O on the rigid stage. A
eference line, passing through O and parallel to the beams, is
sed to specify the location of the ith beam via the geometric
arameter wi measured along the positive Y axis. The spacing
etween the beams is arbitrary. The normalized displacements of
oint O, under the given loads, are denoted by ux, uy, and �z �not
hown in the figure�. It is physically obvious that the Y direction
epresents a DoF, while the axial direction X and transverse rota-
ional direction �Z represent DoC given their high stiffness.

The multibeam parallelogram flexure module allows the use of
hinner beams that leads to a low DoF stiffness without compro-

ising DoC stiffness. This ensures a larger DoF motion range
long with good DoC load bearing capacity �4,8,9�. Consequently,
ne would like to study the effect of the number of beams and
heir spacing on stiffness and error motion behavior. This neces-
itates the determination of the stage displacements in terms of the
hree externally applied loads. A direct analysis of this system
ould require the creation of free body diagrams for each beam,

xplicitly identifying its end loads. The end load-displacement
elations for each beam provide 3n constitutive relations, while
nother three equations are obtained from the load equilibrium of
he stage in its displaced configuration. These 3�n+1� equations

Beam 1

Beam n

Beam 3

w(i)

Beam i

Beam 2

X
Y
Z

1

O

fy
fx

mz

w(n)

� w(1)
Stage

Fig. 3 Multibeam parallelogram flexure
ave to be solved simultaneously for the 3n unknown internal end
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loads and the three displacements of the motion stage �ux, uy, and
�z�. Even though the 3n internal end loads are of no interest, they
have to be determined in this direct analysis. Obviously, the com-
plexity associated with solving 3�n+1� equations grows with in-
creasing number of beams.

Instead, an energy-based approach for determining the load-
displacement relations for the multibeam parallelogram flexure
turns out to be far more efficient. We first identify the geometric
compatibility conditions in this case by expressing the end dis-
placements of each beam in terms of the stage displacements.
Since a physical understanding of the system as well as previous
analytical results �2,4� show that the stage angle �z is very small
��10−3�, the small angle approximations cos �z=1 and sin �z

=�z are well justified. Thus, the end displacements for the ith
beam are given by

ux1�i� � ux − w�i��z

uy1�i� � uy �44�

�z1�i� � �z

Next, using Eq. �43�, the strain energy for the ith beam is given
by

v�i� =
1

2
k33

�ux − w�i��z +
1

2
�uy �z �k11

�1� k12
�1�

k12
�1� k22

�1� �	uy

�z

�2

�1 − k33�uy �z �k11
�2� k12

�2�

k12
�2� k22

�2� �	uy

�z

�

+
1

2
�uy �z �k11

�0� k12
�0�

k12
�0� k22

�0� �	uy

�z

 �45�

The total strain energy of the system is simply the sum of the
strain energies of all the beams:

v =
1

2
k33

�
i=1

n �ux − w�i��z +
1

2
�k11

�1�uy
2 + 2k12

�1�uy�z + k22
�1��z

2��2

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��

+
1

2
n�k11

�0�uy
2 + 2k12

�0�uy�z + k22
�0��z

2� �46�

Applying the PVW, the variation in strain energy in response to
virtual displacements �ux, �uy, and ��z may be equated to the
virtual work done by external forces. In the resulting equation, the
coefficients of each of these mutually independent virtual dis-
placements may be identically set to zero. This results in the fol-
lowing three relations, where the first one is used to simplify the
subsequent two:

fx = nk33

�ux +
1

2
�k11

�1�uy
2 + 2k12

�1�uy�z + k22
�1��z

2�� − �1

n�
i=1

n

w�i���z

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��

�47�

fy = k33�
i=1

n � fx

nk33
+

�1

n�
i=1

n

w�i� − w�i���z

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��
�

��k11
�1�uy + k12

�1��z�

+ k33
2 �

n � fx

nk33
+

�1

n�
i=1

n

w�i� − w�i���z

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��
�

2

i=1
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��k11
�2�uy + k12

�2��z� + n�k11
�0�uy + k12

�0��z� �48�

mz = k33�
i=1

n �� fx

nk33
+

�1

n�
i=1

n

w�i� − w�i���z

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��
�

��− w�i� + k12
�1�uy + k22

�1��z��
+ k33

2 �
i=1

n � fx

nk33

+

�1

n�
i=1

n

w�i� − w�i���z

�1 − k33�k11
�2�uy

2 + 2k12
�2�uy�z + k22

�2��z
2��
�

2

�k12
�2�uy + k22

�2��z�

+ n�k�0�u + k�0�� � �49�
12 y 22 z

itic rotation of the stage �z �Fig. 5� and the X direction stiffness
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For a DoF motion range uy �0.1, Eq. �47� may be simplified by
recognizing that �z�uy to yield the axial-direction displacement:

ux =
fx

nk33
−

1

2
k11

�1�uy
2 −

fx

n
k11

�2�uy
2 �50�

Clearly, the first term above is a purely elastic term arising from
an axial stretching of the beams. The second term is a kinematic
term, which is independent of the number of beams. The final
term is an elastokinematic term. Similarly, Eq. �48� may be sim-
plified to the following form:

fy = �nk11
�0� + fxk11

�1� +
1

n
fx

2k11
�2��uy �51�

Here, the first term may be identified to be the elastic stiffness
term, and the second term is a load-stiffening term, which is seen
to be independent of the number of beams. The consistency of the
energy formulation, described above, dictates that if the elastoki-
nematic term is captured in Eq. �50�, the third term �second power
in fx� will appear in Eq. �51�. At this final stage, one may choose
to drop this second-power term because its contribution is practi-
cally negligible for typical beam shapes and load ranges of inter-
est.
Similarly, Eq. �49� may be simplified as follows:
�z =

mz +
fx

n
��

i=1

n

w�i�� − �nk12
�0� + fxk12

�1� +
fx

2

n
k12

�2��uy�� 1

k33
− k11

�2�uy
2�

�
i=1

n

w�i�
2 −

1

n	��i=1

n

w�i��2
 + � 1

k33
− k11

�2�uy
2��nk22

�0� + k22
�1�fx +

k22
�2�fx

2

n
��
Furthermore, recognizing that k33 is several orders of magni-
ude larger than all the other stiffness coefficients and that the
econd-power terms in fx may be neglected, the above relation
educes to

�z �
mz +

fx

n
��

i=1

n

w�i�� − �nk12
�0� + fxk12

�1��uy�� 1

k33
− k11

�2�uy
2�

�
i=1

n

w�i�
2 −

1

n	��i=1

n

w�i��2
�
�52�

Next, the accuracy of the above closed-form parametric analyti-
al results is corroborated via nonlinear finite element analysis
FEA� carried out in ANSYS. A seven-beam parallelogram flexure
s selected for this FEA study, with the beam locations wi arbi-
rarily chosen with respect to a reference X axis that passes
hrough the center of the stage. Each simple beam �initially
traight and uniform in thickness� is 5 mm in thickness, 50 mm in
eight, and 250 mm in length; the latter serves to normalize all
ther displacements and length dimensions. The normalized val-
es of the wi selected are �0.6, �0.45, �0.25, �0.1, 0.2, 0.35,
nd 0.6. BEAM4 elements are used for meshing, and the consis-
ent matrix and large displacement �NLGEOM� options are turned
n to capture all nonlinearities in the problem. A Young’s modulus
f 210,000 N /mm2 and Poisson’s ratio of 0.3 are used assuming
he material to be steel. The normalized DoF displacement uy is
aried from �0.12 to 0.12. The parasitic axial displacement of the
tage ux �Fig. 4� is determined while keeping fx=mx=0. The para-
�Fig. 6� are determined while setting the normalized axial force fx
to 1 and mx and to 0.

These FEA results for the seven-beam parallelogram are in
agreement with the BCM predictions �Eqs. �50�–�52��, within a
5% error. In general, this flexure module exhibits constraint char-
acteristics very similar to the two-beam parallelogram flexure
module. Its key advantage is a 3.5 times greater X DoC stiffness
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and therefore load bearing capacity� without compromising the
otion Y DoF motion range and adversely affecting the X and �Z
oC parasitic errors.
This example shows that once a consistent BCM energy formu-

ation has been derived, the use of energy methods considerably
educes the mathematical complexity in the analysis of increas-
ngly sophisticated flexure mechanisms. The above procedure is
elatively independent of the number of beams chosen or the
hapes of the individual beams, as long as the strain energy asso-
iated with each beam is accounted for correctly.

BCM Energy Formulation for Initially Slanted and
urved Beams
We next consider a uniform-thickness beam with an arbitrary

nitial angle � and an arbitrary but constant curvature �. Figure 7
hows such a beam with generalized end loads and end displace-
ents along the X-Y-Z coordinate frame. All physical quantities

re normalized as per the scheme described previously.

−0.1 −0.05 0 0.05 0.1 0.15
−3

−2

−1

0

1

2

3
x 10

−4

Normalized DoF Displacement (u
y

)

S
ta

ge
R

ot
at

io
n

(θ
z

)

BCM
FEA

ig. 5 Parasitic stage rotation �z „DoC… versus transverse dis-
lacement uy „DoF…

−0.1 −0.05 0 0.05 0.1 0.15
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

5

N
or

m
al

iz
ed

D
o C

S
tif

fn
es

s

Normalized DoF Displacement (u
y

)

BCM
FEA

ig. 6 Axial stiffness „DoC… versus transverse displacement

y „DoF…

81009-10 / Vol. 132, AUGUST 2010

ded 19 Aug 2010 to 141.212.136.216. Redistribution subject to ASM
The initial �unloaded and undeformed� beam configuration is
denoted by yi�x�, the final �loaded and deformed� beam configu-
ration is given by y�x�, and the beam deformation in the Y direc-
tion is given by uy�x�, where

yi�x� = �x +
�

2
x2 and y�x� = yi�x� + uy�x� �53�

Along the previous lines, the beam governing equation may be
shown to be

y��x� − � = mz1 + fy1�1 + ux1 − x� − fx1�y1 − y�x��

⇒ yiv�x� = fx1y��x� �54�
It is important to note that for the curvature linearization as-

sumption to be valid in the above beam governing equation, the
initial slope � and the normalized curvature � have to be of the
order of 0.1 or less. This equation, along with boundary conditions
uy�0�=0, uy��0�=0, uy�1�=uy1, and uy��1�=�z1, may be solved in
closed form to determine uy�x�. This solution is substituted in Eq.
�10� to derive the following strain energy expression:

v =
1

2
k33�ux1

�e��2 +
1

2
�uy1 �z1 �v11�fx1� v12�fx1�

v21�fx1� v22�fx1� �	uy1

�z1



+ v44��z1 +
�

2
��

2
�55�

where k33, v11, v12, and v22 are the same as in Eq. �17�, and

v44 =
− �cosh r − 1�

2�r sinh r − 2 cosh r + 2�2

� �r4�1 + cosh r� + r3 sinh r�cosh r − 3��

� �4r2�2 cosh r+1� + 16�cosh r − 1� − 20r sinh r�
The above transcendental functions may be expanded to an in-

finite series in fx1 ��r2�, and the third power and higher terms
may be truncated to yield the following compact form:

v =
1

2
k33�ux1

�e��2 +
1

2
�uy1 �z1 � 12 − 6

− 6 4
�	uy1

�z1



+
1

2
f x1

2 �uy1 �z1 ��
1

700
−

1

1400

−
1

1400

11

6300
�	uy1

�z1

 + fx1

2 ��z1

720

+ fx1
2 �2

1440
�56�

The last two terms in this strain energy expression for an ini-
tially slanted and curved beam are new compared to Eq. �18� for
an initially straight beam. Separately, the geometric constraint ex-

ux1

fy1 mz1

X

Y

Z

1

uy1fx1

y’i1+�z1

yi (x)

y(x)

yi1�

Fig. 7 Initially slanted and curved beams
pression may be derived from
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�
0

1+ux1
�e� 	1 +

1

2
�yi��x��2
dx =�

0

1+ux1 	1 +
1

2
�uy��x� + yi��x��2
dx

�57�
o yield a closed-form expression for the axial end displacement
x1. The resulting expression may be expanded and truncated to
etain up to second-power terms in fx1 as follows:

ux1 = ux1
�e� + �uy1 �z1 ��−

3

5

1

20

1

20
−

1

15
�	uy1

�z1



+ fx1�uy1 �z1 ��
1

700
−

1

1400

−
1

1400

11

6300
�	uy1

�z1



− �� +
��uy1 −

�
�z1 + fx1

�
�z1 + fx1

�2

720
�58�
2 12 360
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One may notice similarities in the energy and constraint coef-
ficients of Eqs. �56� and �58�, respectively. The reason for this can
be traced back to the same arguments as were provided for an
initially straight beam in Sec. 4. Furthermore, setting �=�=0 re-
duces the above equations to those for an initially straight beam,
as expected. It is interesting to note the absence of an initial beam
slant angle � in the strain energy expression �56�. This can be
justified based on the constraint expression �58�, where � is
present only in the kinematic terms and not in any elastokinematic
terms. Since the kinematic terms arise purely from geometry and
not elastic deformation, � does not appear in the strain energy
expression. The last two terms of the constraint expression, which
are dependent on curvature �, represent elastokinematic deforma-
tion and can be seen to correspond with the last two terms in the
strain energy expression.

As in the case of an initially straight beam, both the constraint
and strain energy expressions above have an explicit dependence
on the axial load fx1. Employing the same arguments as presented
at the end of Sec. 5, fx1 may be first replaced with k33ux1

�e� in these
two expressions, and ux1

�e� from the resulting constraint expression

may be substituted in the resulting energy expression to yield
v =
1

2
k33

�ux1 − �uy1 �z1 ��−
3

5

1

20

1

20
−

1

15
�	uy1

�z1

 + �� +

�

2
�uy1 +

�

12
�z1�

2

�1 + k33�uy1 �z1 ��
1

700
−

1

1400

−
1

1400

11

6300
�	uy1

�z1

 + k33

��z1

360
+ k33

�2

720�
+

1

2
�uy1 �z1 � 12 − 6

− 6 4
�	uy1

�z1

 �59�
This is the final nonlinear strain energy expression for an ini-
ially slanted and curved beam that may be used in energy meth-
ds, with ux1, uy1, and �z1 as the three independent displacement
ariables. It should be noted that while the above derivation was
arried out for a uniform-thickness beam, one may easily gener-
lize it to any variable cross-section beam using the procedure
utlined in Sec. 3. Upon such generalization, the numerical values
f the energy and constraint coefficients above will be replaced by
he generic symbols v and g, respectively.

Conclusion
In the past, the BCM has been shown to be a dimensionless,

eneralized, closed-form, and parametric mathematical model that
ccurately captures the constraint characteristics of flexure mecha-
isms. These constraint characteristics are based on the stiffness
nd error motions in flexure elements and mechanisms and are
trongly dependent on geometric nonlinearities. However, the ap-
lication of the BCM to more complex flexure mechanisms has
roven to be tedious due to the involvement of internal loads,
hich are not directly relevant to the desired load-displacement

elations.
The primary contribution of this paper is to provide a nonlinear

train energy formulation of the BCM so that it may be employed
n energy methods, such as the principle of virtual work, to effi-
iently derive the nonlinear load-displacement relations for com-
lex flexure mechanisms. Energy methods avoid internal loads,
hus greatly reducing mathematical complexity. We believe that
this ability to accurately and quickly analyze complex flexure
mechanisms is a critical first step toward their constraint-based
synthesis and optimization.
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