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a b s t r a c t 

The objective of this paper is to propose a novel nonlinear dynamic model for parallel- 

ogram flexure mechanisms. First, Hamilton’s principle is used to derive the equations of 

motion of the system and the corresponded boundary conditions. These equations are then 

employed to find the natural frequencies and mode shapes of the flexure. Afterwards, La- 

grange equations are utilized to derive the temporal equations of motion. By eliminating 

the terms containing time derivatives, the static response of the parallelogram mecha- 

nism is studied and the accuracy of the proposed model is verified by comparing load- 

displacement response of the system with those reported in previous studies. Next, the 

multiple scales perturbation technique is used to derive analytical expressions for the time 

response of the flexure. Analytical findings are compared with numerical ones and close 

agreement is observed. Finally, the response of the system to the harmonic base excitation 

is analytically studied and frequency responses of the system are obtained in the near res- 

onance case. The presented work can be used as a guideline for vibration analyses of more 

complex compliant modules. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Flexure mechanisms provide guided motion via elastic deformation of their elements. These mechanisms have several

advantages comparing to their traditional counterparts. For example, flexure mechanisms do not suffer from backlash, wear

and friction, don’t require any assembly and lubrication, and can provide precise and repeatable motion in specific directions.

Due to these specifications, they have been extensively employed in high precision applications such as surgical tools [1,2] ,

micro-grippers [3] , micro/nano manipulators [4-6] and energy harvesting devices [7,8] . 

Beams are the most important components of compliant mechanisms [9-11] . Due to the specific applications such as mi-

cro/nano manipulations and energy harvesting systems, the beams in a flexure mechanism undergo relatively large displace-

ments to provide the motion stage with extended travel range. Consequently, geometric nonlinearities are usually activated

in them. When these nonlinearities come into play, the analysis of the system becomes more complicated. So far, researchers

have employed various methods for analyzing the nonlinear behavior of beams in flexure systems. These methods include

the pseudo-rigid body model [12-15] , elliptic integral solutions (EIS) [16] , beam constraint model (BCM) and the chained

BCM (CBCM) [17,18] . The major limitations of the pseudo-rigid body model are its dependence on the loading conditions,
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disability in properly estimating the end slope of the beam, lacking compliance-related characteristics such as elastic and

elasto-kinematic effects in the axial direction as well as low accuracy [19] . The EIS on the other hand can be employed for

finding the exact solution of the nonlinear form of Euler-Bernoulli beam problem in large deflection ranges (even more than

0.15 of the beam’s length) [20] . However, it is very complex and is not a preferred technique for intermediate displacement

ranges. The BCM can easily capture load stiffening and elasto-kinematic effects. The results of this method are valid up to

deflection ranges of 0.10 to 0.15 of the beam’s length [21] . Since the travel range in most flexure mechanisms is less than

this amount, the BCM has been widely used in the published literature to obtain the load-displacement relations of compli-

ant units. Awtar and Sen [22] developed a BCM to model the load-displacement behavior of a flexure beam in intermediate

displacement range. Their formulation was later used in [23-25] to analyze the static behavior of more complex compliant

units. The behavior of the flexure mechanisms can also be studied using CBCM. In this method, the structure is divided

into finite elements, whose individual deflection could be considered small [26] . CBCM can properly capture even very large

deflections of the compliant units. When using the CBCM, the load-displacement relation of each element has to be stated

in terms of the global coordinate system. So, compared with BCM, the major drawback of the CBCM is its tremendous an-

alytical effort required for transforming the load-displacement relations from the element coordinate system to the global

one. Moreover, in this technique, the internal loads and displacements has to be eliminated from the element equations, so

that the mechanism’s behavior can be solely stated in terms of the end loads and stage’s displacements which may require

much additional analytical attempts. 

The performance of the flexure mechanisms usually suffer from the error motions. In an ideal condition, a flexure mech-

anism shall provide negligible stiffness in the direction of the desired path, while offering infinite stiffness in the directions

perpendicular to it. Different strategies can be employed to achieve this ideal condition. For example, a commonly used

approach is to stiff an intermediate section in the constitutive beams. It has been shown in different researches [10,20] that

an intermediate rigid or even semi-rigid element in the beams of a flexure can improve the planar trajectories of the mo-

tion stage. Another technique which can be utilized for improving the motion characteristics of a compliant mechanism is

to synthesize the fundamental compliant units either in serial or in parallel. For example, by using two flexure beams in

parallel, a P-flexure can be established. Two P-flexures placed in series, form a double parallelogram (DP) flexure, and two

parallel DPs creates a paired double parallelogram (DP-DP) flexure. The static behavior of these flexures have been well-

studied in the prior arts [10,11,22] and closed-form compact formulations are available for their DoF and DoC stiffnesses as

well as their error motions. 

As it is observed, most of the analyses carried out in the published literature concern about the static behavior of the

flexure mechanisms and their dynamic behavior has not received sufficient attention yet. As these mechanisms are usually

designed for large displacement ranges, any investigation of their dynamic behavior should consider geometric nonlineari-

ties, which in turn will severely intricate the analysis. Attempts for studying the dynamic behavior in flexure mechanisms are

mostly restricted to the case of simple compliant units such as flexure beams. For example, Moeenfard and Awtar [27] stud-

ied the nonlinear vibration of a flexure beam (as a fundamental element in flexure mechanisms) with a tip mass. This

work was extended in [28] by considering a variable cross section for the beam and horizontal and axial eccentricity of

the tip mass. Silva and Daqaq [29] investigated the nonlinear flexural response of a slender cantilever beam of constant

thickness and linearly varying width to a primary resonance excitation. Sayag and Dowell [30] performed a computational

and experimental study on a uniform cantilever beam with a tip mass under base excitations. Radgolchin and Moeenfard

[31] analytically modeled the nonlinear flexural-extensional vibration of flexure beams with an interconnected compliant

element. Dynamic stiffness matrix (DSM) method has also been employed by the researchers to study the vibrational re-

sponse of different types of flexure beams. Banerjee [32] outlined a general theory for developing the DSM of structural

elements. Later, he [33] derived the dynamic stiffness matrix of a uniform rotating thin beam under the presence of an ax-

ial force at the outboard end of the beam. Then the application of this method to the free vibration analysis of uniform and

non-uniform beams was demonstrated. This work was extended in [34] to include the effect of an arbitrary hub radius. Ling

et al. [35] employed the DSM approach to analyze the free vibration of flexure hinges based on non-uniform Timoshenko

beam theory. 

Except flexure beams, dynamic analyses of more complicated compliant units have also been considered by previous

researchers. For example, Zhou et al. [36] addressed the problem of dynamic modeling of a typical flexure stage with

application in a micro-machining system. They employed a lumped parameter model for their nonlinear dynamic formu-

lations. Ling [37] presented a two-port dynamic stiffness model to describe the simultaneous kinetostatic and dynamic

of some popular bridge-type compliant mechanisms. Pagani et al. [38] presented an exact DSM formulation to study the

free vibration characteristics of solid and thin-walled structures using one-dimensional higher-order theories. Tanksale and 

Gandhi [39] proposed a novel dynamic displacement amplification method using compliant mechanisms. They used a linear

lumped parameter model for formulating their dynamic amplifier. Deijl et al. [40] presented theoretical and experimen-

tal dynamic of a statically balanced compliant rotational power transmission mechanism, designed based on kinematics

of the Oldham coupling. They proposed a fast and flexible generic model based on multi-body dynamics, which facil-

itated the design and implementation of this compliant transmission couplings in dynamic applications. Their dynamic

model was developed using a lumped parameter model and the mass and stiffness distribution were ignored in their

research. Zhang et al. [41] presented a novel design on a large range compliant XY nano manipulator with spatial con-

straints to reduce parasitic motions. Their simulations were based on the transfer function approach which implicitly in-

dicates the linearity assumption in their formulations. Cui et al. [42] presented a linearized lumped parameter dynamic
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model for a flexural system with multiple double parallelogram flexure modules. They used their model to provide de-

sign recommendations for avoiding complex non-minimum phase zeros in the non-collocated frequency response of the

system. 

As briefly reviewed, dynamic analyses of basic flexure modules have not been well-investigated in the previous studies.

On the other hand, compliant mechanisms are well suited for various applications such as compact and affordable motion

stages for semiconductor wafer inspection [43] and micro electro mechanical system scanners for high-speed imaging [44] .

In these applications, the flexure system experiences severe dynamic movements and the designer has to simultaneously

achieve large range, high precision, and high-speed [42] . So, the prior knowledge of the dynamic model for these systems

will help the designer to ensure stability and robustness of the feedback control system with hardware in the loop. Among

a few studies about the dynamic modeling of flexure modules, lumped parameter models have been paid more attention.

The accuracy of lumped models can be improved by taking the distribution of mass and stiffness into account. So, as a

starting point for broader investigations, in this paper, we will propose a novel dynamic model for a P-flexure. The proposed

procedure considers the effect of geometric nonlinearities and eccentricity of the stage. The problem is first modeled using

the Hamilton’s principle. Then, the mode shapes of the system are derived and the effect of different design parameters

on the natural frequencies of the system are studied. Moreover, by using a single mode assumption, the nonlinear free and

forced vibration of the P-flexure is analytically formulated. 

2. Mathematical modeling 

A P-flexure with two identical flexure beams and with dimensional specifications shown in Fig. 1 is considered. In this

figure, 2 ̂ b and L are respectively the thickness and the length of the flexure beams and 2 ̂ t m 

and 2 ̂  d are some geometrical

parameters specifying the dimensions of the stage. The system is assumed to be under harmonic base excitation of ˆ z ( ̂ t ) =
ˆ Z b sin �ˆ t . In this section, by employing Hamilton’s principle, the nonlinear governing partial differential equations of motion

of the system will be derived. 

Fig. 1. Schematic view of a P-flexure. 

Based on the Hamilton’s principle [45] ∫ ˆ t 2 

ˆ t 1 

(
δ ˆ T − δ ˆ π + δ ˆ W ext 

)
d ̂ t = 0 (1)

where in this equation, δ is the variation operator, ˆ t 1 and 

ˆ t 2 are two arbitrary times, ˆ T and ˆ π are the total kinetic and

potential energies of the system respectively and δ ˆ W ext is the virtual work done by non-conservative loads applied to the

system. 

Flexure mechanisms can be designed for relatively large range positioning applications. So, their stiffness in the trans-

verse direction (in this case ˆ z ) shall be minimum. Consequently, these mechanisms are made up of long slender beams

to facilitate movement in the transverse direction. These thin beams can be accurately modeled via Euler-Bernoulli beam

theory which have already been extensively employed for simulating static and dynamic behavior of slender flexure beams

[28] . Based on this theory, the energy associated with the rotation of the beam’s cross sections is negligible compared to

the corresponded translational energy. 

Large range displacements in flexure mechanisms activate the geometric nonlinearities in the system. The nonlinear von-

Karman strain in an infinitesimal element of the Euler-Bernoulli beams in Fig. 1 is as [23,46,47] 

ε ˆ x ̂ x , j = 

∂ ̂  u j 

∂ ̂  x 
+ 

1 

2 

(
∂ ˆ w j 

∂ ̂  x 

)2 

− ˆ z 
∂ 2 ˆ w j 

∂ ̂  x 2 
, j = 1 , 2 (2)

Please note that hereafter in this paper, the lower beam in Fig. 1 is called the first and the upper one is mentioned as

the second beam. Moreover, in Eq. (2) , ˆ u j and ˆ w j are respectively the axial and transversal displacements of an element
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placed at a distance ˆ z from the neutral axis of the j ’th beam. If the tip transverse deflection of the beams in the P-flexure is

less than 10% to 15% of the beams length, the von-Karman strain can accurately model the geometric nonlinearities in the

system. 

The total strain energy of the P-flexure shown in Fig. 1 can be obtained by simply adding the strain energies of consti-

tutive beams as 

ˆ π = 

E 

2 

2 ∑ 

j=1 

∫ ∫ ∫ 
ˆ V 

ˆ ε 2 ˆ x ̂ x , j d ̂
 V (3) 

In Eq. (3) , E and 

ˆ V are the Young’s modulus of elasticity and the volume of both beams respectively. By performing

mathematical simplifications, the above equation can be simplified as [28] 

ˆ π = 

1 

2 EA 

2 ∑ 

j=1 

∫ L 

0 

ˆ N 

2 
j 

(
ˆ x , ̂  t 
)
d ̂  x + 

EI 

2 

2 ∑ 

j=1 

∫ L 

0 

( 

∂ 2 ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  x 2 

) 2 

d ̂  x (4) 

in which A and I are respectively the area and the second moment of area around the neutral axis of each beam’s cross

section. Moreover, ˆ N j ( ̂  x , ̂  t ) is defined as 

ˆ N j 

(
ˆ x , ̂  t 
)

= EA 

⎛ ⎝ 

∂ ̂  u j 

(
ˆ x , ̂  t 
)

∂ ̂  x 
+ 

1 

2 

( 

∂ ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  x 

) 2 
⎞ ⎠ , j = 1 , 2 (5) 

It can be shown that if the axial inertia of the beam is negligible compared to the transverse one, then 

ˆ N j ( ̂  x , ̂  t ) would

have no spatial dependence and can be expressed as given in Eq. (6) [27,28] . In derivation of (6), we have implicitly assumed

that the area of cross section of beams in Fig. 1 is constant. 

ˆ N j 

(
ˆ x , ̂  t 
)

= 

EA 

L 

⎛ ⎝ ˆ u j 

(
L, ̂  t 
)

+ 

1 

2 

∫ L 

0 

( 

∂ ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  x 

) 2 

d ̂  x 

⎞ ⎠ , j = 1 , 2 (6) 

By substituting (6) into (4), the final form of the potential energy of the system is derived as 

ˆ π = 

EA 

2 L 

2 ∑ 

j=1 

⎛ ⎝ ˆ u j 

(
L, ̂  t 
)

+ 

1 

2 

∫ L 

0 

( 

∂ ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  x 

) 2 

d ̂  x 

⎞ ⎠ 

2 

+ 

EI 

2 

2 ∑ 

j=1 

∫ L 

0 

( 

∂ 2 ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  x 2 

) 2 

d ̂  x (7) 

The kinetic energy of the P-flexure ˆ T , is composed of the kinetic energies of the beams and that of the stage. 

ˆ T = 

ˆ T beams + 

ˆ T Mass (8) 

Considering the axial and transversal motions of the beams, their kinetic energy can be easily calculated by 

ˆ T beam 

= 

ρA 

2 

2 ∑ 

j=1 

∫ L 

0 

[
∂ 

∂ ̂  t 

(
ˆ z 
(

ˆ t 
)

+ 

ˆ w j 

(
ˆ x , ̂  t 
))]2 

d ̂  x + 

ρA 

2 

2 ∑ 

j=1 

∫ L 

0 

( 

∂ ̂  u j 

(
ˆ x , ̂  t 
)

∂ ̂  t 

) 2 

d ̂  x (9) 

in which ρ is the volumetric density of the beams. Moreover, assuming the rotation of the stage to be θ and the displace-

ments of its center of gravity along the ˆ x and ˆ z axes to be ˆ u CG and ˆ w CG respectively, the total kinetic energy of the stage can

be expressed as 

ˆ T Mass = 

1 

2 

ˆ M 

⎧ ⎨ ⎩ 

( 

d ̂  u CG 

(
ˆ t 
)

d ̂ t 

) 2 

+ 

( 

. 

ˆ z 
(

ˆ t 
)

+ 

d ̂  w CG 

(
ˆ t 
)

d ̂ t 

) 2 
⎫ ⎬ ⎭ 

+ 

1 

2 

ˆ J CG 
˙ θ2 
(

ˆ t 
)

(10) 

in which 

ˆ M and 

ˆ J CG are respectively the mass and the mass moment of inertia of the stage around its center of gravity.

Finally, by substituting the kinetic energies of the flexure beams ( Eq. (9) ) and the stage ( Eq. (10) ) in (8) , the total kinetic

energy of the system is derived as 

ˆ T = 

ρA 

2 

2 ∑ 

j=1 

∫ L 

0 

[
∂ 

∂ ̂  t 

(
ˆ z 
(

ˆ t 
)

+ 

ˆ w j 

(
ˆ x , ̂  t 
))]2 

d ̂  x + 

ρA 

2 

2 ∑ 

j=1 

∫ L 

0 

( 

∂ ̂  u j 

(
ˆ x , ̂  t 
)

∂ ̂  t 

) 2 

d ̂  x 

+ 

1 

2 

ˆ M 

⎧ ⎨ ⎩ 

( 

d ̂  u CG 

(
ˆ t 
)

d ̂ t 

) 2 

+ 

( 

. 

ˆ z 
(

ˆ t 
)

+ 

d ̂  w CG 

(
ˆ t 
)

d ̂ t 

) 2 

+ ˆ κ2 ˙ θ2 
(

ˆ t 
)⎫ ⎬ ⎭ 

(11) 
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in which ˆ κ is the gyration radius of the stage around its center of gravity. 

To account for modal damping of the P-flexure, we assume the whole system is vibrating in a viscously damped media

with a damping per unit length of ˆ C . So, the virtual work done by non-conservative damping forces can be found as 

δ ˆ W 

( ̂ C ) 
ext = −

∫ L 

0 

ˆ C 
∂ ˆ w j 

(
ˆ x , ̂  t 
)

∂ ̂  t 
δ ˆ w j 

(
ˆ x , ̂  t 
)
d ̂  x , j = 1 , 2 (12)

Moreover, the virtual work done by external actuating forces ˆ F ˆ x and 

ˆ F ˆ z applied to the stage’s center in the ˆ x and ẑ

directions are simply as 

δ ˆ W 

( ̂ F ) 
ext = 

ˆ F ˆ x δ ˆ u CG + 

ˆ F ˆ z δ ˆ w CG (13)

By applying the variation operator on (4) and (11) and substituting the results along with (12) into (1), while employing

the fundamental lemma of variational calculus [48] , the partial differential equations of motion as well as the natural bound-

ary conditions of the system are obtained. To present these equations more compactly, the following normalized variables

are introduced. 

x = 

ˆ x 

L 
, w j = 

ˆ w j 

L 
, u j = 

ˆ u j 

L 
, 𝓉 = 

ˆ t 

√ 

EI 

ρAL 4 

t m 

= 

ˆ t m 

L 
, d = 

ˆ d 

L 
, b = 

ˆ b 

L 
, κ = 

ˆ κ

L 
, z = ̂

 z 

L 

C = 

ˆ C L 2 √ 

ρAEI 
, B = 

AL 2 

I 
, M = 

ˆ M 

ρAL 
(14)

Using these dimensionless variables while assuming the flexure beams to have constant and identical physical and geo-

metrical specifications, the governing PDEs of motion become as 

∂ 4 w j ( x, 𝓉 ) 

∂x 4 
+ C 

∂w j ( x, 𝓉 ) 

∂ 𝓉 
− B 

∂ 

∂x 

( 

∂w j ( x, 𝓉 ) 

∂x 

( 

∂u j ( x, 𝓉 ) 

∂x 
+ 

1 

2 

(
∂w j ( x, 𝓉 ) 

∂x 

)2 
) ) 

+ 

∂ 2 

∂ 𝓉 2 

(
z ( 𝓉 ) + w j ( x, 𝓉 ) 

)
= 0 , j = 1 , 2 (15)

∂ 2 u j ( x, 𝓉 ) 

∂ 𝓉 2 
− B 

∂ 

∂x 

( 

∂u j ( x, 𝓉 ) 

∂x 
+ 

1 

2 

(
∂w j ( x, 𝓉 ) 

∂x 

)2 
) 

= 0 , j = 1 , 2 (16)

Also, the natural boundary conditions of the system are obtained as 

M 

d 2 u CG 

d 𝓉 2 
+ B 

2 ∑ 

j=1 

( 

∂u j 

∂x 
+ 

1 

2 

(
∂w j 

∂x 

)2 
) 

∣∣∣∣∣
x =1 

= 0 (17)

M 

d 2 w CG 

d 𝓉 2 
+ 

2 ∑ 

j=1 

{ 

B 

∂w j 

∂x 

( 

∂u j 

∂x 
+ 

1 

2 

(
∂w j 

∂x 

)2 
) 

−
(

∂ 3 w j 

∂x 3 

)} 

x =1 

= −M 

d 2 z ( 𝓉 ) 

d 𝓉 2 
(18)

Mκ2 d 2 

d 𝓉 2 

(
∂w 1 

∂x 

∣∣∣∣
x =1 

)
+ 

{ 

2 ∑ 

j=1 

∂ 2 w j 

∂x 2 
+ B 

2 ∑ 

j=1 

( 

∂u j 

∂x 
+ 

1 

2 

(
∂w j 

∂x 

)2 
) (

t m 

sin 

(
∂w j 

∂x 

)

+ ( −1 ) 
j−1 

( d − b ) cos 

(
∂w j 

∂x 

))
+ 

2 ∑ 

j=1 

( 

B 

∂w j 

∂x 

( 

∂u j 

∂x 
+ 

1 

2 

(
∂w j 

∂x 

)2 
) 

− ∂ 3 w j 

∂x 3 

)
×
(

−t m 

cos 

(
∂w j 

∂x 

)
+ ( −1 ) 

j−1 
( d − b ) sin 

(
∂w j 

∂x 

))}
x =1 

= 0 (19)

Moreover, the kinematic boundary conditions for this system are as 

u j ( 0 , 𝓉 ) = w j ( 0 , 𝓉 ) = 

∂w j 

∂x 

∣∣∣∣
x =0 

= 0 , j = 1 , 2 (20)

∂ w 1 

∂x 

∣∣∣∣ = 

∂ w 2 

∂x 

∣∣∣∣ (21)

x =1 x =1 
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u 1 ( 1 , 𝓉 ) = u 2 ( 1 , 𝓉 ) + 2 ( d − b ) sin 

(
∂w 1 

∂x 

∣∣∣∣
x =1 

)
(22) 

w 1 ( 1 , 𝓉 ) = w 2 ( 1 , 𝓉 ) (23) 

Eq. (20) is reflecting the clamped boundary conditions of the system. Eq. (21) denotes the fact that the slope of both

flexure beams at their connecting point to the stage are the same. Also, Eqs. (22) and (23) can be easily derived from

kinematical constraints in Fig. 1 . 

3. Natural frequencies and mode shapes 

The dynamic behavior of linear [45] and nonlinear [47] continuous systems can be approximated by linear combination

of their mode-shapes. The mode-shape of a dynamic system is a state of in or out of phase movement of the corresponded

linear un-damped homogenous system, in which all elements are vibrating with the same frequency (called the natural

frequency), but not necessarily the same amplitude. Assuming the system under study is oscillating in its n ’th mode with

the corresponded natural frequency of ω n and denoting the transverse and axial displacements of the j ’th beam in this

specific mode by ϕ 

(n ) 
j 

(x ) and ψ 

(n ) 
j 

(x ) respectively, one can say that 

w 

( n ) 
j ( x, 𝓉 ) = ϕ 

( n ) 
j ( x ) exp ( Iω n 𝓉 ) (24) 

u 

( n ) 
j ( x, 𝓉 ) = ψ 

( n ) 
j ( x ) exp ( Iω n 𝓉 ) (25) 

where I = 

√ −1 . 

By substituting (24) and (25) into the linearized, un-damped and homogenous form of (15) and (16) , we’ll get 

d 4 ϕ 

( n ) 
j ( x ) 

d x 4 
− ω 

2 
n ϕ 

( n ) 
j ( x ) = 0 , j = 1 , 2 (26) 

B 

d 2 ψ 

( n ) 
j ( x ) 

d x 2 
+ ω 

2 
n ψ 

( n ) 
j ( x ) = 0 , j = 1 , 2 (27) 

Moreover, by employing (24) and (25) into the homogeneous linearized natural and kinematic boundary conditions (17) -

(23), the following equations are derived. 

Natural boundary conditions 

B 

2 ∑ 

j=1 

dψ 

( n ) 
j 

dx 

∣∣∣∣∣
x =1 

+ Mω 

2 
n 

(
( d − b ) 

dϕ 

( n ) 
1 

dx 

∣∣∣∣
x =1 

− ψ 

( n ) 
1 ( 1 ) 

)
= 0 , j = 1 , 2 (28) 

2 ∑ 

j=1 

d 3 ϕ 

( n ) 
j 

d x 3 

∣∣∣∣∣
x =1 

+ Mω 

2 
n 

(
t m 

d 3 ϕ 

( n ) 
1 

d x 3 

∣∣∣∣
x =1 

+ ϕ 

( n ) 
1 ( 1 ) 

)
= 0 , j = 1 , 2 (29) 

2 ∑ 

j=1 

{ 

( −1 ) 
j−1 

( d − b ) B 

dψ 

( n ) 
j 

dx 
+ 

d 2 ϕ 

( n ) 
j 

d x 2 
+ t m 

d 3 ϕ 

( n ) 
j 

d x 3 

} 

x =1 

−Mω 

2 
n κ

2 
d 3 ϕ 

( n ) 
1 

d x 3 

∣∣∣∣
x =1 

= 0 , j = 1 , 2 (30) 

Kinematic boundary conditions 

ϕ 

( n ) 
j ( 0 ) = 

dϕ 

( n ) 
j 

dx 

∣∣∣∣∣
x =0 

= ψ 

( n ) 
j ( 0 ) = 0 , j = 1 , 2 (31) 

dϕ 

( n ) 
1 

dx 

∣∣∣∣
x =1 

= 

dϕ 

( n ) 
2 

dx 

∣∣∣∣
x =1 

(32) 

ψ 

( n ) 
1 ( 1 ) = ψ 

( n ) 
2 ( 1 ) + 2 ( d − b ) 

dϕ 

( n ) 
1 

dx 

∣∣∣∣
x =1 

(33) 

ϕ 

( n ) 
( 1 ) = ϕ 

( n ) 
( 1 ) (34) 
1 2 
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The solutions of (26) and (27) can be presented as follows 

ϕ 

( n ) 
j ( x ) = C ( 

n ) 
1 j 

cos ( βn x ) + C ( 
n ) 

2 j 
sin ( βn x ) + C ( 

n ) 
3 j 

cosh ( βn x ) + C ( 
n ) 

4 j 
sinh ( βn x ) , j = 1 , 2 (35)

ψ 

( n ) 
j ( x ) = C ( 

n ) 
5 j 

sin ( αn x ) + C ( 
n ) 

6 j 
cos ( αn x ) , j = 1 , 2 (36)

in which βn = 

√ 

ω n and αn = ω n / 
√ 

B . 

By utilizing (35) and (36) into the boundary conditions (28) -(34), the following system of linear algebraic equations are

obtained. 

[ A ( ω n ) ] 12 ×12 
�
 C ( 
n ) 

12 ×12 
= 

�
 0 12 ×1 (37)

In Eq. (37) , � C (n ) 
12 ×1 

is defined as � C (n ) 
12 ×1 

= [ C (n ) 
11 

C (n ) 
21 

. . . C (n ) 
61 

. 

. 

. C (n ) 
12 

C (n ) 
22 

. . . C (n ) 
62 

] T where T is the transpose operator. More-

over, the nonzero elements of [ A ( ω n )] 12 × 12 are presented in Appendix A . The nontrivial solution of Eq. (37) can be found

by setting the determinant of [ A ] equal to zero. Doing so, the natural frequencies of the system are obtained. Moreover, �C

will be equal to the eigenvector corresponded to the zero eigenvalue of [ A ]. 

In order to verify the accuracy of the presented procedure for deriving the natural frequencies and the mode-shapes, a

P-flexure with geometrical and physical specifications provided in Table 1 is considered. In this table, ˆ h is the width of the

flexure beams. 

Table 1 

Geometrical and physical specifications of the P-flexure under study. 

Parameters E ρ ˆ M L ˆ b ˆ h ˆ d ˆ t m ˆ κ

Unit Gpa kg/m 

3 kg mm mm mm mm mm mm 

Value 210 7800 0.035 300 0.5 15 15 5 9.1 

In Table 2 , the first four natural frequencies of the system are presented. In this table, the exact findings have been

compared with those of finite element simulations carried out in Abaqus and excellent agreement is observed. It has to

be noted that in FE simulations, we employed the wire element. The stage was modeled as an elastic body with the same

volumetric density and elastic modulus used for modeling the flexure beams. The connections between the beams and the

stage were chosen to be coupling . 

Table 2 

Comparison of the first four frequencies of the flexure beam ob- 

tained from the proposed analytical analysis and FEA. 

Mode number 1 2 3 4 

Analytical (Hz) 9.7958 59.2623 66.1662 163.3500 

FEA (Hz) 9.7962 59.2580 66.1700 163.3300 

Error (%) 0.0041 0.0073 0.0057 0.0122 

In Figs. 2-5 , the first four mode-shapes of the flexure is presented. In order to make the analytical and FE modes compa-

rable, they have been both normalized such that the vertical (for transverse modes) or axial (for axial modes) displacement
Fig. 2. First mode-shape of the system. 
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of the stage’s center become the same for both approaches. It is readily observed that as expected, analytical modes, per-

fectly coincides with the numerical ones. 

Fig. 3. Second mode-shape of the system. 

Fig. 4. Third mode-shape of the system. 

Fig. 5. Fourth mode-shape of the system. 

In Fig. 6 , the effects of ˆ b , L , ˆ d and 

ˆ M on the first four natural frequencies of the P-flexure is investigated. It is observed

in part (a) of this figure that with increasing ˆ b , all of the natural frequencies are increased almost linearly because of

the increase in the system’s stiffness. Also, as depicted in Fig. 6 -(b) by increasing the length of the flexure beams, the
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Fig. 6. The effect of (a) beam’s thickness (b) beam’s length (c) stage’s height and (d) stage’s mass on the first four natural frequencies of the P-flexure 

under study. 

 

 

 

 

 

 

 

 

 

 

 

 

natural frequencies of the system are decreased due to the decrease in the stiffness of the system. However, at higher

values of L , increasing the beams length has less effect on the natural frequencies. Fig. 6 -(c) shows that by increasing d̂

from 15mm to 60mm, the natural frequencies related to flexural modes (i.e. modes 1 and 3) experience a negligible increase

( 4 . 47 × 10 −2 % for the first mode and 7 . 46 × 10 −2 % for the third mode). However, as physically expected, those corresponded

to the axial modes (i.e. modes 2 and 4) remain constant. Finally, Fig. 6 -(d) reveals that by increasing the mass of the stage,

the natural frequencies corresponded to the flexural modes are decreased. Nevertheless, since even in buckling modes the

axial movement of the stage is very small, increasing the mass of the stage has no effect on the frequencies of the axial

modes of the flexure. 

4. Nonlinear analysis 

In this section, we will employ the Lagrange equations along with the already derived modes to find the governing

nonlinear temporal equations of motion. We will also present approximate analytical solutions for these equations. 

4.1. Derivations of temporal equations of motion 

We assume the dynamic response of the flexure as linear combination of its mode-shapes as 

ˆ w j 

(
ˆ x , ̂  t 
)

= 

n ∑ 

i =1 

ϕ 

( i ) 
j 

(
ˆ x 
)

ˆ q i 
(

ˆ t 
)
, j = 1 , 2 (38)

where n is the number of modes considered in the formulations. Moreover, in deriving the temporal equations of motion of

the system, it will be more convenient to relate the tip displacements of the beams to that of the stage’s center. Considering
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Fig. 1 and using kinematical relationships, this can be easily achieved as 

ˆ u 

( j ) 
tip 

(
ˆ t 
)

= 

ˆ u CG 

(
ˆ t 
)

+ ̂

 t m 

(
1 − cos 

(
θ
(

ˆ t 
)))

+ ( −1 ) 
j−1 
(

ˆ d − ˆ b 

)
sin 

(
θ
(

ˆ t 
))

, j = 1 , 2 (39) 

ˆ w CG 

(
ˆ t 
)

= 

ˆ w 

( j ) 
tip 

(
ˆ t 
)

+ ̂

 t m 

sin 

(
θ
(

ˆ t 
))

−
(

ˆ d − ˆ b 

)(
1 − cos 

(
θ
(

ˆ t 
)))

, j = 1 , 2 (40) 

in which ˆ u 
( j) 
tip 

and ˆ w 

( j) 
tip 

are the tip axial and transversal displacements of the j ’th beam respectively. 

By substituting (39) (for j = 1 ) and (38) into the strain energy (7) , one obtains 

ˆ π
(

ˆ u CG ; ˆ q 1 , ̂  q 2 , ..., ̂  q n 
)

= 

2 ∑ 

j=1 

{ 

EA 

2 L 

[ 

ˆ u CG 

(
ˆ t 
)

+ 2 ̂

 t m 

sin 

2 

( 

1 

2 

n ∑ 

i =0 

dϕ 

( i ) 
j 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)) 

( −1 ) 
j−1 
(

ˆ d − ˆ b 

)
sin 

( 

1 

2 

n ∑ 

i =0 

dϕ 

( i ) 
j 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)) 

+ 

1 

2 

∫ L 

0 

( 

n ∑ 

i =0 

dϕ 

( i ) 
j 

(
ˆ x 
)

d ̂  x 
ˆ q i 
(

ˆ t 
)) 2 

d ̂  x 

⎤ ⎦ 

2 

+ 

1 

2 

EI 

∫ L 

0 

( 

n ∑ 

i =0 

d 2 ϕ 

( i ) 
j 

(
ˆ x 
)

d ̂  x 2 
ˆ q i 
(

ˆ t 
)) 2 

d ̂  x 

⎫ ⎬ ⎭ 

(41) 

Also, employing (38) , (39) and (40) (for j = 1 ) into the kinetic energy (11) leads to 

ˆ T 
(

˙ ˆ u CG ; ˆ q 1 , ̂  q 2 , ..., ̂  q n ; ˙ ˆ q 1 , 
˙ ˆ q 2 , ..., 

˙ ˆ q n 
)

= 

2 ∑ 

j=1 

⎧ ⎨ ⎩ 

1 

2 

∫ L 

0 

ρA 

( 

˙ ˆ z ( t ) + 

n ∑ 

i =1 

ϕ 

( i ) 
j 

(
ˆ x 
)

˙ ˆ q i 
(

ˆ t 
)) 2 

d ̂  x 

⎫ ⎬ ⎭ 

+ 

1 

2 

ˆ M ̇

 ˆ u 

2 
CG 

(
ˆ t 
)

+ 

1 

2 

ˆ M 

{ 

ˆ t m 

n ∑ 

i =0 

dϕ 

( i ) 
1 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)

cos 

( 

dϕ 

( i ) 
1 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)) 

−
(

ˆ d − ˆ b 

) n ∑ 

i =0 

dϕ 

( i ) 
1 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)

sin 

( 

dϕ 

( i ) 
1 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

ˆ q i 
(

ˆ t 
)) 

+ 

n ∑ 

i =1 

ϕ 

( i ) 
1 ( L ) ̇ ˆ q i 

(
ˆ t 
)} 2 

+ 

1 

2 

ˆ M ̂  κ2 

( 

n ∑ 

i =0 

dϕ 

( i ) 
1 

(
ˆ x 
)

d ̂  x 

∣∣∣∣∣
ˆ x = L 

˙ ˆ q i 
(

ˆ t 
)) 2 

(42) 

The virtual work can also be simplified by substituting (38) into (12) and (13) as 

δ ˆ W ext 

(
ˆ u CG ; ˆ q 1 , . . . , ̂  q n ; ˙ ˆ q 1 , . . . , 

˙ ˆ q n 
)

= 

ˆ Q ˆ u δ ˆ u CG 

(
ˆ t 
)

+ 

n ∑ 

i =1 

ˆ Q 

( i ) 
ˆ q 

(
ˆ q 1 , . . . , ̂  q n ; ˙ ˆ q 1 , . . . , 

˙ ˆ q n 
)
δ ˆ q i 
(

ˆ t 
)

(43) 

in which 

ˆ Q 

(i ) 
ˆ q 

and 

ˆ Q ˆ u are defined as 

ˆ Q 

( i ) 
ˆ q 

(
ˆ q 1 , . . . , ̂  q n ; ˙ ˆ q 1 , . . . , 

˙ ˆ q n 
)

= 

ˆ F ˆ z η
( n ) 
i 

(
ˆ q 1 , . . . , ̂  q n 

)
− ˆ C 

2 ∑ 

j=1 

n ∑ 

k =1 

(
˙ ˆ q k 

∫ L 

0 

ϕ 

( k ) 
j 

(
ˆ x 
)
ϕ 

( i ) 
j 

(
ˆ x 
)

+ 3 d ̂  x 

)
(44) 

ˆ Q ˆ u = 

ˆ F ˆ x (45) 

In Eq. (44) , the parameters η(n ) 
i 

( ̂  q 1 , . . . , ̂  q n ) , i = 1 , 2 , are defined as 

η( n ) 
i 

(
ˆ q 1 , . . . , ̂  q n 

)
= 

{ 

ϕ 

( i ) 
1 

(
ˆ x 
)

+ 

dϕ 

( i ) 
1 

d ̂  x 

( 

ˆ t m 

cos 

( 

n ∑ 

k =1 

dϕ 

( k ) 
1 

d ̂  x 
ˆ q k ( t ) 

) 

−
(

ˆ d − ˆ b 

)
sin 

( 

n ∑ 

k =1 

dϕ 

( k ) 
1 

d ̂  x 
ˆ q k ( t ) 

) } 

ˆ x = L 

(46) 

Using 
−→ 

ˆ q = [ ̂  u CG 

. . 

. ˆ q 1 ˆ q 2 . . . ˆ q n ] 
T as the generalized coordinate vector in Lagrange equations, the temporal equations gov-

erning the nonlinear dynamic behavior of the system can be derived. The choice of the number of contributing modes may

affect the accuracy of the analytical findings. In the following, we will proceed the formulation by considering two modes.

However, we will show later that even a single mode assumption can perfectly capture almost the whole nonlinear dynamic

of the system. 
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In order to present the nonlinear temporal equations of motion more conveniently, first, the following normalized vari-

ables are introduced. 

q i ( t ) = 

ˆ q i 
(

ˆ t 
)

L 
, u CG ( t ) = 

ˆ u CG 

(
ˆ t 
)

L 
, t = 

ˆ t 

√ 

ˆ M L 

2 EA 

, F x = 

ˆ F ˆ x L 
2 

EI 
, F z = 

ˆ F ˆ z L 
2 

EI 
(47)

Using two modes assumption in the Lagrange equations, the following nonlinear normalized equations are obtained for

the time domain behavior of the system. 

u 

′′ 
CG ( t ) + 

2 ∑ 

j=0 

2 ∑ 

i =0 

λ( 1 ) 
i j, 1 ( q 1 , q 2 ) q 

i 
1 ( t ) q 

j 
2 ( t ) + u CG ( t ) = F x ( t ) (48)

1 ∑ 

j=0 

1 ∑ 

i =0 

λ( 2 ) 
i j, 1 ( q 1 , q 2 ) q 

′′ 
1 

i 
( t ) q 

′′ 
2 

j 
( t ) + 

2 ∑ 

j=0 

2 ∑ 

i =0 

λ( 2 ) 
i j, 2 ( q 1 , q 2 ) q 

′ 
1 

i 
( t ) q ′ 2 

j 
( t ) 

+ 

3 ∑ 

j=0 

3 ∑ 

i =0 

λ( 2 ) 
i j, 3 ( q 1 , q 2 ) q 

i 
1 ( t ) q 

j 
2 ( t ) + u CG ( t ) 

1 ∑ 

j=0 

1 ∑ 

i =0 

λ( 2 ) 
i j, 4 ( q 1 , q 2 ) q 

i 
1 ( t ) q 

j 
2 ( t ) 

+ λ( 2 ) 
z ( t ) z ′′ ( t ) = η( 2 ) 

1 ( q 1 , q 2 ) F z ( t ) 

(49)

1 ∑ 

j=0 

1 ∑ 

i =0 

λ( 3 ) 
i j, 1 ( q 1 , q 2 ) q 

′′ 
1 

i 
( t ) q 

′′ 
2 

j 
( t ) + 

2 ∑ 

j=0 

2 ∑ 

i =0 

λ( 3 ) 
i j, 2 ( q 1 , q 2 ) q 

′ 
1 

i 
( t ) q 

′ 
2 

j 
( t ) 

+ 

3 ∑ 

j=0 

3 ∑ 

i =0 

λ( 3 ) 
i j, 3 ( q 1 , q 2 ) q 

i 
1 ( t ) q 

j 
2 ( t ) + u CG ( t ) 

1 ∑ 

j=0 

1 ∑ 

i =0 

λ( 3 ) 
i j, 4 ( q 1 , q 2 ) q 

i 
1 ( t ) q 

j 
2 ( t ) 

+ λ( 3 ) 
z ( t ) z ′′ ( t ) = η( 2 ) 

2 ( q 1 , q 2 ) F z ( t ) 

(50)

In these equations, the prime indicates differentiation with respect to normalized time t . The parameters λ(l) 
i j,k 

( q 1 , q 2 )

and λ(l) 
z are some lengthy functions of system specifications as well as the generalized coordinates q 1 and q 2 . The analytical

formula of these parameters are provided in Appendix B . 

In order to verify the accuracy of the proposed formulations, the P-flexure with specifications given in Table 1 is consid-

ered. By eliminating terms containing time derivatives in Eqs. (48) - (50) , the static behavior of the system can be investigated.

In Fig. 7 -(a), the parameters q 1 and q 2 have been plotted versus the applied load F z . As this figure suggests, the contribution

of the second mode in the system’s deflection is several orders of magnitude smaller than that of the first mode. So, con-

sideration of the second mode in the formulations does not provide any appreciable improvement in predicting the static

behavior of the system. Moreover, in Fig. 7 -(b), the axial displacement of the stage’s center has been depicted against its

transverse one. The results of this Figure is compared with analytical findings of Awtar and Sen [23] and excellent agreement

is observed. 

Fig. 7. (a) Generalized coordinates q 1 and q 2 versus the applied normalized force (b) Axial versus transverse displacement of the stage’s center. 

To make sure that the contribution of the second mode is also negligible in the dynamic response, free vibration of the

system with displacement initial conditions chosen from Fig. 7 -(a) (and with zero initial velocities) is simulated numerically.
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Fig. 8 illustrates these dynamic responses. Comparing the values of the q 1 ( t ) and q 2 ( t ) implicitly shows that involvement of

the second mode in dynamic simulations only increases the numerical effort f or solving the equations of motion without

any significant impact on the results. So, in the rest of this paper, the simulations will be carried out by considering only

one mode. 

Fig. 8. Nonlinear free vibration response of the system using a two mode assumption. 

By neglecting the Eq. (50) (which corresponds to the response associated with the second mode) and setting q 2 (t) = 0

in (48) and (49) , the governing dynamic equations of motion are reduced to 

u 

′′ 
CG ( t ) + 

2 ∑ 

i =0 

λ( 1 ) 
i 0 , 1 ( q 1 ( t ) , 0 ) q i 1 ( t ) + u CG ( t ) = F x ( t ) (51) 

1 ∑ 

i =0 

λ( 2 ) 
i 0 , 1 ( q 1 , 0 ) q 

′′ 
1 

i 
( t ) + 

2 ∑ 

i =0 

λ( 2 ) 
i 0 , 2 ( q 1 , 0 ) q 

′ 
1 

i 
( t ) + 

3 ∑ 

i =0 

λ( 2 ) 
i 0 , 3 ( q 1 , 0 ) q i 1 ( t ) 

+ u CG ( t ) 
1 ∑ 

i =0 

λ( 2 ) 
i 0 , 4 ( q 1 , 0 ) q i 1 ( t ) + λ( 2 ) 

z z 
′′ ( t ) = η( 2 ) 

1 ( q 1 , 0 ) F z ( t ) 

(52) 

To solve (51) and (52) analytically using the perturbation theory, the nonlinear terms in these equations shall be replaced

by their Taylor series expansion. Doing so, one gets 

u 

′′ 
CG ( t ) + 

4 ∑ 

i =1 

γ ( 1 ) 
i, 1 

q i ( t ) + u CG ( t ) = 0 (53) (
1 + 

4 ∑ 

i =1 

γ ( 2 ) 
i, 1 

q i ( t ) 

)
q ′′ ( t ) + γc q 

′ ( t ) + q 
′ 2 ( t ) 

4 ∑ 

i =0 

γ ( 2 ) 
i, 2 

q i ( t ) + 

6 ∑ 

i =1 

γ ( 2 ) 
i, 3 

q i ( t ) + 

4 ∑ 

i =0 

γ ( 2 ) 
i, 4 

u CG ( t ) q 
i ( t ) = γz sin ( �t ) (54) 

In obtaining (54) , we have also replaced the base excitation term with a harmonic function as depicted in Fig. 1 . The

parameters γ (k ) 
i, j 

, γ c and γz in these equations have been presented in Appendix C . Please note that for notational simplicity,

in Eqs. (53) and (54) , the variable q 1 has been replaced with a new variable q . Using the specifications given in Table 1 ,

the numerical values of the coefficients appeared in Eqs. (53) and (54) (except γ c and γz ) are compiled in Table 3 . As it

is observed, most of the coefficients in these equations are very small and have negligible effects on the response. In fact,

one can say that the only coefficients that has impact on the nonlinear dynamic responses are γ (1) 
2 , 1 

, γ (2) 
1 , 3 

, γ (2) 
3 , 3 

and γ (2) 
1 , 4 

.

The knowledge of the order of magnitude of these coefficients will be employed in the next section along with the multiple

time scales perturbation technique, to provide analytical solution for the governing temporal equations of motion. 

4.2. Perturbation solution 

In order to analytically model the governing Eqs. (53) and (54) , the multiple time scales perturbation technique is em-

ployed. Based on this technique, the time scales T i = ε i t , ( i = 0 , 1 ) are defined. The time derivatives d ( )/ dt and d 2 ( )/ dt 2 can

be expanded in terms of T i s as 

d 

dt 
( ) = 

∂ 

∂ T 
( ) + ε 

∂ 

∂ T 
( ) + O 

(
ε 2 
)

0 1 
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Table 3 

Value of the coefficients appeared in equations of motion (53) and (54) . 

Parameter γ (1) 
1 , 1 

γ (1) 
2 , 1 

γ (1) 
3 , 1 

γ (1) 
4 , 1 

Value −1 . 5583 × 10 −15 0.0887 5 . 2022 × 10 −22 3 . 0957 × 10 −16 

Parameter γ (2) 
1 , 1 

γ (2) 
2 , 1 

γ (2) 
3 , 1 

γ (2) 
4 , 1 

Value 9 . 5432 × 10 −08 −1 . 3441 × 10 −11 2 . 7683 × 10 −14 6 . 865 × 10 −19 

Parameter γ (2) 
0 , 2 

γ (2) 
1 , 2 

γ (2) 
2 , 2 

γ (2) 
3 , 2 

Value 4 . 7716 × 10 −08 −1 . 3441 × 10 −11 1 . 5931 × 10 −14 1 . 4945 × 10 −18 

Parameter γ (2) 
4 , 2 

γ (2) 
1 , 3 

γ (2) 
2 , 3 

γ (2) 
3 , 3 

Value 8 . 8676 × 10 −22 6 . 3319 × 10 −06 1 . 5982 × 10 −15 0.0606 

Parameter γ (2) 
4 , 3 

γ (2) 
5 , 3 

γ (2) 
6 , 3 

γ (2) 
0 , 4 

Value 8 . 8921 × 10 −22 −6 . 3498 × 10 −16 −4 . 9475 × 10 −29 −6 . 0069 × 10 −15 

Parameter γ (2) 
1 , 4 

γ (2) 
2 , 4 

γ (2) 
3 , 4 

γ (2) 
4 , 4 

Value 0.6837 6 . 0159 × 10 −22 −4 . 7732 × 10 −15 −5 . 5786 × 10 −28 
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d 2 

d t 2 
() = 

∂ 2 

∂T 2 
0 

() + 2 ε 
∂ 2 

∂ T 0 ∂ T 1 
() + ε 2 

∂ 2 

∂T 2 
1 

() + O 

(
ε 3 
)

(55)

A physical understanding of the system reveals that the deflection of the flexure beams is one order of magnitude smaller

than their length. Moreover, it is also observed that the axial displacements are one order of magnitude smaller than that

of the transverse ones. So, by considering the normalization scheme presented in Eq. (47) , one can say 

q ( t ) ≈ O ( ε ) , u CG ( t ) ≈ O 

(
ε 2 
)

(56)

Using Eq. (56) , the perturbation expansion of q and u CG is expressed as 

q ( T 0 , T 1 ) = ε ( q 0 ( T 0 , T 1 ) + ε q 1 ( T 0 , T 1 ) ) (57)

u CG ( T 0 , T 1 ) = ε 2 ( u CG, 0 ( T 0 , T 1 ) + ε u CG, 1 ( T 0 , T 1 ) ) (58)

Considering the order of magnitude of the coefficients given in Table 3 , it is assumed that 

O 

(
γ ( k ) 

i, j 

)
= ε k , k ≥ 3 , γ ( k ) 

i, j 
/ ∈ 

{
γ ( 1 ) 

2 , 1 
, γ ( 2 ) 

3 , 3 
, γ ( 2 ) 

1 , 4 
, γ ( 2 ) 

1 , 3 

}
(59)

Furthermore, the damping coefficient which reflects the modal damping of the first mode is supposed to be small. So,

we use the following scaling scheme for γ c . 

γc = ε ̄γc (60)

4.2.1. Nonlinear free vibration analysis 

In the case of the free vibration, the excitation term (i.e. γz ) can be dropped. Moreover, by substituting (55) and (57) -(60)

into (53) and (54) , while collecting like powers of ɛ , the following equations are obtained. ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 q 0 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 0 ( T 0 , T 1 ) = 0 ( 61 )

∂ 2 q 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 1 ( T 0 , T 1 ) = −2 

∂ 2 q 0 ( T 0 , T 1 ) 

∂ T 0 ∂ T 1 
− γ c 

∂q 0 ( T 0 , T 1 ) 

∂T 0 
( 62 )⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 u CG , 0 ( T 0 , T 1 ) 

∂T 2 
0 

+ u CG , 0 ( T 0 , T 1 ) = −γ ( 1 ) 
2 , 1 

q 2 0 ( T 0 , T 1 ) ( 63 )

∂ 2 u CG , 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ u CG , 1 ( T 0 , T 1 ) = −2 

∂ 2 u CG , 0 ( T 0 , T 1 ) 

∂ T 0 ∂ T 1 
− 2 γ ( 1 ) 

2 , 1 
q 0 ( T 0 , T 1 ) q 1 ( T 0 , T 1 ) ( 64 

The solution of (61) is as 

q 0 ( T 0 , T 1 ) = A ( T 1 ) exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
+ cc (65)

in which A is a complex function of T 1 and cc denotes the complex conjugate of all of the proceeding terms. By substituting

(65) into (63) and solving the outcome, the response associated with u CG , 0 is derived as 

u CG, 0 ( T 0 , T 1 ) = B ( T 1 ) exp ( I T 0 ) + 

1 

4 γ ( 2 ) 
1 , 3 

− 1 

γ ( 1 ) 
2 , 1 

A 

2 ( T 1 ) exp 

(
2 I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
− 2 γ ( 1 ) 

2 , 1 
A ( T 1 ) ̄A ( T 1 ) + cc (66)
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where B is an unknown complex function which will be determined by eliminating secular terms from the response of (64).

Furthermore, by substituting (65) in (62) and performing some mathematical simplifications, one gets 

∂ 2 q 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 1 ( T 0 , T 1 ) = −I 

√ 

γ ( 2 ) 
1 , 3 

(
2 

d A ( T 1 ) 

dT 1 
+ γ c A ( T 1 ) 

)
exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
+ cc (67) 

Any solution of (67) will contain a secular term unless the coefficient of exp ( I 

√ 

γ (2) 
1 , 3 

T 0 ) in the right-hand side of this

equation becomes zero. So, to remove secular terms, we assume 

2 

d A ( T 1 ) 

d T 1 
+ γ̄c A ( T 1 ) = 0 (68) 

To solve this equation, A ( T 1 ) is expressed in polar form as 

A ( T 1 ) = 

1 

2 

a ( T 1 ) exp ( Iφ( T 1 ) ) (69) 

By substituting (69) into (68) and separating the real and imaginary parts, it is concluded that 

d a ( T 1 ) 

d T 1 
+ 

1 

2 

γ̄c a ( T 1 ) = 0 (70) 

a ( T 1 ) 
dφ( T 1 ) 

d T 1 
= 0 (71) 

The solution of these equations can be easily found as 

a ( T 1 ) = a 0 exp 

(
−1 

2 

γ̄c T 1 

)
(72) 

φ( T 1 ) = φ0 (73) 

Now by putting (72) and (73) into (69) and employing the outcome into (65) -(67), q 0 ( T 0 , T 1 ) , u CG , 0 ( T 0 , T 1 ) and the par-

ticular solution of q 1 ( T 0 , T 1 ) are derived as 

q 0 ( T 0 , T 1 ) = 

1 

2 

a 0 exp 

(
−1 

2 

γ̄c T 1 

)
exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 + I φ0 

)
+ cc (74) 

u CG, 0 ( T 0 , T 1 ) = B ( T 1 ) exp ( I T 0 ) + 

{
exp 

((
4 

√ 

γ ( 2 ) 
1 , 3 

T 0 + 2 φ0 

)
I 

)
− 2 

(
4 γ ( 2 ) 

1 , 3 
− 1 

)}
× a 2 γ ( 1 ) 

2 , 1 
exp ( −γ̄c T 1 ) 

4 

(
4 γ ( 2 ) 

1 , 3 
− 1 

) + cc (75) 

q 1 ( T 0 , T 1 ) = 0 (76) 

Now by employing (74) -(76), Eq. (64) is simplified as 

∂ 2 u CG, 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ u CG, 1 ( T 0 , T 1 ) = 2 I 
d B ( T 1 ) 

d T 1 
exp ( I T 0 ) − 2 I 

γ̄c γ
( 1 ) 

2 , 1 

√ 

γ ( 2 ) 
1 , 3 

4 γ ( 2 ) 
1 , 3 

− 1 

a 2 0 

× exp 

(
−γ̄c T 1 + 2 I 

(
2 

√ 

γ ( 2 ) 
1 , 3 

T 0 + φ0 

))
+ cc (77) 

To avoid secular terms in response of (77) , the coefficients of exp ( IT 0 ) in this equation has to be set to zero. 

d B ( T 1 ) 

d T 1 
= 0 (78) 

Assuming the following polar form for B ( T 1 ) , 

B ( T 1 ) = 

1 

2 

b ( T 1 ) exp ( Iϑ ( T 1 ) ) (79) 

substituting it in (78) and separating the real and imaginary parts of the resulting equation, leads to 

d b ( T 1 ) 

d T 1 
= 0 (80) 

b ( T 1 ) 
dϑ ( T 1 ) 

d T 1 
= 0 (81) 

The solution of (80) and (81) are respectively b ( T 1 ) = b 0 and ϑ( T 1 ) = ϑ 0 which upon substitution in (79) , results in 

B ( T 1 ) = 

1 

b 0 exp ( I ϑ 0 ) (82) 

2 
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Now by substituting (69) and (82) into (66) along with considering (72) and (73) , u CG , 0 ( T 0 , T 1 ) is found as 

u CG, 0 ( T 0 , T 1 ) = 

1 

2 

b 0 exp ( I ( T 0 + ϑ 0 ) ) + 

(
exp 

(
4 I 

√ 

γ ( 2 ) 
1 , 3 

+ 2 I φ0 

)
− 8 γ ( 2 ) 

1 , 3 
+ 2 

)
× γ ( 1 ) 

2 , 1 
a 2 0 exp ( ̄γc T 1 ) 

4 

(
4 γ ( 2 ) 

1 , 3 
− 1 

) + cc (83)

Finally, by considering Eqs. (74) and (83) , the transverse and axial dynamic of the P-flexure up to the zeroth order

perturbation expansion are reduced to 

q ( t ) = 

1 

2 

a exp 

(
−1 

2 

γc t 

)
cos 

(√ 

γ ( 2 ) 
1 , 3 

t + φ0 

)
(84)

u CG ( t ) = b cos ( t + ϑ 0 ) −
γ ( 1 ) 

2 , 1 
a 2 

2 − 8 γ ( 2 ) 
1 , 3 

exp ( −γc t ) 

(
1 + cos 

(
2 

(√ 

γ ( 2 ) 
1 , 3 

t + φ0 

)) )
(85)

in which a = ε a 0 , b = ε 2 b 0 . 

To examine the accuracy of the proposed analytical closed-form expressions, again, the P-flexure with specifications given

in Table 1 with zero damping coefficient is considered. The initial velocities are set to zero and the initial displacements are

selected from the static deflection curve given in Fig. 7 -(b). In Figs. 9 -(a) and (b), the free transverse and axial vibration

response of this system are illustrated respectively. It is observed that the results of the presented analytical technique

matches perfectly with those obtained from numerical calculations. The phase plane plots of q ( t ) and u CG ( t ) are also depicted

respectively in parts (c) and (d) of this figure. The latter clearly reveals that the axial dynamic contains high frequency low

amplitude oscillations (originated from high axial elastic stiffness) as well as a low frequency high amplitude one (resulted

from elasto-kinematic effects). 

Fig. 9. Free vibration response of the un-damped P-flexure (a) transverse and (b) axial time history response (c) phase plane of the transverse and (d)
axial response. 
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Fig. 10 shows the same results for the damped system with a nominal dimensionless damping value of γc = 7 . 562 × 10 −4 

(corresponded to ˆ C = 5 Ns/m ). It is again observed that the results are in good agreement. But this time, the analytical and

numerical findings of the transverse and axial vibration frequencies have 1.30% and 1.42% discrepancies. 

Fig. 10. Free vibration response of the damped P flexure with γc = 7 . 562 × 10 −4 (a) Transverse response (b) axial response (c) phase plane results of the

transverse response (d) phase plane results of the axial response. 

Fig. 11 shows the dynamic trajectory of the center of gravity of the stage using two different horizontal axes on the top

and the bottom. The curve corresponded to the latter, presents the details of the planar motion trajectory, while the one

related to the former, verifies that even in the dynamic state, the error motion in P flexures is very small and the resulted

guided motion is almost a straight line. 

4.2.2. Near resonance response 

The forced vibration analysis of the P-flexure under harmonic base movements will be analyzed in this section. A possible

application for this case is energy harvesting from vibrating environments. In energy scavenging devices, it is usually tried to

set the resonant frequency of the system to the excitation frequency of the media [49] . This, results in greater displacements

of the motion stage which in turn would be accompanied by more harvested power. Considering these points, we will only

analyze the forced vibration of the system in the near resonant state. Comparing to the free vibration case, we will start

the perturbation expansions from a lower power of ɛ to account for larger displacements resulted from near resonance

excitation. So, one can say 

q ( T 0 , T 1 ) = q 0 ( T 0 , T 1 ) + ε q 1 ( T 0 , T 1 ) (86) 

u CG ( T 0 , T 1 ) = ε u CG, 0 ( T 0 , T 1 ) + ε 2 u CG, 1 ( T 0 , T 1 ) (87) 
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Fig. 11. Planar dynamic trajectory of the center of gravity of the stage. 

 

 

 

 

 

 

 

 

 

 

 

 

Since as given in Appendix C , γz is some coefficient of ˆ Z b /L (which is O ( ɛ )), one can assume that the flexure is under

soft excitation. 

γz = ε ̄γz (88)

Also, to seek for mathematical simplicity and by considering Table 3 , we employ the following scaling factors for some

of the coefficients of the differential Eq. (54) . 

γ ( 2 ) 
3 , 3 

= ε ̄γ ( 2 ) 
3 , 3 

, γ ( 2 ) 
1 , 4 

= ε ̄γ ( 2 ) 
1 , 4 

(89)

Now, by substituting Eqs. (55) , (59) , (60) and (86) -(89) into (53) and (54) , while collecting the coefficients of the like

powers of ɛ , one gets ⎧ ⎪ ⎨ ⎪ ⎩ 

∂ 2 q 0 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 0 ( T 0 , T 1 ) = 0 ( 90 )

∂ 2 q 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 1 ( T 0 , T 1 ) = −2 

∂ 2 q 0 ( T 0 , T 1 ) 

∂ T 0 ∂ T 1 
− γ c 

∂q 0 ( T 0 , T 1 ) 

∂T 0 
− γ ( 2 ) 

3 , 3 
q 3 0 ( T 0 , T 1 ) + γ z sin ( �T 0 ) ( 91 ) ⎧ ⎪ ⎨ ⎪ ⎩ 

∂ 2 u CG , 0 ( T 0 , T 1 ) 

∂T 2 
0 

+ u CG , 0 ( T 0 , T 1 ) = −2 γ ( 1 ) 
2 , 1 

q 0 ( T 0 , T 1 ) q 1 ( T 0 , T 1 ) ( 92 )

∂ 2 u CG , 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ u CG , 1 ( T 0 , T 1 ) = −2 

∂ 2 u CG , 0 ( T 0 , T 1 ) 

∂ T 0 ∂ T 1 
− γ ( 1 ) 

2 , 1 
q 2 1 ( T 0 , T 1 ) ( 93 )

The solution of the Eq. (90) is as already been given in (65) . So, by substituting (65) into (91), it is converted to 

∂ 2 q 1 ( T 0 , T 1 ) 

∂T 2 
0 

+ γ ( 2 ) 
1 , 3 

q 1 ( T 0 , T 1 ) = −I ̄γc A ( T 1 ) 

√ 

γ ( 2 ) 
1 , 3 

exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)

−( A ( T 1 ) ) 
3 γ̄ ( 2 ) 

3 , 3 
exp 

(
3 I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
− 3 A ( T 1 ) 

(
Ā ( T 1 ) 

)2 
γ̄ ( 2 ) 

3 , 3 
exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
− 2 I 

d A ( T 1 ) 

d T 1 

√ 

γ ( 2 ) 
1 , 3 

exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
−1 

2 

I ̄γz exp ( I�T 0 ) + cc (94)

Since the system is excited in near resonance state, it is reasonable to assume � ≈
√ 

γ (2) 
1 , 3 

. On the other hand, the terms

containing exp ( I 

√ 

γ (2) 
1 , 3 

T 0 ) , can produce secular terms in response of (94) . To investigate the near resonance response, it is

assumed that 

� = 

√ 

γ ( 2 ) 
1 , 3 

+ εσ (95)
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where σ is called the detuning parameter. Consequently, we can conclude 

exp ( I�T 0 ) = exp ( σ T 1 ) exp 

(
I 

√ 

γ ( 2 ) 
1 , 3 

T 0 

)
(96) 

By substituting (69) and (96) into the right hand side of (94) , setting the coefficients of the terms capable of producing

secular response to zero and performing some mathematical manipulations, the following equation is obtained. 

1 

2 

I ̄γc a ( T 1 ) 

√ 

γ ( 2 ) 
1 , 3 

+ 

3 

8 

γ̄ ( 2 ) 
3 , 3 

a 3 ( T 1 ) + I 

√ 

γ ( 2 ) 
1 , 3 

da ( T 1 ) 

d T 1 
−
√ 

γ ( 2 ) 
1 , 3 

a ( T 1 ) 
dφ( T 1 ) 

d T 1 
+ 

1 

2 

I ̄γz exp ( I ( σ T 1 − φ( T 1 ) ) ) = 0 (97) 

Separating the real and imaginary parts of (97) , leads to 

3 

8 

γ̄ ( 2 ) 
3 , 3 

a 3 ( T 1 ) −
√ 

γ ( 2 ) 
1 , 3 

a ( T 1 ) 
dφ( T 1 ) 

d T 1 
= 

1 

2 

γ̄z sin ( Y ( T 1 ) ) (98) (
1 

2 

γ̄c a ( T 1 ) + 

da ( T 1 ) 

d T 1 

)
×
√ 

γ ( 2 ) 
1 , 3 

= −1 

2 

γ̄z cos ( Y ( T 1 ) ) (99) 

in which 

Y ( T 1 ) = σ T 1 − φ( T 1 ) (100) 

Using (100) , the non-autonomous Eq. (98) can be transformed to the following autonomous equation. 

3 

8 

γ̄ ( 2 ) 
3 , 3 

a 3 ( T 1 ) −
√ 

γ ( 2 ) 
1 , 3 

a ( T 1 ) 

(
σ − dY ( T 1 ) 

d T 1 

)
= 

1 

2 

γ̄z sin Y ( T 1 ) (101) 

In the steady-state, the dependence of a ( T 1 ) and Y( T 1 ) to T 1 vanishes. So, by squaring both sides of (101) and (99) and

adding the outcomes, while noting (88) and (89) , the nonlinear frequency response of the system is obtained as (
9 

16 

(
γ ( 2 ) 

3 , 3 

)2 
)

a 6 ( T 1 ) −
(

3 εσγ ( 2 ) 
3 , 3 

√ 

γ ( 2 ) 
1 , 3 

)
a 4 ( T 1 ) + 

(
γ ( 2 ) 

1 , 3 

(
4 ( εσ ) 

2 + γ 2 
c 

))
× a 2 ( T 1 ) = γ 2 

z (102) 

This frequency response has been plotted in Fig. 12 for different normalized damping coefficients. It is observed that as

expected, with increasing the damping, the maximum amplitude of the nonlinear response is decreased. More importantly,

this figure shows that although the frequency at which the maximum amplitude occurs, may not happen at � = 

√ 

γ (2) 
1 , 3 

(i.e. the frequency of the linearized system as mentioned in (95) ), unstable zones does not exist in the dynamic response.

In other words, smooth variations of the excitation frequency would not lead to discontinuous changes in the vibrational

amplitude. 

Fig. 12. Frequency response of the system for different value of damping coefficient. 

5. Conclusion 

The importance of accurate dynamic modeling and simulation of flexure mechanisms are well-recognized. Due to the

geometric nonlinearities arisen from the large displacements, the constraint behavior of the compliant units and employ-

ment of multi bodies in their structure, such a dynamic modeling is not convenient and trivial. So, the aim of the cur-

rent research was to develop a nonlinear dynamic distributed parameter formulation for a P-flexure. The governing equa-

tions were derived based on the Hamilton’s principle. Various static and dynamic simulations were performed to verify
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the accuracy of the proposed model and determine the number of contributing modes on the dynamic response. The

nonlinear free and forced vibration responses of the system are then analyzed using the multiple time scales perturba-

tion technique. The axial and transversal responses of the system were then validated by comparing them with numerical

simulations. 

As mentioned earlier, flexure mechanisms are well-suited for applications which requires large range, high precision and

high-speed movements. So, derivation of a dynamic model is an essential step in their design. In the current paper, we

provided a dynamic model for a simple P-flexure. This work can be continued by employing the same approach for dynamic

modeling of more complex and more practical compliant units such as DP and DP-DP flexure modules. 

Appendix A. Nonzero elements of [ A ] 

The non-zero elements of the matrix [ A ] used for finding the natural frequencies of the system are as follows. 

a 1 , 1 = a 1 , 3 = a 2 , 2 = a 2 , 4 = a 3 , 6 = 

a 4 , 7 = a 4 , 9 = a 5 , 8 = a 5 , 10 = a 6 , 12 = 1 

(A-1)

a 7 , 1 = −ω 

2 
n βn ( d − b ) sin ( βn ) , a 7 , 2 = ω 

2 
n βn ( d − b ) cos ( βn ) 

a 7 , 3 = ω 

2 
n βn ( d − b ) sinh ( βn ) , a 7 , 4 = ω 

2 
n βn ( d − b ) cosh ( βn ) 

a 7 , 5 = −ω 

2 
n sin ( αn ) + ( B/M ) αn cos ( αn ) , a 7 , 6 = −ω 

2 
n cos ( αn ) − ( B/M ) αn sin ( αn ) 

a 7 , 11 = ( B/M ) αn cos ( αn ) , a 7 , 12 = −( B/M ) αn sin ( αn ) 

(A-2)

a 8 , 1 = −β3 
n sin ( βn ) − Mω 

2 
n cos ( βn ) + Mω 

2 
n t m 

βn sin ( βn ) 

a 8 , 2 = β3 
n cos ( βn ) − Mω 

2 
n sin ( β) − Mω 

2 
n t m 

βn cos ( βn ) 

a 8 , 3 = −β3 
n sinh ( βn ) − Mω 

2 
n cosh ( βn ) − Mω 

2 
n t m 

βn sinh ( βn ) 

a 8 , 4 = −β3 
n cosh ( βn ) − Mω 

2 
n sinh ( βn ) − Mω 

2 
n t m 

βn cosh ( βn ) 

a 8 , 7 = −β3 
n sin ( βn ) , a 8 , 8 = β3 

n cos ( βn ) 

a 8 , 9 = β3 
n sinh ( βn ) , a 8 , 10 = β3 

n cosh ( βn ) 

(A-3)

a 9 , 1 = −β2 
n cos ( βn ) + t m 

β3 
n sin ( βn ) + Mω 

2 
n κ

2 βn sin ( βn ) 

a 9 , 2 = −β2 
n sin ( βn ) − t m 

β3 
n cos ( βn ) − Mω 

2 
n κ

2 βn cos ( βn ) 

a 9 , 3 = β2 
n cosh ( βn ) + t m 

β3 
n sinh ( βn ) − Mω 

2 
n κ

2 βn sinh ( βn ) 

a 9 , 4 = β2 
n sinh ( βn ) + t m 

β3 
n cosh ( βn ) − Mω 

2 
n κ

2 βn cosh ( βn ) 

a 9 , 5 = B ( d − b ) αn cos ( αn ) , a 9 , 6 = −B ( d − b ) αn sin ( αn ) 

a 9 , 7 = −β2 
n cos ( βn ) + t m 

β3 
n sin ( βn ) 

a 9 , 8 = −β2 
n sin ( βn ) − t m 

β3 
n cos ( βn ) 

a 9 , 9 = β2 
n cosh ( βn ) + t m 

β3 
n sinh ( βn ) 

a 9 , 10 = β2 
n sinh ( βn ) + t m 

β3 
n cosh ( βn ) 

a 9 , 11 = −B ( d − b ) αn cos ( αn ) , a 9 , 12 = B ( d − b ) αn sin ( αn ) 

(A-4)

a 10 , 1 = 2 βn ( d − b ) sin ( βn ) , a 10 , 2 = −2 βn ( d − b ) cos ( βn ) 

a 10 , 4 = −2 βn ( d − b ) cosh ( βn ) , a 10 , 3 = −2 βn ( d − b ) sinh ( βn ) 

a 10 , 5 = sin ( αn ) , a 10 , 6 = cos ( αn ) 

a 10 , 11 = − sin ( αn ) , a 10 , 12 = − cos ( αn ) 

(A-5)

a 11 , 1 = cos ( βn ) , a 11 , 2 = sin ( βn ) , a 11 , 3 = cosh ( βn ) , a 11 , 4 = sinh ( βn ) 

a 11 , 7 = − cos ( βn ) , a 11 , 8 = − sin ( βn ) , a 11 , 9 = − cosh ( βn ) , a 11 , 10 = − sinh ( βn ) 
(A-6)

a 12 , 1 = −βn sin ( βn ) , a 12 , 2 = βn cos ( βn ) , a 12 , 3 = βn sinh ( βn ) , 

a 12 , 4 = βn cosh ( βn ) , a 12 , 7 = βn sin ( βn ) , a 12 , 8 = −βn cos ( βn ) , 

a 12 , 9 = −βn sinh ( βn ) , a 12 , 10 = −βn cosh ( βn ) 

(A-7)

Appendix B. Definition of the coefficients λ(l) 
i j,k 

( q 1 , q 2 ) and λ(l) 
z 

In order to present the coefficients λ(l) 
i j,k 

( q 1 , q 2 ) and λ(l) 
z appeared in Eqs. (48) - (50) more conveniently, we first need to

define the following functions. 

F j, 1 ( � ) = sin 

( 

� 

2 ∑ 

i =1 

dϕ 

( i ) 
j 

dx 

∣∣∣∣∣ q i ( t ) 

) 
x =1 
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F j, 2 ( � ) = cos 

( 

� 

2 ∑ 

i =1 

dϕ 

( i ) 
j 

dx 

∣∣∣∣∣
x =1 

q i ( t ) 

) 

(B-1) 

Now, the intermediate parameters α( j) 
i 

s are defined as 

α( 1 ) 
1 

= 

ˆ M (B-2) 

α( 1 ) 
2 

= 

EA 

2 

2 ∑ 

j=1 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx (B-3) 

α( 1 ) 
3 

= 

EA 

2 

2 ∑ 

j=1 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx (B-4) 

α( 1 ) 
4 

= EA 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx (B-5) 

α( 1 ) 
5 

= 2 EA (B-6) 

α( 1 ) 
6 

= EA 

2 ∑ 

j=1 

(
2 t m 

F 2 j, 1 ( 0 . 5 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

(B-7) 

α( 2 ) 
1 

= ρAL 

2 ∑ 

j=1 

∫ 1 

0 

(
ϕ 

( 1 ) 
j ( x ) 

)2 
dx + 

ˆ M 

{ (
ϕ 

( 1 ) 
1 ( x ) 

)2 + κ2 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 

+ 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 (
( d − b ) 

2 
F 2 1 , 1 ( 1 ) + t 2 m 

F 2 1 , 2 ( 1 ) 
)

− 2 ϕ 

( 1 ) 
1 ( x ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)

×( ( d − b ) F 1 , 1 ( 1 ) − t m 

F 1 , 2 ( 1 ) ) − t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 

F 1 , 1 ( 2 ) 

} 

x =1 

(B-8) 

α( 2 ) 
2 

= ρAL 

2 ∑ 

j=1 

∫ 1 

0 

ϕ 

( 1 ) 
j ( x ) ϕ 

( 2 ) 
j ( x ) dx + 

ˆ M 

{ 

ϕ 

( 1 ) 
1 ( x ) ϕ 

( 2 ) 
1 ( x ) + κ2 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

+ 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

(
( d − b ) 

2 
F 2 1 , 1 ( 1 ) + t 2 m 

F 2 1 , 2 ( 1 ) 
)

− d 

dx 

(
ϕ 

( 1 ) 
1 ( x ) ϕ 

( 2 ) 
1 ( x ) 

)
( ( d − b ) F 1 , 1 ( 1 ) + t m 

F 1 , 2 ( 1 ) ) − t m 

( d − b ) 

( 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

) 

F 1 , 1 ( 2 ) 

} 

x =1 

(B-9) 

α( 2 ) 
3 

= 

ˆ M 

{ 

t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)3 (
1 − 2 F 2 1 , 2 ( 1 ) 

)
− ϕ 

( 1 ) 
1 ( x ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 

×( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

1 

2 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)3 (
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

} 

x =1 

(B-10) 

α( 2 ) 
4 

= 

ˆ M 

{ 

t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 (
1 − 2 F 2 1 , 2 ( 1 ) 

)
− ϕ 

( 1 ) 
1 ( x ) 

×
(

dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

1 

2 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

×
(
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

} 

x =1 

(B-11) 
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α( 2 ) 
5 

= 

ˆ M 

{ 

2 t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 (
dϕ 

( 2 ) 
1 ( x ) 

dx 

)(
1 − 2 F 2 1 , 2 ( 1 ) 

)
− 2 ϕ 

( 1 ) 
1 ( 1 ) 

×
2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 
( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 (
dϕ 

( 2 ) 
1 ( x ) 

dx 

)
(

dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 

×
(
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

} 

x =1 

(B-12)

α( 2 ) 
6 

= 

ˆ C L 

2 ∑ 

j=1 

∫ 1 

0 

(
ϕ 

( 1 ) 
j ( x ) 

)2 
dx (B-13)

α( 2 ) 
7 

= 

ˆ C L 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

ϕ 

( i ) 
j ( x ) dx (B-14)

α( 2 ) 
8 

= 

EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

2 

(B-15)

α( 2 ) 
9 

= 

EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) 

(B-16)

α( 2 ) 
10 

= 

3 EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) 

(B-17)

α( 2 ) 
11 

= EA 

2 ∑ 

j=1 

⎧ ⎨ ⎩ 

1 

2 

2 ∏ 

i =1 

∫ 1 

0 

( 

dϕ 

( i ) 
j ( x ) 

dx 

) 2 

dx + 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) 2 
⎫ ⎬ ⎭ 

(B-18)

α( 2 ) 
12 

= 

EA 

2 

2 ∑ 

j=1 

( 

dϕ 

( 1 ) 
j 

dx 

∣∣∣∣∣
x =1 

) 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

(B-19)

α( 2 ) 
13 

= 

EA 

2 

2 ∑ 

j=1 

( 

dϕ 

( 1 ) 
j 

dx 

∣∣∣∣∣
x =1 

) 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-20)

α( 2 ) 
14 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 1 ) 
j 

dx 

∣∣∣∣∣
x =1 

) ( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) (
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-21)

α( 2 ) 
15 

= EA 

2 ∑ 

j=1 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx (B-22)

α( 2 ) 
16 

= EA 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx (B-23)

α( 2 ) 
17 

= EA 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
2 t m 

F 2 j, 1 ( 0 . 5 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

+ 

EI 

L 2 

2 ∑ 

j=1 

∫ 1 

0 

( 

d 2 ϕ 

( 1 ) 
j ( x ) 

dx 2 

) 2 

dx (B-24)

α( 2 ) 
18 

= EA 

2 ∑ 

j=1 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) (
2 t m 

F 2 j, 1 ( 0 . 5 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

+ 

EI 

L 2 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

d 2 ϕ 

( i ) 
j ( x ) 

dx 2 
dx (B-25)
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α( 2 ) 
19 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

∣∣∣∣∣
x =1 

) (
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-26) 

α( 2 ) 
20 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 1 ) 
j 

dx 

∣∣∣∣∣
x =1 

) (
2 t m 

F 2 j, 1 ( 0 . 5 ) 
(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

+ 

1 

2 

( d − b ) 
2 
F j, 1 ( 2 ) + ( −1 ) 

j−1 t m 

( d − b ) F 2 j, 1 ( 1 ) 

)
(B-27) 

α( 2 ) 
21 

= ρAL 

2 ∑ 

j=1 

∫ 1 

0 

ϕ 

( 1 ) 
j ( x ) dx (B-28) 

α( 3 ) 
1 

= ρAL 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

ϕ 

( i ) 
j ( x ) dx + 

ˆ M 

{ 

2 ∏ 

i =1 

ϕ 

( i ) 
1 ( x ) + κ2 

( 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

) 

+ 

( 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

) (
( d − b ) 

2 
F 2 1 , 1 ( 1 ) + t 2 m 

F 2 1 , 2 ( 1 ) 
)

− d 

dx 

(
ϕ 

( 1 ) 
1 ( x ) ϕ 

( 2 ) 
1 ( x ) 

)
×( ( d − b ) F 1 , 1 ( 1 ) − t m 

F 1 , 2 ( 1 ) ) − t m 

( d − b ) 

( 

2 ∏ 

i =1 

dϕ 

( 1 ) 
1 ( x ) 

dx 

) 

F 1 , 1 ( 2 ) 

} 

x =1 

(B-29) 

α( 3 ) 
2 

= ρAL 

2 ∑ 

j=1 

∫ L 

0 

(
ϕ 

( 2 ) 
j ( x ) 

)2 
dx + 

ˆ M 

{ (
ϕ 

( 2 ) 
1 ( x ) 

)2 + κ2 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

+ 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 (
( d − b ) 

2 
F 2 1 , 1 ( 1 ) + t 2 m 

F 2 1 , 2 ( 1 ) 
)

− 2 ϕ 

( 2 ) 
1 ( x ) 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)

×( ( d − b ) F 1 , 1 ( 1 ) − t m 

F 1 , 2 ( 1 ) ) − t m 

( d − b ) 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

F 1 , 1 ( 2 ) 

} 

x =1 

(B-30) 

α( 3 ) 
3 

= 

ˆ M 

{ 

t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 (
dϕ 

( 2 ) 
1 ( x ) 

dx 

)(
1 − 2 F 2 1 , 2 ( 1 ) 

)
− ϕ 

( 2 ) 
1 ( x ) 

×
(

dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 

( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

1 

2 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)2 (
dϕ 

( 2 ) 
1 ( x ) 

dx 

)
×
(
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

}
x =1 

(B-31) 

α( 3 ) 
4 

= 

ˆ M 

{ 

t m 

( d − b ) 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)3 (
1 − 2 F 2 1 , 2 ( 1 ) 

)
− ϕ 

( 2 ) 
1 ( x ) 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

×( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

1 

2 

(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)3 (
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

} 

x =1 

(B-32) 

α( 3 ) 
5 

= 

ˆ M 

{ 

2 t m 

( d − b ) 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 (
1 − 2 F 2 1 , 2 ( 1 ) 

)
− 2 ϕ 

( 2 ) 
1 ( L ) 

×
( 

2 ∏ 

i =1 

dϕ 

( i ) 
1 ( x ) 

dx 

) 

( t m 

F 1 , 1 ( 1 ) + ( d − b ) F 1 , 2 ( 1 ) ) + 

(
dϕ 

( 1 ) 
1 ( x ) 

dx 

)(
dϕ 

( 2 ) 
1 ( x ) 

dx 

)2 

×
(
( d − b ) 

2 − t 2 m 

)
F 1 , 1 ( 2 ) 

} 

x =1 

(B-33) 
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α( 3 ) 
6 

= 

ˆ C L 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

ϕ 

( i ) 
j ( x ) dx (B-34)

α( 3 ) 
7 

= 

ˆ C L 

2 ∑ 

j=1 

∫ 1 

0 

(
ϕ 

( 2 ) 
j ( x ) 

)2 
dx (B-35)

α( 3 ) 
8 

= 

EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 1 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
d ̂  x 

) 

(B-36)

α( 3 ) 
9 

= 

EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ L 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

2 

(B-37)

α( 3 ) 
10 

= 

EA 

2 

2 ∑ 

j=1 

⎧ ⎨ ⎩ 

2 ∏ 

i =1 

∫ 1 

0 

( 

dϕ 

( i ) 
j ( x ) 

dx 

) 2 

dx + 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) 2 
⎫ ⎬ ⎭ 

(B-38)

α( 3 ) 
11 

= 

3 EA 

2 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) 

(B-39)

α( 3 ) 
12 

= 

EA 

2 

2 ∑ 

j=1 

( 

dϕ 

( 2 ) 
j 

dx 

∣∣∣∣∣
x =1 

) 

⎛ ⎝ 

∫ L 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-40)

α( 3 ) 
13 

= 

EA 

2 

2 ∑ 

j=1 

( 

dϕ 

( 2 ) 
j 

dx 

∣∣∣∣∣
x =1 

) 

⎛ ⎝ 

∫ L 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-41)

α( 3 ) 
14 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 2 ) 
j 

dx 

∣∣∣∣∣
x =1 

) ( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) (
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-42)

α( 3 ) 
15 

= EA 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx (B-43)

α( 3 ) 
16 

= EA 

2 ∑ 

j=1 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx (B-44)

α( 3 ) 
17 

= EA 

2 ∑ 

j=1 

( ∫ 1 

0 

2 ∏ 

i =1 

dϕ 

( i ) 
j ( x ) 

dx 
dx 

) (
2 t m 

F 2 j, 1 ( 0 . 5 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

+ 

EI 

L 2 

2 ∑ 

j=1 

∫ 1 

0 

2 ∏ 

i =1 

d 2 ϕ 

( i ) 
j ( x ) 

d x 2 
dx (B-45)

α( 3 ) 
18 

= EA 

2 ∑ 

j=1 

⎛ ⎝ 

∫ 1 

0 

( 

dϕ 

( 2 ) 
j ( x ) 

dx 

) 2 

dx 

⎞ ⎠ 

(
2 t m 

F 2 j, 1 ( 0 . 5 ) + ( −1 ) 
j−1 

( d − b ) F j, 1 ( 1 ) 
)

+ 

EI 

L 2 

2 ∑ 

j=1 

∫ 1 

0 

( 

d 2 ϕ 

( 2 ) 
j ( x ) 

d x 2 

) 2 

dx (B-46)

α( 3 ) 
19 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 2 ) 
j 

dx 

∣∣∣∣∣
) (

t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

(B-47)
x =1 
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α( 3 ) 
20 

= EA 

2 ∑ 

j=1 

( 

dϕ 

( 2 ) 
j 

dx 

∣∣∣∣∣
x =1 

) (
2 t m 

F 2 j, 1 ( 0 . 5 ) 
(
t m 

F j, 1 ( 1 ) + ( −1 ) 
j−1 

( d − b ) F j, 2 ( 1 ) 
)

+ 

1 

2 

( d − b ) 
2 
F j, 1 ( 2 ) + ( −1 ) 

j−1 t m 

( d − b ) F 2 j, 1 ( 1 ) 

)
(B-48) 

α( 3 ) 
21 

= ρAL 

2 ∑ 

j=1 

∫ 1 

0 

ϕ 

( 2 ) 
j ( x ) dx (B-49) 

Finally, using (II-1)-(II-49), the parameters λ(l) 
i j,k 

( q 1 , q 2 ) and λ(l) 
z are defined as given in (II-50). Note that those coefficients

not compiled in these equations are entirely zero. 

λ( 1 ) 
00 , 1 

= 

α( 1 ) 
6 

α( 1 ) 
5 

, λ( 1 ) 
20 , 1 

= 

α( 1 ) 
2 

α( 1 ) 
5 

, λ( 1 ) 
11 , 1 

= 

α( 1 ) 
4 

α( 1 ) 
5 

, λ( 1 ) 
02 , 1 

= 

α( 1 ) 
3 

α( 1 ) 
5 

λ( 2 ) 
10 , 1 

= 1 , λ( 2 ) 
01 , 1 

= 

α( 2 ) 
2 

α( 2 ) 
1 

, λ( 2 ) 
10 , 2 

= 

α( 2 ) 
6 

α( 2 ) 
1 

√ 

Lα( 1 ) 
1 

α( 1 ) 
5 

, λ( 2 ) 
20 , 2 

= 

α( 2 ) 
3 

α( 2 ) 
1 

λ( 2 ) 
01 , 2 

= 

α( 2 ) 
7 

α( 2 ) 
1 

√ 

Lα( 1 ) 
1 

α( 1 ) 
5 

, λ( 2 ) 
11 , 2 

= 

α( 2 ) 
5 

α( 2 ) 
1 

, λ( 2 ) 
02 , 2 

= 

α( 2 ) 
4 

α( 2 ) 
1 

, λ( 2 ) 
00 , 3 

= 

α( 1 ) 
1 

α( 2 ) 
20 

α( 2 ) 
1 

α( 1 ) 
5 

λ( 2 ) 
10 , 3 

= 

α( 1 ) 
1 

α( 2 ) 
17 

α( 2 ) 
1 

α( 1 ) 
5 

, λ( 2 ) 
20 , 3 

= 

α( 1 ) 
1 

α( 2 ) 
12 

α( 2 ) 
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Appendix C. Definition of the coefficients γ(k) 
i, j 

, γc and γz 

To present the coefficients γ (k ) 
i, j 

, γc and γz more conveniently, we first define β( j) 
i 

s as follows. 
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Now, the parameters γ (k ) 
i, j 

are defined in terms of β( j) 
i 

s as given in ( III-30 ). 
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