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a b s t r a c t 

This paper presents the design and analytical model of a compact flexure mechanism 

with a general beam shape, which can offer desirable single-axis translational motion 

capabilities. This design comprises two parallelogram flexure modules in a nested paral- 

lel arrangement and is termed the parallel double parallelogram flexure mechanism (or 

parallel-DPFM). Compared to the previously known parallel-DPFM, the proposed mecha- 

nism is more compact while offering several desirable performance characteristics includ- 

ing motion direction stiffness that is independent of bearing direction load, robustness 

against buckling, and suppression of error motion in the bearing direction. Closed-form 

planar force-displacement relations for the new design with a general beam shape have 

been derived to confirm these performance characteristics and provide design insights via 

parametric analysis. Nonlinear finite element analysis (FEA) and experimental testing are 

carried out to validate the analytically predicted performance characteristics for a specific 

beam shape that corresponds to the uniformly distributed-compliance case. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Flexure mechanisms provide finite motion along their degrees of freedom (DoF) via elastic deformation, and high stiff-

ness (and therefore load bearing capability) along their degrees of constraint (DoC) [1–4] . In particular, beam-based flexure

mechanisms achieve motion direction displacements from the bending of flexible beams, and load bearing capacity from

the high axial stiffness of these beams [5] . However, such beam-based flexure mechanisms exhibit several inherent charac-

teristics including dependence of motion direction stiffness on bearing direction load (i.e. load-dependence effect), parasitic

error motion along the bearing direction, and degradation of bearing direction stiffness with the motion direction displace-

ment [5–12] . These characteristics, which are generally undesirable, are the consequence of non-linearity in beam mechanics

[6] . Load-dependence, mentioned above, can sometimes be useful when designing a mechanism with tuneable stiffness [10] .

However, this load-dependence effect can be highly undesirable in many cases. For example, if the bearing direction is along

gravity, then a variable payload will impact the motion direction stiffness and will make feedback or feedforward control

very difficult in the motion direction. 

The parallelogram flexure mechanism (PFM) ( Fig. 1 a) and the (serial) double parallelogram flexure mechanism (DPFM)

( Fig. 1 b) are two very common beam-based flexure designs that offer a single-axis translational DoF and compact footprint
∗ Corresponding author. 
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Fig. 1. Typical distributed compliance mechanisms considering planar deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in various applications; and they are also used as building-blocks in more complex mechanisms [5,13,14] . A detailed review

of these designs is provided in previous references [1,5,15] . The PFM suffers from parasitic error motion along the bearing

(X and �Z ) directions and dependence of motion (Y) direction stiffness on bearing (X) direction load. The DPFM comprises

two PFMs reversely-connected in series [7] as shown in Fig. 1 b, which results in various advantages over the PFM [5,7] such

as reduced parasitic error motion and relatively lower dependence of motion direction stiffness on bearing direction load.

Both designs are prone to buckling: the PFM buckles in the presence of high compressive bearing (X) direction load, and

the DPFM buckles in the presence of high compressive as well as tensile bearing load. However, the greatest disadvantage of

the DPFM is that the stiffness along the bearing direction sharply drops with displacement in the motion direction, which

is the result of under-constrained secondary stage [6] . This under-constrained secondary stage also introduces additional

undesirable dynamics [16,17] . 

In this paper, we present a compact parallel-DPFM, which comprises two PFMs connected in a nested and parallel layout.

Traditional parallel-DPFM designs (as shown in Fig. 1 c) that employ a symmetric layout of two identical PFMs are well-

known in the literature [13,14] but are relatively less commonly used for large range of motion because of their over-

constrained geometry [5–16] . The over-constraint results from the two PFMs in a symmetric layout ( Fig. 1 c): the X direction

error motions of the two PFMs conflict each other, resulting in a nonlinear stiffness in the motion direction even in the

absence of bearing (X) direction load [5] . However, this design ensures that the motion (Y) direction stiffness is insensitive

to the bearing (X) direction load and buckling is largely avoided [16] . 

All these benefits and attributes of the traditional parallel-DPFM are carried over in the proposed nested parallel-DPFM

design ( Fig. 2 ). Most notably, this design is different from the traditional parallel-DPFM in that it offers a more compact,

space-efficient geometry. Any bearing (X) direction load always appears in tension on one PFM and in compression on

the other PFM, thereby avoiding zero stiffness in the motion direction (i.e. buckling condition). Since the motion direction

stiffness of each constituent PFM is linearly dependent (to a high degree of approximation [6] ) on the bearing direction

load, the increase in stiffness of one PFM is negated by reduction in stiffness of the other PFM. This results in a design

where the motion (Y) direction stiffness becomes largely independent of bearing (X) direction load. Like the PFM and the

traditional parallel-DPFM, the nested parallel-DPFM has significantly less drop of bearing direction stiffness with motion

direction displacement than the DPFM. Furthermore, the X direction parasitic error motion of one PFM is cancelled by

the equal and opposite parasitic error motion of the other PFM. This does lead to over-constraint in the motion direction,

limiting the range of motion, similar to the traditional parallel-DPFM. Given these various benefits of the proposed nested

parallel-DPFM design that are qualitatively evident, the subsequent steps in this paper include quantifying these attributes

via mathematical analytical modelling (note that an analytical model in this paper refers to the closed-form model presented

in Section 2 ). 

There are other interesting single-axis translational designs in the literature such as the DPFM with a slaving mecha-

nism [17–19] , which are more complex and do not have the desired characteristics including the load-independent motion

direction stiffness and the robustness against buckling. 

In summary, we present a variation of the parallel-DPFM in this paper ( Fig. 2 a) that is more compact than the traditional

parallel-DPFM ( Fig. 1 c). In studying this flexure mechanism, we use a general beam shape for each flexure beam with one
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Fig. 2. The general parallel-DPFM with scalar parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rigid middle segment and two compliant end-members. As expected, the range of motion in the motion (Y) direction is

indeed limited for commonly used metals and stiff plastics due to the above described over-constraint, but this design

nevertheless provides useful range of motion that is a few times the flexure beam thickness. This arrangement can be very

valuable for applications where such a small stroke is adequate but insensitivity of motion direction stiffness to bearing

direction load is critical [16] . 

As shown in Fig. 2 b, there are three reference points of interest – 1, 2 and CS – on the motion stage, to define displace-

ments and loads. Point CS refers to the location of the output displacements of the motion stage, and also to that of the

applied external loads. A fixed coordinate frame (XYZ) is located at CS in the undeformed configuration of the mechanism.

Normalisation is employed in the whole process of modelling in order to express all physical quantities and equations in a

dimensionless/scalar format. Accordingly, all translational displacements and length parameters are normalized by the over-

all beam length L (the characteristic length), forces by EI / L 2 , and moments by EI / L. E denotes the Young’s modulus of the

material for an XY plane-stress condition and the plate modulus for an XY plane-strain condition. I = UT 3 /12 denotes the

second moment of cross-section area about the Z axis of the two compliant end-members of the beam, each with length B ,

thickness T , and depth U . Throughout the paper, all non-dimensional quantities are denoted by the corresponding lower-case

letters with reference to Fig. 2 . We use a scalar variable b ( = B / L ) ranging between 0 and 1/2 in this paper as a measure

of the degree of distributed compliance of the general beam flexure, where b = ½ means uniformly distributed compliance

along each beam while b → 0 corresponds to a lumped-compliance configuration. Since this paper uses the beam constraint

model as the analytical modelling tool, the displacement range considered in the motion direction is limited to 10% of the

beam length as justified in [5,6] . Although this range of motion may exceed the maximum practical displacement in designs
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made of metals and stiff plastics, it would still be relevant for other commonly used softer materials such as polycarbonate

and polypropylene [10,16] and rubber-like materials [20] . 

The remainder of the paper is organised as follows. Section 2 covers the closed-form/analytical models of the proposed

flexure mechanism using general beams. These results are used in Section 3 to perform a theoretical parametric analysis of

the characteristics of this flexure mechanism. Section 4 verifies the analytical model using nonlinear finite elements analysis

(FEA). Experimental hardware setup and measurement results are presented in Sections 5 and 6 , respectively. Conclusions

are drawn in Section 7 . 

The primary contributions of this paper are summarized as follows: 

(a) We present a parallel-DPFM design where the PFMs are configured in a parallel kinematic manner, nested one inside

the other. The new design eliminates dependence of motion direction stiffness on bearing direction load, provides

robustness against buckling, and suppresses motion in the bearing direction. While the parallel-DPFM is well known

and studied in the literature [10,16] ( Fig. 1 c), the nested design is novel and offers the unique advantage of a compact

footprint. 

(b) We provide an analytical (closed-form) analysis of the flexure mechanism (assuming a general beam shape) that

insightfully captures all the relevant non-linearities, and an FEA validation of this analysis. This analytical model cap-

tures the impact of the degree of distributed compliance on the various performance characteristics including nominal

stiffness, stiffness variation, and error motions along the various directions in a parametric manner. 

(c) Based on the closed-form analysis that relates the mechanism’s dimensional parameters to its performance, we pro-

vide several insights to enable quick design. A set of dimensional parameters are selected for subsequent FEA and

experimental validation. 

(d) We present the careful design of a hardware setup to experimentally validate the above closed-form analysis, partic-

ularly the bearing load independent motion direction stiffness. 

2. Closed-form modelling 

The goal in this section is to formulate the relations between the input/external forces and the output displacements at

the same point CS for the proposed general-beam parallel-DPFM ( Fig. 2 ). We will employ the Beam Constraint Model (BCM)

as developed and used in [5,6] . The BCM is based on the Euler beam model for slender beams and takes into consideration

the geometric non-linearity associated with beam arc length conservation. 

Parametric load-displacement equations of one parallelogram module (i.e., PFM), with respect to its local coordinate

system at point 1 or 2 ( Fig. 2 c), can be obtained [6,21] as follows: 

x i = 

1 

2 k 33 

p i −
k (1) 

11 

2 

y 2 i −
k (2) 

11 

2 

p i y 
2 
i (1a) 

y i = 

f i 

2 k (0) 
11 

+ k (1) 
11 

p i 
(1b) 

θi = 

1 

2 w 

2 
i 

(
1 / k 33 − k (2) 

11 
y 2 i 

)[
m i −

(
2 k (0) 

12 
+ k (1) 

12 
p i 

)
y i 
]

(1c) 

where i = 1 or 2, which corresponds to the first or second parallelogram module (outer/inner one), respectively. The

other symbols undefined above are the beam characteristic coefficients, which are the functions of b as explained in

Appendix B [6] . Note that the assumption of small rotations has been made for the derivation of in Eq. (1). 

Compatibility conditions between point 1 (or 2) and point CS are represented as below: 

x i = (−1) i −1 x − θ2 / 4 (2a) 

y i = y + (−1) i −1 θ/ 2 (2b) 

θi = (−1) i −1 θ (2c) 

where i = 1 or 2, representing the outer parallelogram or the inner parallelogram. 

We can derive the load-equilibrium conditions among three reference points, 1, 2 and CS, based on Fig. 2 c: 

f 1 + f 2 = f (3a) 

p 1 − p 2 = p (3b) 

m 1 − m 2 + ( f 1 − f 2 ) / 2 − ( p 1 + p 2 ) / 2 = m (3c) 
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There are 18 variables involved in the above 15 equations ( Eqs. 1a –3c ). Given any three of them, these equations can always

be solved numerically. However, it is still very challenging to obtain analytical closed-form solutions even using commercial

symbolic software such as Maple/Mathematica. It is desirable to obtain analytical (closed-form) solutions, which enable

parametric design insight even though their accuracy might be limited by the range of loads and displacements. In this

paper, certain approximations and strategies are used to obtain such closed-form solutions, as detailed below. 

Firstly, we neglect the rotational contributions in the two translational compatibility conditions ( Eqs. 2a and 2b ), which

reduce to 

x i ≈ (−1) i −1 x (4a)

y i ≈ y (4b)

Note that the above simplification is appropriate as used in [5] since the rotational angle about the Z direction in the

mechanism is usually two orders of magnitude smaller than the normalized Y direction translation, and the square of the

rotational angle has a negligible contribution to the X direction translation. The FEA verification later in this paper will show

the rationality of this simplifying assumption. 

Substituting Eqs. (4a) and (4b) into Eqs. (1a) and (1b) , we can further obtain the following two equations: 

−
(

1 

2 k 33 

p 2 −
k (1) 

11 

2 

y 2 − k (2) 
11 

2 

p 2 y 
2 

)
= 

1 

2 k 33 

p 1 −
k (1) 

11 

2 

y 2 − k (2) 
11 

2 

p 1 y 
2 = x (5a)

f 2 

2 k (0) 
11 

+ k (1) 
11 

p 2 
= 

f 1 

2 k (0) 
11 

+ k (1) 
11 

p 1 
= y (5b)

Combining Eqs. (5a) and (5b) and Eqs. (3a) and (3b) , we can solve for the four internal forces, p 1 , f 1 , p 2 , and f 2 : 

p 1 = 

p 

2 

+ 

k (1) 
11 

y 2 

1 / k 33 − k (2) 
11 

y 2 
(6a)

f 1 = 

f 

2 

⎡ 

⎢ ⎢ ⎣ 

1 + 

k (1) 
11 

p 

4 k (0) 
11 

+ 

2 

(
k (1) 

11 

)2 

y 2 

1 / k 33 −k (2) 
11 

y 2 

⎤ 

⎥ ⎥ ⎦ 

(6b)

p 2 = − p 

2 

+ 

k (1) 
11 

y 2 

1 / k 33 − k (2) 
11 

y 2 
(6c)

f 2 = 

f 

2 

⎡ 

⎢ ⎢ ⎣ 

1 − k (1) 
11 

p 

4 k (0) 
11 

+ 

2 

(
k (1) 

11 

)2 

y 2 

1 / k 33 −k (2) 
11 

y 2 

⎤ 

⎥ ⎥ ⎦ 

(6d)

Eq. 5(b) can also be used to derive the following form: 

f 1 + f 2 = 

[
4 k (0) 

11 
+ k (1) 

11 ( p 1 + p 2 ) 
]
y (7)

Substituting Eqs. (6a) –(6d) into Eq. (7) , the motion (Y) direction equation is firstly obtained: 

y = 

f 

4 k (0) 
11 

+ 

2 

(
k (1) 

11 

)2 

y 2 

1 / k 33 −k (2) 
11 

y 2 

(8)

Eq. (2a) leads to: 

x 1 − x 2 = 2 x (9)

Substituting Eq. (1a) into Eq. (9) , we have 

p 1 − p 2 
2 k 33 

− k (1) 
11 

2 

(
y 2 1 − y 2 2 

)
− k (2) 

11 

2 

(
p 1 y 

2 
1 − p 2 y 

2 
2 

)
= 2 x (10)

Further substituting Eqs. (2b) , (6a) and (6c) into Eq. (10) , the X direction motion (one bearing direction) is then derived as:

x = 

1 

4 k 33 

p − k (1) 
11 

2 

(
1 − k (2) 

11 
k 33 y 2 

)yθ − k (2) 
11 

4 

p y 2 (11)
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where the three terms on the right hand side represent the pure elastic effect, the pure kinematic effect, and the elasto-

kinematic effect, respectively. Note that Eq. (2b) including the rotation contribution is used to obtain a more accurate X

direction motion that is able to capture the kinematic effect. 

The final step is to obtain the solution of the planar rotational angle about the Z direction. Using the result of Eq. (8) ,

we simplify Eqs. (6b) and (6d) , respectively, as below: 

f 1 = 

1 

2 

f + 

k (1) 
11 

2 

py (12a) 

f 2 = 

1 

2 

f − k (1) 
11 

2 

py (12b) 

Substituting the results of Eqs. (12a) and (12b) into Eq. (3c) , we can obtain 

m 1 − m 2 + 

k (1) 
11 

2 

py ≈ m (13) 

where the rotational contribution on the load-equilibrium equation ( Eq. (3c) ) is neglected again due to the reason mentioned

earlier [5] . 

Substituting Eq. (4b) into Eq. (1c) , and using the compatibility condition in Eq. (2c) , we have [
m 1 −

(
2 k (0) 

12 
+ k (1) 

12 
p 1 

)
y 
]

w 

2 
1 

+ 

[
m 2 −

(
2 k (0) 

12 
+ k (1) 

12 
p 2 

)
y 
]

w 

2 
2 

= 0 (14) 

Using Eqs. (13) and (14) , the two internal moments, m 1 and m 2 , can be derived, with m 2 explicitly expressed below: 

m 2 = 

(
2 k (0) 

12 
+ k (1) 

12 
p 2 

)
yw 

2 
1 + 

(
2 k (0) 

12 
+ k (1) 

12 
p 1 

)
yw 

2 
2 −

(
m − k (1) 

11 
py/ 2 

)
w 

2 
2 

w 

2 
1 

+ w 

2 
2 

(15) 

We substitute Eqs. (15) , (6a) , (6c) , and (4b) into Eq. (1c) to derive the equation in another bearing direction: �Z direction

as below: 

θ = −θ2 = 

1 

2 

(
w 

2 
1 

+ w 

2 
2 

)(
1 / k 33 − k (2) 

11 
y 2 

)[
m −

(
k (1) 

11 
/ 2 + k (1) 

12 

)
py 

]
(16) 

It is noted that the translational analytical models Eqs. (8) and ( (11) ) are very similar to those of the traditional parallel-

DPFM, but the rotational analytical model is different from that of the traditional parallel-DPFM due to the new compact

design [16] . 

Rearranging Eqs. (11) , (8) , and (16) , we have 

p = 

[ 

x + 

k (1) 
11 

2 

(
1 − k (2) 

11 
k 33 y 2 

)yθ

] / 

(
1 

4 k 33 

− k (2) 
11 

4 

y 2 
)

(17a) 

f = y 

[ 

4 k (0) 
11 

+ 

2 

(
k (1) 

11 

)2 
y 2 

1 / k 33 − k (2) 
11 

y 2 

] 

(17b) 

m = 

[ 

θ/ 

(
1 / k 33 − k (2) 

11 
y 2 

)
2 

(
w 

2 
1 

+ w 

2 
2 

)
] 

+ 

(
k (1) 

11 
/ 2 + k (1) 

12 

)
py (17c) 

The normalised stiffness equations in all directions (X, Y and �Z ) are shown below by differentiating Eqs. (17a) , ( 17b ), and

( 17c ): ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

k x = 

∂ p 
∂x 

= 

4 

1 / k 33 −k (2) 
11 

y 2 

k y = 

∂ f 
∂y 

= 4 k (0) 
11 

+ 

6 (k (1) 
11 

) 
2 
y 2 

1 / k 33 −k (2) 
11 

y 2 
+ 

4 (k (1) 
11 

) 
2 
k (2) 

11 
y 4 (

1 / k 33 −k (2) 
11 

y 2 
)2 

k θ = 

∂m 

∂θ
= 

2 ( w 

2 
1 + w 

2 
2 ) 

1 / k 33 −k (2) 
11 

y 2 

(17d) 

Up until this point, we have derived closed-form expressions for three displacements, x, y , and θ along with their stiffness

expressions, assuming a general beam shape. Based on these results, we can conclude the following. 

(a) Eq. (8) shows that the motion (Y) direction displacement is only influenced by the force along the same axis, analyti-

cally confirming the elimination of load-dependent effects (as defined in the introduction). One can observe that only

the geometrical parameters associated with the beam size and shape (i.e. t and b ) influence the normalized motion

direction load-displacement relation. 
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Fig. 3. Load-dependent effect on the motion direction stiffness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) As can be seen in Eq. (11) , the parasitic X direction motion (i.e. error motion) has a kinematic dependence on the

rotation about the Z direction and translation along the Y direction. Furthermore, this X direction motion has an

elasto-kinematic term dependent on the Y direction displacement and X direction load. Similar to the Y direction,

there is no other geometrical parameter apart from t and b involved in the normalized X direction load-displacement

relation. 

(c) Shown in Eq. (16) , the beam separation parameters w 1 and w 2 for the outer and inner parallelograms both contribute

to the rotation, as expected. Increasing these parameters decreases the undesired parasitic rotation. If there is only an

X direction force or a Y direction force on the motion stage, there is no parasitic rotation. 

3. Design insights and guidelines 

In this section, we will first compare the present design with other two traditional designs in a quantitative manner,

and then discuss the dimensional parameters related to performance metrics of the mechanism, leading to dimensional

optimization. 

Of the four dimensionless parameters ( t, b, w 1 and w 2 ) that appear in the normalized X, Y, and �Z direction load-

displacement relations, we mainly analyse the influences of t and b since parameters w 1 and w 2 only affect the Z direction

rotation. 

3.1. Design comparison: Distributed compliance case 

In this section, three translational flexure mechanisms with distributed-compliance beams (proposed nested parallel-

DPFM, PFM and DPFM) are analysed and compared using the normalised analytical models Eqs. (8) , (11) , and (A .1) –(A .4) .

We use t = 1/40 as an example for this comparison. The comparative results for several performance metrics are shown in

Figs. 3 –6 . 

Fig. 3 shows that the X direction force in the new parallel-DPFM ( Fig. 2 ) has no effect on the Y direction stiffness Eq. (8) .

The DPFM has a smaller load-dependent effect than the PFM. Fig. 4 shows that the PFM has the largest amount of parasitic

error motion in the X direction due to the kinematic effect, as opposed to the theoretically zero X direction error motion for

both the DPFM and the proposed design. In Fig. 5 , we can observe that the DPFM has much larger stiffness degradation in

the X direction than that of the proposed design or PFM. The proposed design has the same X direction stiffness degradation

as the PFM. Fig. 6 shows the stiffness ratio ( k x / k y ) comparison among the three designs. It is observed that the new/proposed

design has the largest k x / k y degradation, which is due to the new design’s nonlinear increase in stiffness in the motion (Y)
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Fig. 4. X direction translation due to kinematic effect (parasitic error motion) for p = m = 0. 

Fig. 5. Stiffness degradation in the X direction. 
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Fig. 6. Stiffness ratio comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

direction. Fig. 6 also captures the effect of the X direction force on the stiffness ratio of each design, where the new design

has no stiffness ratio change as the X direction force varies. 

In order to assess the robustness against buckling for each type of mechanism, Eqs. (8) and (A.2) and (A.4) are re-

employed, where an X direction force that causes a zero Y direction stiffness corresponds to the first-order buckling load

[5] . 

For the PFM, using Eq. (A.2) , we can derive the buckling load as below: 

24 + 1 . 2 p = 0 

⇒ p = −20 (18)

where a minus sign signifies that the compression force leads to buckling. 

For the DPFM, using Eq. (A.4) , we can derive the buckling load as below: 

(24) 2 − (1 . 2 p) 2 = 0 

⇒ p = ±20 (19)

where the positive and minus signs mean that both the tensile and compression forces lead to buckling. 

For the new design, the motion direction stiffness is independent of the bearing direction force as shown in Eq. (8) and

Fig. 3 . Therefore, in comparison to the results in Eqs. (18) and (19) , the new design has the best robustness against buckling.

The DPFM is the most vulnerable to buckling since a critical bearing direction force along any of two opposite X directions

can lead to buckling. 

Fig. 7 a shows a compact parallel kinematic XY flexure mechanism based on a 4-PP kinematic topology (P: prismatic

joint) [5,7] , which is obtained by replacing each kinematic P joint with the proposed new/nested parallel-DPFM ( Fig. 2 ) as

the building block. Fig. 7 b shows a non-compact parallel kinematic XY flexure mechanism [22] based on the same 4-PP

kinematic topology, which is obtained by replacing each kinematic P joint with the traditional parallel-DPFM ( Fig. 1 c) as

the building block. Comparing Figs. 7 (a) and (b), we can prove that nested parallel-DPFM design is a better (more compact)

building block than the traditional parallel-DPFM from a layout/footprint perspective of more complex XY flexure mecha-

nisms. Given the good performance characteristics of the nested parallel-DPFM building block, buckling is greatly suppressed

in this compact XY mechanism, the cross-axis coupling and lost motion of the compact XY mechanism are minimized, and

the motion direction stiffness in one axis should be independent of that in another axis. The key limitation of this compact

XY design may be the small range of motion due to over-constraint. 

Table 1 lists a qualitative summary of the performance characteristics of the PFM, DPFM, traditional parallel-DPFM, and

nested parallel-DPFM (new design). This shows that the proposed design fares better in certain performance characteristics
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Table 1 

Summary of the performance characteristics of several simple distributed-compliance designs. 

Characteristic \ 
Design 

Compact Layout 

( Fig. 7 ) 

Load-dependence 

( Fig. 3 ) 

Robustness 

against buckling 

Motion (Y) 

direction Range 

X direction error 

motion (kinematic) 

( Fig. 4 ) 

X direction stiffness 

degradation ( Fig. 5 ) 

Motion (Y) 

direction stiffness 

Stiffness ratio k x/ k y 

degradation ( Fig. 6 ) 

PFM Yes Strongly 

Dependent 

Unidirectional 

buckling 

Intermediate Large Small Linear Small 

(Serial) DPFM Yes Slightly 

dependent 

Bidirectional 

buckling 

Large Zero Large Linear Large 

Traditional 

parallel-DPFM 

No Independent No buckling Relatively small Zero Small Nonlinear Larger 

New design 

(Nested 

parallel-DPFM) 

Yes Independent No buckling Relatively small Zero Small Nonlinear Larger 
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Fig. 7. Comparison between compact XY CPM and non-compact XY CPM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and worse in others; it can be particularly useful in applications that require a small motion direction stroke but have a

critical need for motion direction stiffness that is independent of bearing direction load. 

3.2. Beam shape variation 

In this section, we use the above analytical models that were derived for any general beam shape to evaluate perfor-

mance characteristics as a function of the beam shape, specifically the dimensional parameter b in Fig. 2 a. Note that the

Euler beam model for slender beams is assumed [5,6] in this section to consider the influence of the parameter b . The per-

formance characteristics of interest here include motion (Y) direction load-displacement relation, and ratio of bearing (X)

direction stiffness to motion (Y) direction stiffness, which are shown in Figs. 8 and 9 , respectively. 

Fig. 8 shows the nonlinear stiffening effect in the motion direction with increasing Y direction displacement. We can

observe that as the value of b increases from 0 to 0.5, the curve becomes less nonlinear. The value of t also influences the

nonlinearity. In order to have a small and relatively constant (actual) stiffness in the motion direction, b should be large,

while t should be small. We should point out that the new design has a nonlinear stiffness in the motion direction, which

may be more desired for some specified application such as vibration suppression [23] and energy harvesting [24] . However,

if the normalised range of motion in the Y direction is limited to Y / L = y (e.g. 0.02 in Fig. 8 ), the stiffness in the motion

direction is almost constant, which is good enough for certain applications that have a critical requirement for insensitivity

of motion direction stiffness to bearing direction load. 

It is shown in Fig. 9 that the ratio of X direction stiffness to Y direction stiffness drops with increase in the motion

direction displacement. The larger the values of b and t , the less significant is the drop in this ratio. Therefore, in order to

have a small stiffness ratio drop, b and t should both be large. For a large stiffness ratio in the nominal condition ( y = 0), b

and t should both be small . Based on Eq. (17d) , � direction stiffness is ( w 

2 + w 

2 )/2 times X direction stiffness. Therefore,
Z 1 2 
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Fig. 8. Y direction force against Y direction displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the ratio of �Z direction stiffness to Y direction stiffness also follows a trend similar to that in Fig. 9 , and is not separately

plotted in this paper. 

In addition, we investigate two terms that affect the motion in the bearing directions (X and �Z ) but do not appear in the

stiffness equations Eq. (17d) . The coefficient ( k (1) 
11 

/ 2 + k (1) 
12 

) for the Z direction rotation Eq. (16) couples the X direction force

and the Y direction displacement to influence the �Z direction displacement even in the absence of a moment m . When

expressed in terms of b , it is seen that this coefficient: 45 −180 b+300 b 2 −240 b 3 +80 b 4 

10 (3 −6 b+4 b 2 ) 
2 is constant and equal to half for all values

of b , despite the individual k (1) 
11 

and k (1) 
12 

coefficients varying with b significantly as shown in Appendix B. Fig. 10 captures

the contribution of the second term, which is a kinematic term, in the X direction translation Eq. (11) . Here we plot the

coefficient of θ which is a function of b, t , and motion direction displacement y . This coefficient ( k (1) 
11 

y / 2( 1 − k (2) 
11 

k 33 y 
2 ) )

increases with y , and is always equal to zero when y = 0. A larger value of t generally leads to a more linear curve. For a

larger value of t, b has a smaller influence on the plotted coefficient. However, for a smaller value of t, b has a noticeable

effect on the coefficient. Given that �Z direction is the DoC direction, θ is typically at least 10 −2 times less than the motion

direction displacement y Eq. (16) , the second (i.e. kinematic) term in Eq. (11) is approximately of the order of 5 × 10 −5 and

is the only remaining term in Eq. (11) in the absence of an X direction force. The small value of this kinematic term shows

the significant reduction in the X direction parasitic error motion in the new design compared to a PFM. 

Next, a set of dimensions for the new mechanism can be chosen for the FEA validation and prototype testing validation

in the subsequent sections. 

(a) In light of the above findings and trade-offs for desired stiffness characteristics (i.e., a small and relatively constant

stiffness in the Y direction stiffness, and a small drop of ratio of X direction stiffness to Y direction stiffness and a

large stiffness ratio in the nominal condition), we select b = ½ to achieve a distributed-compliance design and decide

to use the smallest possible value of t that is allowed by machining capabilities. 

(b) Selecting b = ½, as justified above, is also favourable from a large range of motion point of view. Based on the stress

criterion below, that takes into account the stress resulting from the overconstraint in the mechanism [10] , 

σmax = 

∣∣∣∣
(

6 + 

0 . 06 y 2 

2 

)
yEt/ 2 

∣∣∣∣ + 

∣∣∣∣
(

0 . 6 y 2 

2 

)
E t 2 / 12 

∣∣∣∣ < σs (20) 

1 /d + y / 700 1 /d + y / 700 
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Fig. 9. Ratio of X direction stiffness to Y direction stiffness. 
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Fig. 10. Term related to X direction motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where σ s is the yield strength, d = 12/ t 2 , and y is the range of motion. We can conclude that both the ratio of actual beam

length to the actual beam thickness ( L/T ) and the ratio of yield strength to Young’s modulus ( σ s /E ) for the material of

compliant members should be large. 

Given the two criteria (stiffness and range of motion), the FEA study and prototype testing are conducted with the

following geometrical parameters: 

b = 1/2 (distributed-compliance); 

T = 0.75 mm (the smallest thickness to be discussed in Section 5 ); 

W 1 = 54.25/2 mm, W 2 = 19.75/2 mm, L = 45 mm (to achieve compact desktop-size design and millimetre range of motion

as shown in Section 4 ); and 

U = 10 mm (a standard depth of the material plate). 

4. Finite element analysis validation 

The commercial software, COMSOL 5.0, was used for the purpose of FEA. In COMSOL, we created the above-described

mechanism design without any fillets, which conforms with the closed-form modelling assumption of beam geometry in

Section 2 . Although adding small fillets can reduce stress concentration and is inevitable in any manufacturing process,

it has a negligible influence on the modelling of distributed-compliance beams. We used Young’s modulus, E , of 70 GPa,

Poisson’s ratio of 0.33, and yield strength of 260 MPa (corresponding to US standard AL6061) for the material of compliant

members. The material of the rigid segments was chosen to be 10,0 0 0 times stiffer than that of the compliant members

( Fig. 2 ) to allow a check on the analytical model. We selected the nonlinear option in FEA, and employed the 10-node

tetrahedral element and automatic fine meshing (i.e., maximum element size 7.44 mm (employed in the rigid segment of

the beam), minimum element size 0.93 mm (employed in the compliant segments of the beam), maximum element growth

rate 1.45, curvature factor 0.5, and resolution of narrow regions 0.6). 

The FEA simulation results using COMSOL are shown in Fig. 11 and discussed as follows: 

(a) Fig. 11 a shows that the Y direction analytical model ( Eq. (8) ) matches the FEA model very well, and that the impact

of the X direction load on Y direction displacement and stiffness is indeed unnoticeable/negligible. 

(b) Fig. 11 b captures the X direction displacement comparison between the analytical model ( Eq. (11) ) and the FEA sim-

ulation under the condition of no pure moment applied. Two models have an acceptable agreement. The FEA model

for a smaller X direction force follows the corresponding analytical model better. The FEA simulation shows a slightly

smaller nonlinear elasto-kinematic effect than that of the analytical model. 
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(a) Y direction force (F) against Y direction displacement (Y) (b) X direction displacement (X) against Y direction displacement (Y): 
corresponding to the same colour solid line for analytical model 

 

(c) Z direction rotation (θ) against Y direction displacement (Y): marker  
corresponding to the same colour solid line for analytical model 

 for FEA 
marker

for FEA

Fig. 11. Comparison with FEA. 

 

 

 

 

 

 

 

 

 

 

 

 

(c) The �Z direction results are compared in Fig. 11 c under the condition of no pure moment applied. The FEA simulation

follows the trend of the analytical model, and is slightly smaller than the analytical model in magnitude (except when

there is no X direction force). In the presence of an X direction force, the FEA model tends to be more linear than the

analytical one. 

On possibility for the discrepancy between the two models shown in Fig. 11 b and c is that the BCM truncates the axial

load terms to the first order assuming a limit on the axial load (| p | ≈ 10) [5,6] . However, in this design because of over-

constraint the internal axial load can be higher than this limit so that the first order truncation used in the BCM may lead

to some discrepancy. Another possibility is due to the simplification in the manual derivations in Section 2 . 

The range of Y direction motion is determined based on the stress criterion ( Eq. (20) ) where the maximum stress should

be less than the yield strength (260 MPa in this study). As seen in Fig. 12 , the maximum allowable range of motion is about

[ −1.7 mm, 1.7 mm] (i.e., ±0.038 normalised displacement) without considering stress concentration. Considering a conser-

vative design to avoid material yield failure and an actuation effort limit in the motion direction (50 N is the force sensor

limit in our experiment), we selected ±1.25 mm (i.e., ±0.028 normalised displacement) as the maximum actual Y direc-

tion displacement for the COMSOL FEA simulations, as well as subsequent experimental testing. The experimental testing in

Section 5 confirms that a 1.25 mm range of motion is feasible without causing yield failure. 



16 G. Hao, X. He and S. Awtar / Mechanism and Machine Theory 142 (2019) 103593 

Fig. 12. Stress analysis when no bearing direction force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Design, fabrication, and assembly of experimental hardware setup 

5.1. Fabrication of the nested parallel-DPFM prototype 

A 4-axis CNC milling machining is used to fabricate the monolithic nested parallel-DPFM proposed in this paper. This

does not require a significant amount of set-up work and is less expensive than wire electric discharging machining (EDM).

However, while fabricating beam thicknesses of less than 0.5 mm is standard with wire-EDM, similar dimensions are chal-

lenging to achieve with CNC milling, due to contact-based metal cutting. 0.75 mm was the smallest thickness that we could

satisfactorily fabricate using the CNC mill. Furthermore, with the CNC mill, a fillet radius is introduced at the corners due

to the diameter of the cutter. In this work, a 2 mm diameter cutter was used that resulted in fillet radii of 1.0 mm. These

small fillets are the deviation from the closed-form modelling and FEA, but do help relieve stress concentration. A detailed

discussion on CNC milling for the fabrication of compliant mechanisms is presented in Appendix C . 

5.2. Selection of material and dimensions 

The dimensional parameters used in the FEA study and in the fabricated prototype are listed at the end of Section 3 .

Aluminium alloy AL6082-T651 (EU standard, equivalent to the US standard AL6061-T651) from Aalco was chosen for the

prototype material, with a relatively large ratio of yield strength to Young’s modulus (0.0037). This material is a good choice

for flexure mechanisms used in precision instruments due to the material’s economic cost, good strength, low internal

stresses and phase stability [5] . 

5.3. Selection of sensors, actuation and data acquisition 

We set up a static testing system for sensing forces and displacements, applying loads, and acquiring data of the nested

parallel-DPFM prototype. This system is effective and economic and can test the force-displacement relations in the motion

(Y) direction with considering the load-dependent effect from the bearing (X) direction force. The actuation displacement

(Y) in the motion (Y) direction of the flexure prototype is loaded by a micrometer (Moore & Wright) . This manual microm-

eter has a 2 u m displacement resolution and a more than 10 mm actuation range. We employed a force sensor (Vernier

dual-range) to detect the motion direction force applied on the motion stage. This force sensor has a 0.05 N resolution and

a 50 N measuring range, which connects to a sensor interface (LABQUEST 2) to acquire data. Another displacement sen-



G. Hao, X. He and S. Awtar / Mechanism and Machine Theory 142 (2019) 103593 17 

Fig. 13. Prototype and experimental testing setup of a new distributed-compliance parallel-DPFM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sor, a digital gauge (Mitutoyo Absolute) with a resolution of 1 u m and negligible spring force of 0.04–0.07 N, is used to

measure the output displacement in the motion direction. The force in the bearing (X) direction is applied by a loading

weight. 

5.4. Assembly of hardware 

The fabricated parallel-DPFM prototype is first fixed to a large support plate by bolting. The support plate is then con-

nected to a horizontal workbench by a fixture. The base of a linear slider (including base and mobile component) sits on

the support plate. The mobile component of the linear slider is actuated by the micrometer. The force sensor stacks on

top of the slider’s mobile component. We ensure that the probe of the force sensor contacts with the motion stage exten-

sion bar of the parallel-DPFM, and that the loading force can go through the CS point (defined in Fig. 2 ). The dial gauge

is arranged in a way that its probe touches another side of the motion stage of the parallel-DPFM, in order to directly

test the motion direction displacement. The loading weight in the vertical direction is directed by a pulley (supported by a

fixed arm) to provide a horizontal bearing (X) direction force. The prototype and experimental testing setup are shown in

Fig. 13 . 

6. Experimental validation 

Due to the limitation of resolution of the available sensors in our lab, it was not possible to measure the

tiny X direction displacements accurately. Since the Y direction forces and displacements are much larger in magni-

tude, these were experimentally measured and therefore only the motion direction (Y) stiffness will be discussed in

experiment. 

6.1. Initial setup 

The dial gauge probe is designed to touch the flexure mechanism before conducting each experimental testing. Based

on the home position of the flexure mechanism (no deformation) the dial gauge (displacement sensor) and the force sen-

sor interface are both reset to zero initially, while the force sensor probe is detached from the extension bar. Then by

turning the micrometer screw and monitoring the force sensor interface simultaneously, we can make the force sensor

probe just touch the extension bar where the reading of the force sensor is about one or two resolution(s) of the force

sensor. 
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Fig. 14. Comparisons when no bearing direction force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2. Experimental procedure 

6.2.1. Measurement without bearing direction force 

We turn the micrometer screw while observing the dial gauge reading (starting from zero). The motion direction dis-

placement reading is set up at an equal incremental step of 0.25 mm, and the corresponding force sensor measurement is

recorded at each step. We stop turning the micrometer when the maximum displacement of 1.25 mm in the motion di-

rection is reached. We repeated the same procedure above three times with the average force data presented in the graph

( Fig. 14 ). 

6.2.2. Measurement with bearing direction force 

We follow the same procedure as the above scheme for the new testing scheme, except adding a loading weight to exert

a bearing (X) direction force. At each incremental step of 0.25 mm in the motion (Y) direction that is maintained constant,

we increase the bearing direction forces from 5 N, 40 N, 80 N up to 120 N, while recording the corresponding forces in the

motion direction. Under this testing scheme, the forces in both Y and X directions cannot be directly obtained, but are

calculated as detailed below. 

The actual bearing (X) direction force ( P ) exerted on the prototype is provided by the loading weight ( P G ). Due to the

motion direction displacement ( Y ), the gravity force of the hung weight, P G , also results in a component force ( F G ) that

contributes to the (resultant) reading of the Y direction force sensor interface ( F S = F + F G is the sensor reading). The

force sensor shows the reaction force of the resultant motion direction force. Therefore, the actual force in the motion (Y)

direction that contributes to the motion direction displacement ( Y ) is F = F S − F G . Note that Y , in an italic form, is used here

to represent an actual displacement as opposed to the upright form Y representing direction. F and P can be calculated as

below so that the load-dependent effect can be plotted in Fig. 15 . { 

F = F S − F G = F S − Y √ 

Y 2 + A 2 
P G 

P = 

A √ 

Y 2 + A 2 
P G 

(21) 

where A , the supporting arm length, and other symbols are indicated in Fig. 13 . 



G. Hao, X. He and S. Awtar / Mechanism and Machine Theory 142 (2019) 103593 19 

Fig. 15. Load-dependent effect testing. 
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Fig. 16. Other flexure mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Experimental measurement results 

Fig. 14 shows the comparison between the analytical model and the measurement result, where the discrepancy rises

with the increase of the motion (Y) direction displacement. It can be seen that the 1.25 mm range of motion (0.028 L) in

the physical testing is feasible for the overconstrained design, and that the nonlinear phenomenon is still significant over

this range of motion that supports the necessity of nonlinear modelling. During a small range of displacement ( < 0.5 mm),

the analytical model matches the measurement result satisfactorily. This discrepancy suggests that the analytical model

has a stronger nonlinearity than the measurement result, i.e., the analytical model captures greater stiffness compared to

the measurement results. The analytical results for another two cases, T = 0.70 mm and T = 0.80 mm, are also presented in

Fig. 13 . We can observe that the measurement result (i.e., a nominal fabrication thickness of T = 0.75 mm) is closer to the

analytical model when T = 0.70 mm. This may suggest that there is a certain fabrication error in beam thickness that makes

the actual beam slightly thinner and therefore more compliant. Conversely, the added fillets (due to milling machining)

make the fabricated beam a little shorter and therefore stiffer than the one modelled. However, the softening effect due to

the reduced beam thickness is stronger than the stiffening effect due to the added fillets; therefore the resulting fabricated

beams render overall greater compliance. Note that the assumed rigid segments in the fabricated prototype also produce

tiny deformation in reality and therefore non-zero compliance, which can also contribute to the discrepancy between the

analytical model and the measurement result. 

In order to illustrate the elimination of load-dependent effects in the nested parallel-DPFM, Fig. 15 shows the tested

motion (Y) direction force ( F ) against the bearing (X) direction force ( P ) at different motion direction displacements ( Y ). As

observed, the bearing direction force has very little influence on the motion direction force, which validates the elimination

of load-dependent effects. 

7. Conclusions 

This paper reports a compact parallel-DPFM with a general beam shape. It is designed by using a nested arrangement

of two parallelogram modules in parallel. The new design eliminates dependence of motion direction stiffness on bearing

direction load, provides robustness against the buckling, and suppresses the bearing direction parasitic error motion. Analyt-

ical (closed-from) models have been derived to analyse several performance metrics and enable design insights. A hardware

setup has been designed to experimentally validate the closed-form model. Nonlinear FEA and/or physical measurement

results confirm the modelling accuracy as well as the elimination of load-dependent effect on motion direction stiffness.

The proposed design is valuable in applications where insensitivity of motion direction stiffness to bearing direction load is

critical. However, the new design presents shortcomings in that the motion direction stiffness is nonlinear and the range of

motion is limited due to over-constraint. 

We can further copy similar ideas to design general beam flexure mechanisms, as shown in Fig. 16 as shown in [25] ,

which is the topic of future work. Fig. 16 a, b and c show three single-axis translational mechanisms and Fig. 16 d shows a

single-axis rotational mechanism. As can be seen, half of compliant members are always in compression and half in tension,

regardless of the direction of the bearing direction force applied on the mechanism. Therefore, the load-dependent effect

can be alleviated. 
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Appendix A. Other closed-form equations 

References [5–7] have derived the closed-form analytical equations of both the PFM and the DPFM with distributed

compliance, as summarized blow. 

The PFM’s solutions for the two translational displacements, based on the coordinate system in Fig. 1 a, are as

follows 

x = 

p 

2 d 
− 0 . 6 y 2 + 

py 2 

1400 

(A.1)

where on the right-hand side, the first, second and third terms represent the pure elastic effect, the pure kinematic effect

(parasitic error motion) due to the motion direction displacement, and the elasto-kinematic effect, respectively. 

y = 

f 

24 + 1 . 2 p 
(A.2)

where the denominator on the right-hand side shows the load-dependent stiffness effect. Therefore, the X direction force

can have a load-dependent effect on the Y direction displacement 

The DPFM’s solutions for the two translational displacements, based on the coordinate system in Fig. 1 b, are as

follows 

x = 

p 

d 
+ 

85 p y 2 

2800 

(A.3)

where the kinematic effect term vanishes in the right-hand side of the equation. 

y = 

48 f 

(24) 
2 − (1 . 2 p) 

2 
(A.4)

where the load-dependent effect remains in a reduced form when observing the denominator of the right-hand side of the

equation. 

Appendix B. Beam characteristic coefficients [6] 

https://doi.org/10.1016/j.mechmachtheory.2019.103593


22 G. Hao, X. He and S. Awtar / Mechanism and Machine Theory 142 (2019) 103593 

Fig. B.1. Beam characteristic coefficients. 
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Appendix C. Thin wall machining in compliant mechanisms using CNC milling machining 

Milling of thin walls requires special attention. This is especially relevant when the materials are of a ductile material

because the deflection of the part from the tool can seriously hamper the shearing action necessary for accurate cutting. 

In the case of machining compliant mechanisms in our work, we have often machined thin wall structures where the

wall thickness has to be as thin as 0.75 mm, and we wish to maintain an accuracy of + / − 50 u m along the wall. In most

cases, the wall is either on the perimeter of the part or else it is a wall shared by two pockets. 

Traditional manufacturing would entail machining one pocket with a roughing cut to full depth then carrying out a

finishing/second pass, leaving 0.1 mm for the second pass. Then the second pocket would be machined using the same

principle. It can easily be visualised that when machining the second finishing pass, the wall will only be supported at either

end. Hence it can be classified as a simply supported beam and naturally the bending moment with be at a maximum in

the centre. These properties will make it very difficult to machine aluminium to within our required tolerances and it will

make working with Polycarbonate to this specification almost impossible. 

For this reason, we have adapted our method of manufacture to ensure that the wall is uniformly supported along its

entire length at all stages of fabrication. This is carried out by machining the first pocket in the conventional manner, then

a core is manufactured and placed into the first pocket to simulate a solid block of material when the second pocket is

being machined. In the case of the perimeter, cores are placed in all adjacent pockets then the outside profile is machined.

We have found that a block manufactured to between 10 um and 15 um under the nominal pocket size results in a sliding

fit that allows us to achieve our tolerances. Blocks manufactured to a “line to line fit” resulted in some cases in stress

fractures in the mechanism after the blocks were pressed out. These must be avoided lest the stress concentrations result

in premature failure but also for the generation of accurate results for which a homogenous structure is crucial. 

Furthermore, we also employ a technique sometimes used in turbine blade manufacturing. This is a two-stage finishing

technique, which has generated very satisfactory results. It involves machining the pocket to full depth but leaving a 3 mm

finishing allowance on the wall. This allowance is then removed in two passes in depths of 1 mm (the smaller depth, the

better quality), the first pass at each depth leaving 0.1 mm for the second pass to remove. Hence the wall at that depth is

finished before moving to the next 1 mm deep cut. This ensures that the material is supported both from the back by either

the solid wall or the insert and underneath by a 3 mm thick wall. A drawback to our use of this technique is that there is

no material underneath the final depth cut. 

Using the method of inserting a core will ensure we can machine within spec, while coupling this to the “clear Z”

(waterline machining) finishing method ensures there is minimum tool deflection and it also allows for easier chip removal.

This is important in the fabrication of plastics because the small final finishing chip can easily burn due to friction and

increase the surface roughness of the sidewall but is not as relevant in the present metal prototype. 

In summary, we have found these methods complement each other, resulting in accurate, high quality parts. 
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