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ABSTRACT 

This paper presents an investigation of zeros in the SISO 

dynamics of an undamped three-DoF LTI flexible system. Of 

particular interest are non-minimum phase zeros, which 

severely impact closed-loop performance. This study uses 

modal decomposition and zero loci to reveal all types of zeros – 

marginal minimum phase (MMP), real minimum phase (RMP), 

real non-minimum phase (RNMP), complex minimum phase 

(CMP) and complex non-minimum phase (CNMP) – that can 

exist in the system under various parametric conditions. It is 

shown that if CNMP zeros occur in the dynamics of an 

undamped LTI flexible system, they will always occur in a 

quartet of CMP-CNMP zeros. Consequently, the simplest 

undamped LTI flexible system that can exhibit CNMP zeros in 

its dynamics is a three-DoF system. Motivated by practical 

examples of flexible systems that exhibit CNMP zeros, the 

undamped three-DoF system considered in this paper 

comprises of one rigid-body mode and two flexible modes. For 

this system, the following conclusions are mathematically 

established: (1) This system exhibits all possible types of zeros. 

(2) The precise conditions on modal frequencies and modal 

residues associated with every possible zero provide a 

mathematical formulation of the necessary and sufficient 

conditions for the existence of each type of zero. (3) 

Alternating signs of modal residues is a necessary condition for 

the presence of CNMP zeros in the dynamics of this system. 

Conversely, avoiding alternating signs of modal residues is a 

sufficient condition to guarantee the absence of CNMP zeros in 

this system. 

 
1. INTRODUCTION AND MOTIVATION  

The dynamics of flexible systems is of interest in a wide 

range of motion and vibration control applications including 

space structures [1-3], dexterous manipulation [4-8], 

locomotion [9-10], hard-disk drives [11-13], and flexure 

mechanisms [14-16], among others. These applications 

typically require a combination of range, speed, settling time, 

noise and disturbance rejection, control robustness, motion 

accuracy, etc. – performance specifications that are met by 

careful choice of sensors, actuators, and associated electronics, 

as well as design of various control strategies [17-19]. Yet the 

presence of resonant peaks along with ill-behaved zero 

dynamics such as non-minimum phase behavior [20-24] 

severely limits the performance that can be achieved through 

feedback and feedforward control strategies [25-28]. 
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Fig.1 Types of zeros in a LTI system 

Fig.1 shows the various types of zeros that can appear in the 

SISO dynamics of a LTI system – marginal minimum phase 

(MMP) that lie on the imaginary axis, real minimum phase 

(RMP), real non-minimum phase (RNMP), complex minimum 

phase (CMP) and complex non-minimum phase (CNMP). 

These zeros are dictated by the physical design of the LTI 

system, including the location of sensor and actuator, and 

cannot be altered by output or state feedback. Given the critical 

role that zeros play (particularly NMP zeros) in control 

performance, an intimate knowledge of the existence of the 

various types of zeros and their dependence on the various 

system parameters is of interest.  

Section 2 of this paper provides a review of the extensive 

literature on system zeros, but the existing results fail to present 

an analysis of systems that include all possible types of zeros. 

Furthermore, an interpretation of the genesis of zeros 

(particularly CNMP zeros) based on physical parameters and 

design is still lacking. In our previous work, we mathematically 

predicted [21] and experimentally demonstrated [22] the 

existence of CNMP zeros under certain combinations of 

physical parameters and operating conditions in flexure 

mechanisms. However, this was a system-specific investigation 

and did not provide a more fundamental understanding into the 

origin of these zeros.  

To achieve such an understanding, we employ modal 

decomposition [29] to study zeros in the SISO dynamics of an 

undamped three-DoF LTI flexible system in this paper. This 

system comprises of one rigid-body mode and two flexible 

modes. The genesis of different types of zeros and their 

transition from one type to another is shown to depend on 

mathematical conditions that involve the modal frequencies and 
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residues of the flexible system. Since these modal parameters 

(i.e. frequencies and residues) can be expressed in terms of 

physical parameters of the system (e.g. stiffness and mass), the 

mathematical framework presented here offers a direct 

connection between the zeros and the physical parameters of 

the system. The mathematical framework and associated results 

of this paper can therefore be used to derive key physical 

insights into the zero dynamics of any flexible system that can 

be approximated by the undamped three-DoF LTI flexible 

system investigated here. 

  

2. LITERATURE REVIEW 

There is a significant body of research literature on the 

zero dynamics of flexible systems. Existing frequency domain 

studies may be broadly classified into three groups: (1) studies 

that focus on fundamental system types irrespective of the type 

of zeros, (2) studies that focus on gaining physical meaning 

into various types of zeros, and (3) studies that focus on 

specific types of zeros (e.g. CNMP) irrespective of the system 

type. 

Studying the zeros of LTI systems using fundamental 

system types is based on the idea of modal decomposition [29]. 

Since a single mode cannot lead to any zeros, the simplest 

flexible system type to study zeros is a system with two modes 

or DoFs. A simpler variation of this two-DoF system is one 

where the first mode has zero natural frequency (i.e. is a rigid-

body mode). In the literature, Miu [30] used such a two-DoF 

model for a torsional system and studied the variation of zeros 

due to the variation of sensor location. Rankers [31] studied the 

interaction between the rigid body mode and the flexible mode 

on a frequency response plot. It was demonstrated that the 

variation of zeros arises due to the variation of modal residues 

(magnitude and signs) associated with these two modes. 

Colingh [32] studied a motion stage with flexible guidance and 

showed the mapping between sensor/actuator locations and 

various types of zeros. Using a two-DoF flexible system model, 

this work demonstrated marginally minimum phase (MMP), 

real minimum phase (RMP) zeros, and real non-minimum 

phase (RNMP) zeros, but did not capture complex non-

minimum phase (CNMP) zeros.  

Studying the zeros of systems with a single flexible beam 

has also been an active area of research. Spector and Flashner 

[33-34] studied a non-collocated pinned-free beam model and 

identified the migration of zeros on the real and imaginary axes 

due to variation in the sensor location. Wie and Bryson [35] 

studied the pole-zero patterns in flexible structures including 

beams, membranes and triangular trusses. Lee and Speyer [36] 

used a Bernoulli-Euler beam model and studied the migration 

of zeros in various input-output transfer functions. In addition, 

Aphale [37] studied the zeros of a cantilever beam with the 

impact of a feed-through term and Vakil [38] studied the 

location of zeros for a single flexible beam under the variation 

of different physical parameters. In all of this work, the 

migration of zeros is restricted to the real and imaginary axes, 

i.e. zeros are MMP, RMP, or RNMP, but not CMP or CNMP.  

There are also studies that focus on zeros of systems that 

extend beyond a two-DoF model. Tohyama and Lyon [39-40] 

used a system with two modes and a constant remainder to 

study the transfer function in room acoustics. By varying the 

remainder, they identified marginally minimum phase (MMP) 

zeros and complex non-minimum phase (CNMP) zeros. These 

studies however, only investigate variation of the remainder 

without investigating the influence of changing the two modal 

residues or frequencies. As a result, RMP and RNMP zeros are 

not captured in this work. Duffour and Woodhouse [41] studied 

the transfer function of linearized systems with frictional 

contact. In their investigation, analytical and graphical locus 

techniques were used to examine cases with only two modes, 

with two modes with a constant remainder, and with three 

modes. While MMP zeros and CNMP zeros are reported in this 

work, RNMP zeros were not captured due to inadequate 

spanning of the parameter space. Martin [24] proposed modal 

decomposition to identify MMP, RNMP, RMP and CNMP 

zeros by studying a numerical model with three modes, but he 

did not draw any broader conclusions from his numerical 

results. He concluded that for the situation of sensor and 

actuator collocation, the zeros are MMP, wherein zeros are 

alternately located between the system poles. He also argued 

that such a system is robust against modeling uncertainties and 

unmodeled high frequency dynamics when operated in closed 

loop.  

The second group of studies on zeros focuses on gaining 

physical meaning into various types of zeros. Miu [42] studied 

the MMP zeros in serially connected spring mass systems. He 

concluded that for this simple class of systems, MMP zeros 

indicate the natural frequencies of several sub-systems defined 

by the actuator and sensor locations. Chandrasekar [43] showed 

that all zeros in such serially connected spring-mass systems 

are MMP zeros. Straete [44] used the approach of bond graphs 

to study all types of zeros and reached the physical insight that 

zeros are related to subsystems where energy is “trapped”. In 

addition, Calafiore’s [45] analysis also characterized how sub-

systems are related to zeros. Nevertheless, in all of this work, a 

sub-system-based physical insight is applicable only in simple 

classes of systems, namely serially connected spring-mass 

systems. For a general flexible system, sub-systems and any 

associated physical insights are difficult to identify. Examples 

include Coelingh’s model [32] and the multi-axis flexure 

mechanism [21-22] that exhibits dynamic coupling between the 

modes in different axes.  

The third group of studies focuses on specific types of 

zeros irrespective of the system type. In particular, CNMP 

zeros have been reported in flexible systems [21-23], [46-48] 

but there remains very little physical understanding of these 

zeros. Cannon and Schmitz [23] identified RNMP and CNMP 

zeros numerically in the transfer function of a pinned-free 

beam. Loix et al. [48] studied a four-DoF spring-mass model 

with spring stiffness variation. They numerically identified the 

existence of CNMP zeros and the corresponding zero locus. 

They also provided an experimental observation of CNMP 
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zeros in a cantilever beam set-up but did not present a 

mathematical formulation for these zeros. Hoagg [49] 

investigated a three DoF spring-mass-damper model that also 

captured CNMP zeros. However, they assumed an unusually 

large damping ratio (ζ>1.3) to create the CNMP zeros. Awtar 

[47] predicted and experimentally measured CNMP zeros in the 

non-collocated transfer function of a multiple spring-mass 

servo system. Electromagnetic modeling showed that these 

zeros arose due to a coupling between the DC motor and the 

tachometer in this servo system. In our recent work, CNMP 

zeros have been modeled [21] and measured [22] in a lightly 

damped flexure mechanism-based motion stage.  

In all of these studies, the advantage of focusing on 

specific systems is that it allows one to validate the existence of 

certain types of zeros (particularly RNMP and CNMP) via 

models and experiments. Furthermore, the relationship between 

physical parameters and the location/existence of zeros can be 

demonstrated. Yet, all of these existing studies are system-

specific and do not provide a deeper understanding into the 

existence of zeros for flexible systems in general.  

Thus, the gap in the existing literature on zeros may be 

summarized via two key points. First, while zeros of flexible 

systems have been studied using the technique of modal 

decomposition by varying modal parameters, the existing 

results are incomplete in terms of capturing all possible types 

of zeros in a single, general flexible system. Second, there 

remains a lack of physical understanding of the conditions for 

which certain zeros (especially RNMP and CNMP) appear or 

change from one type to another.   

This paper addresses this gap by identifying the simplest 

LTI system – an undamped three-DoF flexible system – that 

exhibits all types of zeros. A mathematical framework based on 

modal decomposition is used to relate system zeros to modal 

parameters. Specifically, for a three-DoF flexible system with 

one rigid-body mode, the precise conditions on modal 

parameters (frequencies and residues) are derived for every 

possible zero type. This leads to a comprehensive set of 

necessary and sufficient conditions on modal parameters for the 

existence of each type of zero. Since modal parameters can be 

ultimately correlated to physical parameters of the system (e.g. 

stiffness and mass), the mathematical framework presented 

here can be used to not only gain physical insights into the 

origin of zero dynamics but also influence them through the 

appropriate choice of physical parameters. 

The rest of this paper is organized as follows. Section 3 

captures zero dynamics via modal decomposition and presents 

key results that help narrow down the scope of this 

investigation to a three-DoF system. Section 4 provides an 

explicit mathematical and graphical correlation between the 

modal frequencies and the modal residues of a three-DoF 

flexible system (with one rigid-body mode) and the associated 

zeros. This leads to several important mathematical 

observations and physical insights. Section 5 concludes the 

paper with a summary of the conclusions and design insights 

obtained in this work and a brief discussion on the future 

course of this research.  

 

3. ZERO DYNAMICS AND MODAL DECOMPOSITION 

The input-output dynamics of a LTI SISO system given by 

transfer function G(s) can be expressed as the sum of the 

contributions of its decomposed modes. 

1 0
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  (1) 

Assumption 1: The LTI SISO flexible system investigated in 

this paper is assumed such that all the decomposed modes are 

second order, and that there are no first order modes. 

Additionally, it is assumed that these second order modes are 

all oscillatory in nature (i.e. the poles associated with each 

mode lie on the imaginary axis and not on the real axis). This is 

a reasonable assumption for many continuous structural and 

discrete spring-mass systems. 

Assumption 2: Next, it is assumed that the flexible system is 

undamped. This assumption is reasonable for flexible systems 

such as flexure mechanisms that are monolithic with no rolling 

or sliding joints [14-16], for space structures [1-3], and for 

machines that operate in vacuum [50], where damping is 

negligible.  

Assumption 3: If force is assumed to be the input and 

displacement is selected as the output of such a LTI SISO 

flexible system, then the input-output transfer function G(s) 

from Eq.(1) can be restated as follows:   
2 2

1 0

2 2 2 2
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( )
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Here the total number of second order modes is n, which is 

also the DoF of the system per the nomenclature of this paper, 

and i is the natural frequency of the ith mode. Additionally, it 

is assumed that G(s) represents a physical system (as opposed 

to a mathematical system), and is strictly proper (i.e. m < n). In 

other words, the number of zero pairs is less than the number of 

modes in the system.  

From Eq. (2), it may be seen that the variation of modal 

residues (i) leads to the variation of the numerator coefficients 

(bi), and thus, the variation of the zeros of G(s). There are some 

key results that can be readily derived for a LTI SISO flexible 

system defined by the above assumptions.  

Result 1: For an undamped LTI flexible system whose SISO 

dynamics is given by Eq.(2), if a pair of complex non-

minimum phase (CNMP) zeros occurs, it will always occur in a 

quartet along with a pair of complex minimum phase (CMP) 

zeros. 

Proof: Transfer function G(s) can be expressed in terms of its 

numerator N(s) and denominator D(s), as follows: 

2 2

1

2 2 2 2
1

( )
( )

( )
( )( )

n

i j
n

j iii

i i i

i

s
N s

G s
D ss s

  (3) 
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As a consequence of the assumptions made above, it is evident 

that N(s) and D(s) are even functions (i.e. N(s) = N(−s) and 

D(s) = D(−s)).  

Therefore, if a±ib (where a > 0) are CNMP zeros of G(s) (i.e. 

N(a±ib) = 0), and N(a±ib) = N(−(a±ib)) because N(s) is an 

even function, then it follows that N(−a±ib) = 0. In other 

words, −a±ib are also zeros of G(s). Since a > 0 these two 

zeros constitute a CMP zero pair. Thus, zeros that are neither 

on the imaginary axis nor on the real axes of the s-plane, 

always appear as a CMP-CNMP quartet (±a±ib).  

Result 2: An undamped LTI flexible system must have a 

minimum of three modes (i.e. three-DoF) to exhibit a CMP-

CNMP zero quartet in its SISO dynamics.  

Proof: According to Result 1, CMP-CNMP zeros always 

appear as a quartet. This means that for such a quartet to 

appear, the numerator N(s) in Eq.(3) should be at least a 4th 

order polynomial in s. Further, because the physical system is 

strictly proper, the denominator D(s) should at least be a 6th 

order polynomial in s. Since all the decomposed modes of G(s) 

are second order, it follows that the system should consist of at 

least three such modes to exhibit a CMP-CNMP zero quartet. 

Based on these results, since a three-DoF undamped LTI 

flexible system is the simplest system that exhibits CMP-

CNMP zeros, we choose this system for the intended 

investigation that captures all the zero types. As discussed in 

Section 2, two-DoF undamped LTI flexible systems have been 

extensively studied [30-32] but exhibit only MMP, RMP and 

RNMP zeros. 

 

4. THREE-DOF FLEXIBLE LTI SYSTEM  

A three-DoF undamped LTI flexible system that follows 

Assumptions 1 through 3 can be expressed as: 

2 2 2 2 2 2
( ) u vR

R u v

G s
s s s

  (4) 

where R < u < v. Here we make one more assumption – that 

the first mode is much lower in frequency compared to the 

subsequent two modes. While a general three-DoF system can 

be considered, this assumption offers some practical 

advantages. In previous modeling [21] and experimental [22] 

work, we have shown that CNMP zeros appear in systems that 

have a low-frequency mode and at least two higher frequency 

closely-spaced modes. This provides the motivation to 

investigate a slightly simpler system by setting R to zero in 

Eq.(4). This additional assumption also helps simplify the 

mathematical and graphical analysis of the zero locus in this 

section, which allows for better physical interpretation of the 

results.  

Yet, the three-DoF model that stems from this assumption 

can still be used to explain the dynamics of flexible systems 

that are characterized by a low-frequency rigid body mode and 

a couple of relatively high-frequency flexible modes. In such 

instances, the low-frequency flexible mode is approximated as 

a pure rigid body mode to study its interaction with the two 

higher frequency modes that give rise to the CMP-CNMP zero 

quartet trapped between them. 

Assuming the first mode to be a rigid-body mode, the 

three-DoF flexible system of Eq.(4) reduces to:  

2 2 2 2 2
( ) u vR

u v

G s
s s s

  (5) 

Furthermore, R can be set to be +1, without any loss in 

generality. This helps reduce the number of parameters that 

need to be carried through the subsequent mathematical steps. 

The system transfer function from Eq.(5) may be further 

expressed as: G(s) =    
2 2 2 2 2 2 2 2

2 2 2 2 2

(1 / ) ( / ) ( )( )

( )( )

v u v u v v u u v

u v

s s s s

s s s
 

Next, if we define:  
2

2
 and u u

v v

  

Then G(s) may be expressed as: 
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4 2 2 2

2 2 2 2

where

( ) (1 ) ( )

( ) ( )( )

v

u v

A s s s

B s s s

  

Now, we create a transfer function T(s) = A(s)/B(s), which 

has no physical meaning and simply serves as a mathematical 

tool, as described next. First, the poles of T(s) are the poles 

associated with the modes u and v. Second, T(s) has two pairs 

of zeros. One pair is fixed at the origin and the other pair 

changes position based purely on the ratio u /v. For a given 

u /v ratio, u, and v, if v is varied, then the root locus of 

T(s) with unity feedback is obtained. But note that the root-

locus of T(s) is also the zero-locus of G(s). Moreover, if the 

sign of v is flipped, then the complementary root locus is 

obtained. Thus, T(s) serves as an intermediate mathematical 

tool to obtain the zero-locus of G(s) for various modal 

parameters.  

The root-loci of T(s), which correspond to the full zero-

loci of G(s), are shown in Fig.2 for four different value ranges 

of u /v. For ease of illustration, only the first quadrant is 

shown in each case. As noted above, the value ranges of u /v 

determine the location range of the second zero pair of T(s) 

(shown in blue) as follows: 

(a) 0u

v

: 2nd zero pair of T(s) lies between u and v 

(b)
2

2
0u u

vv

: 2nd zero pair of T(s) lies b/w origin and u  

(c)
2

2
1 u u

v v

: 2nd zero pair of T(s) lies on the real axis 
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(d) 1u

v

: 2nd zero pair of T(s) lies between v and infinity 

The top panel of Fig.2 shows the zero-loci of G(s) for 

positive v (varying from 0 to ∞) and the bottom panel shows 

the zero-loci of G(s) for negative v (varying from -∞ to 0). A 

key observation here is that CNMP zeros arise in instances (b), 

(c), and (d) of the top panel, where the zero-locus branches 

break-away from the imaginary axis and subsequently re-join at 

the real or imaginary axes, as v increases. To find the v value 

at these break-away and re-join points, one simply needs to 

find the repeated roots of s2 in N(s), where 

4 2 2 2 2 2 2

( ) ( ) ( )

{1 (1 )} { ( ) (1 )}

v

v v v u v

N s A s B s

s s
  

To find the repeated roots, one can set the discriminant of the 

above quadratic expression in s2 to 0, 
2 2 2 2 2 2

2 2 2 2

2 2

[{ ( ) (1 )} ] 4( ){1 (1 )} 0

( )(1 ) (1 ) 4

( )

v v u v v

v

 

Here, the smaller value of v corresponds to the break-away 

point and the larger value corresponds to the re-join point: 
2 2 2 2

2 2

2 2 2 2

2 2

( )(1 ) (1 ) 4
Break-away: 

( )

( )(1 ) (1 ) 4
Re-join:

( )

v

v

 (7) 

Another key observation in Fig.2 is that a pair of MMP 

zeros can approach infinity and then transition over to a RMP-

RNMP pair, as seen in instance (d) of the top panel and 

instances (a), (b), and (c) of the bottom panel. The value of v 

for which this transition happens can be determined by finding 

the condition when N(s) has only one pair of roots.  

4 2 2 2 2 2 2

( ) ( ) ( )

{1 (1 )} { ( ) (1 )}

v

v v v u v

N s A s B s

s s

u

v

u

v

u

v

u

v

0 v

1u

v

2

2
1 u u

v v

2

2
0u u

v v

(b) (c) (d)

u

v

u

v

Two MMP pairs

Z-P alternation

Two MMP 
pairs

OR

One CMP-
CNMP 
quartet

OR

One MMP 
pair and 

One RMP-
RNMP pair

Two MMP 
pairs

OR

One CMP-
CNMP 
quartet

OR

Two RMP-
RNMP pairs

Two MMP 
pairs

OR

One CMP-
CNMP 
quartet

0u

v

(a)

0u

v

(a)

2

2
0u u

v v

(b)
2

2
1 u u

v v

(c) 1u

v

(d)

Two MMP 
pairs

OR

One MMP 
pair and 

One RMP-
RNMP pair

Two MMP 
pairs

OR

One MMP 
pair and 

One RMP-
RNMP pair

0 v
0 v 0 v

0v
0v

u

v

Two MMP 
pairs

OR

One MMP 
pair and 

One RMP-
RNMP pair

0v

u

v

Two MMP 
pairs

0v

 

Fig.2. Zero loci of G(s) 
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This condition corresponds to setting the coefficient of s4 in the 

above expression to zero.  

1
{1 (1 )} 0        

1
v v   (8) 

Based on these results and Fig.2, the following conclusions can 

be drawn: 

1. By varying αu / αv and αv, all types of zeros (i.e. MMP, RMP-

RNMP pair and CMP-CNMP quartet) are obtained in the 

zero loci of a three-DoF flexible system (with one rigid-body 

mode).   

2. CNMP zeros occur in cases (b), (c) and (d) of the top panel 

where (αu / αv) < 0 and 0 < αv < ∞. Therefore, the necessary 

condition for the existence of CNMP zeros is the alternating 

sequence of modal residue signs i.e. αR > 0 (already assumed 

to be +1), αu < 0 and αv > 0. This necessary condition is 

nevertheless not a sufficient condition. As seen in cases (b), 

(c) and (d) of the top panel, even when the necessary 

condition is satisfied, there exist values of αv for which the 

zeros are either MMP or RMP-RNMP. These are the values 

of αv before the break-away and after the re-join of the zero 

loci, given by Eq.(7).  

3. Conversely, avoiding the alternating sequence of modal 

residue signs is a sufficient condition for the elimination of 

CNMP zeros. However, this is not a necessary condition for 

the elimination of CNMP zeros. The value of αv can be tuned 

such that it does not lie between the break-away and re-join 

points given by Eq.(7). This would guarantee that CNMP 

zeros do not occur in the system dynamics even in the 

presence of alternating modal residue signs.  

4. Eq.(7) gives the break-away point of the zero loci from the 

imaginary axis and the subsequent re-join of the zero loci 

onto the imaginary axis or the real axis. This equation 

mathematically shows the precise conditions under which 

MMP zeros transition to a CMP-CNMP quartet and then 

back to either MMP zeros or a RMP-RNMP pair. These 

break-away and re-join points can be easily visualized in 

instances (b), (c) and (d) of the top panel (i.e. 0 < αv < ∞) of 

Fig.2.  

5. Based on Eq.(7), it can be mathematically observed that as 


2 2

u v tends to 1, the values of αv at which break-

away and re-join occur tend to zero. Therefore, in the 

presence of alternating sequence of modal residue signs 

(represented by (b), (c) and (d) when 0 < αv < ∞), if a three-

DoF flexible system has two closely spaced flexible modes 

(given by tending to 1), then the occurrence of CNMP 

zeros (in form of quartet) becomes very sensitive to small 

values of αv. In the presence of closely spaced flexible 

modes, even a small non-zero value of αv (modal residue 

associated with the flexible mode v), can lead to the presence 

of CNMP zeros in the system dynamics. 

6. Eq.(8) gives the mathematical condition when MMP zeros 

transition into a RMP-RNMP pair. This point of transition 

only depends on the ratio of modal residues () of the two 

flexible modes. If  tends to -1, then the transition from 

MMP zeros to RMP-RNMP pair happens for very large 

values of αv. In other words, the transition becomes 

insensitive to the value of αv.  

7. There are two cases, namely case (a) of the top panel and 

case (d) of the bottom panel where NMP zeros do not occur 

in the zero locus for any value of αv. Case (a) of the top panel 

leads to a configuration of modal residue signs given by αR > 

0, αu > 0 and αv > 0. This is in agreement with [24] where it 

was shown that when all modal residues have the same sign, 

it only leads to MMP zeros in the system dynamics. 

     

5. CONCLUSION AND FUTURE WORK 

This paper investigates the zero dynamics of an undamped 

three-DoF flexible system that consists of one rigid body mode 

and two flexible modes. Mathematical formulae are used to 

provide the necessary and sufficient conditions for the 

existence of every type of zero (MMP, RMP-RNMP pair and 

CMP-CNMP quartet) in the system. Particular emphasis is 

given to NMP zeros, which severely impact the closed loop 

performance of flexible systems. Based on this investigation, it 

is found that whenever CNMP zeros occur in the system 

dynamics, they always occur in a quartet of CMP-CNMP zeros 

and alternating signs of modal residues is a necessary condition 

for their occurrence. Therefore, in order to avoid CNMP zeros 

in the system dynamics, avoiding an alternating sequence of 

modal residue signs is a sufficient condition. The signs of 

modal residues are closely tied to the location of actuators and 

sensors on a flexible system through the mode shapes of the 

associated flexible modes [24]. The mathematical insight from 

this investigation can be combined with the knowledge of 

mode shapes of specific flexible systems that can be 

approximated by an undamped three-DoF flexible system 

model. This will enable optimal placement of actuators and 

sensors in order to avoid NMP zeros.  

This investigation also reveals that the occurrence of 

CNMP zeros in undamped three-DoF flexible systems with 

closely spaced flexible modes is very sensitive to variations in 

the modal residues and by extension very sensitive to variations 

in physical parameters of the flexible systems [21]. This 

phenomenon is usually observed in the dynamics of flexure 

mechanisms that make use of symmetric/periodic building 

blocks (or flexure modules) to achieve large range of motion, 

high constraint direction stiffness, and low sensitivity to 

thermal effects [51]. The symmetric/periodic structure gives 

rise to closely spaced flexible modes and a large range of 

motion gives rise to geometric non-linearities that lead to 

varying system parameters [21-22].  

In this paper, we only presented an investigation on the 

zeros of an undamped flexible system. In the future, we will 

also investigate the zero dynamics of damped flexible systems 

and draw key physical insights on the impact of damping on 

zero dynamics. We will use these insights to choose actuator-

sensor location and damping strategies to show how NMP 

zeros can be eliminated from the dynamics of large-range 

multi-axis flexure mechanisms.  
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