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a b s t r a c t 

Modeling the nonlinear load-displacement relations for flexible beams has been a key objective in compliant 

mechanisms research. There have been several practically useful methods for modeling planar deflections, but 

less work has been done in modeling spatial deflections. This work proposes the load-displacement relations for 

rectangular beams by solving the nonlinear governing differential equations of the beams using the power series 

method and then simplifying the solution by Taylor series expansion and truncation. The solution is validated to 

be accurate by comparing with two commercial finite element software packages, ANSYS and Abaqus. This com- 

parison shows that this approach is capable of capturing the relevant geometric nonlinearities in the intermediate 

deflection range defined as 10% of the beam length. The load-displacement relation offers a useful and param- 

eterized tool for understanding the constraint (i.e. stiffness and motion) behavior of rectangular cross-section 

beams and generating compliant mechanism designs with nonlinear kinetostatic behaviors. 
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. Introduction 

The aim of this work is to develop compact nonlinear load-

isplacement relations that capture the constraint characteristics of slen-

er spatial beams of rectangular cross-section in the intermediate deflec-

ion range. The definition of the intermediate deflection range is as de-

ned in Ref [1] , i.e., the transverse deflections and rotations are limited

o 0.1 L and 0.1 rad, respectively, where L is the beam length. 

Modeling nonlinear deflections (both in the intermediate and large

anges) of flexible beams has been a key problem in compliant mecha-

isms (or flexure mechanisms) research [2] , in that nonlinear deflections

re essential for achieving various kinetostatic behaviors (e.g., multi-

table [3,4] , constant-force [5–7] and statically balancing [8,9] ) as well

s understanding the constraint performances (namely stiffness and er-

or motions) of compliant element and mechanism designs. There have

een several practically useful methods for modeling planar deflections,

or example, the planer beam constraint model (BCM) [1] and its deriva-

ives [10,11] for deflections in the intermediate range, and the pseudo-

igid body models (PRBM) [12] , the chain algorithm [2] , the circular-arc

ethod [13] , the elliptical integral solutions [14] , the Adomian decom-

osition method [15] , the Gaussian-Chebyshev quadrature [16] and the

hained beam constraint model [17] for large deflections. 

The utilization of spatial beams in compliant mechanisms can bring

bout more diverse kinetostatic behaviors that could be useful in vari-
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us application including such as aerospace [18] and medical applica-

ions [19] . In contrast to planar beam models, less work has been done

n deriving the end load-displacement relations for spatial deflections of

eams. The formulation of governing differential equations for spatial

eams can be found in multiple previous publications e.g. [20,21] . Nu-

erical method such as the numerical integration method [22,23] and

he nonlinear finite element methods (NLFEM) [24–26] can be em-

loyed to solve the governing equations. However, as noted in [27] these

umerical methods offer little parametric design insight for designers

nd are usually used for validation. Several pseudo-rigid body mod-

ls (PRBM) have been proposed to approximately model large spa-

ial deflections, for example, Rasmussen et al. [28] proposed a 3D-

RBM (consisting of two rigid links joined by a spherical hinge that

ffer stiffness along three orthogonal directions) for rectangular beams

ubject to transverse tip forces. Chimento and Lusk [22] further de-

eloped this 3D PRBM for rectangular beams subject to arbitrary tip

orces and Chase et al. [29] suggested to improve the modeling ac-

uracy for spatial deflections of rectangular beams by serially con-

ecting multiple 3D PRBMs. These PRBMs were developed to approx-

mate the deflections of rectangular beams subject to pure tip forces

nd can yield large predictions errors when being used for general end

oads. Also, by lumping all compliance to discrete joints, the PRBM

oes not capture the elastokinematic effect in slender planar and spatial

eams [1,27] . 
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Fig. 1. Spatially deflected beam. 

Fig. 2. Local coordinate system. 

 

t  

t  

e  

b  

t  

k  

n  

r  

t  

m  

m  

a  

t  

w  

w  

r  

s  

d  

g  

r  

d  

t  

e  

i  

d

 

e  

c  

p  

t  

s  

b  

r  

b  

p

 

l  

d  

a  

t  

T  

m  

r

2

 

l  

t  

O  

a  

b  

o  

T  

r  

X  

d  

p  

t  

b

𝑌 ) 𝑠 (Θ
𝑑 ) 𝑠 (Θ

 

i

 

b  

𝑈  

t{
 

𝜅  

a⎧⎪⎨⎪⎩
a

𝜖  

 

t  

s  

a  

I  

c  

g

𝐽  

T  

T  
Hao et al. [30] proposed a composite method that employs two or-

hogonally arranged planar BCMs [1] together with a torsional equation

o predict deflections of spatial beams in the intermediate range. How-

ver, it just can be used to model round or regular polygon cross-section

eams. Sen and Awtar [27] developed and introduced a compact spa-

ial BCM in the form of end load-displacement relations that capture

ey non-linearities in the spatial mechanics of the beam. But this fi-

al form of the model was derived only for spatial beams of bisymmet-

ic cross-sections (e.g., square or circular cross-sections); the solutions

o the governing equation for general beam cross-section proved to be

athematically too complex. This spatial BCM was further extended for

odeling large spatial deflections for bisymmetric beams via a chain

pproach [31] . Nijenhuis et al. [32] developed an analytical model for

he lateral stiffness of flexible strips, which is suitable for beams/plates

hose width is at least one order of magnitude larger than the thickness

here the displacement in the direction of width is far less than in the di-

ection of thickness. But since this work assumed large beam width and

mall beam thickness, the displacement and rotation along the width

irection are small (i.e. error motions) and do not contribute to the

eometric non-linearities. Therefore, the results of this model are not

elevant to more general rectangular cross-section beams with interme-

iate or large deflection in both bending directions. Generally speaking,

here is a lack of a compact, parametric model that captures the nonlin-

ar mechanics of a spatial beam with general rectangular cross-sections

n terms of end load-displacement relations for even the intermediate

eflection range. 

The current work bridges this gap by solving the non-linear gov-

rning equations of a spatial slender beam, with a general rectangular

ross-section, using the power series method to produce end-load dis-

lacement relations that capture relevant geometrical nonlinearities in

he beam mechanics. This compact, parametric model represents the

𝑅 = 

⎡ ⎢ ⎢ ⎣ 
𝑐 (Θ𝑌 ) 𝑐 (Θ𝑍𝑑 ) 

𝑠 (Θ𝑋𝑑 ) 𝑠 (Θ𝑌 ) − 𝑐 (Θ𝑋𝑑 ) 𝑐 (Θ
𝑐(Θ𝑋𝑑 ) 𝑠 (Θ𝑌 ) + 𝑐(Θ𝑌 ) 𝑠 (Θ𝑋
230 
patial BCM for a general cross-section beam, which has previously not

een reported. Although the model is limited to intermediate deflection

ange, it can be further extended for modeling large spatial deflections

y employing a chain scheme, as has been successfully demonstrated

reviously in Refs. [31,33,34] . 

The rest of this paper is organized as follows. Sections 2 and 3 formu-

ate the governing equations for rectangular beams in the intermediate

eflection range by ensuring that the relevant geometric nonlinearities

re included. The governing differential equations are then solved using

he power series method for the load-displacement relations in Section 4 .

he accuracy of the model is validated using two commercial finite ele-

ent software packages (ANSYS and Abaqus) in Section 5 . Concluding

emarks are included in Section 6 . 

. Spatial deflection of the flexible beam 

As shown in Fig. 1 , a cantilever beam is deflected due to a general

oad exerted on its free end. Following the same notation as Sen and Aw-

ar [27] , a global coordinates frame XYZ is established at its fixed end

 , with the 𝑋− , 𝑌 − and 𝑍− axes are in the direction of the centroidal

xis, the thickness direction and the width direction of the undeflected

eam, respectively. An arbitrary point P ( X , 0, 0) on the centroidal axis

f the undeflected beam moves to P’ ( 𝑋 + 𝑈 𝑋 , 𝑈 𝑌 , 𝑈 𝑍 ) after deflection.

he Tait–Bryan angles ( ΘXd , ΘY and ΘZd as shown in Fig. 2 ) are used to

epresent the orientation of the cross section. A local coordinate frame

 d Y d Z d is established at P ′ with the 𝑋 𝑑 − axis along the tangent of the

eformed centroidal axis at this point, and the 𝑌 𝑑 − and 𝑍 𝑑 − axes are

arallel to the 𝑌 − and 𝑍− axes when the beam is undeflected, respec-

ively. The transformation matrix from frame XYZ to frame X d Y d Z d can

e expressed by the Tait–Bryan angles as 

𝑠 (Θ𝑍𝑑 ) − 𝑐(Θ𝑍𝑑 ) 𝑠 (Θ𝑌 ) 
𝑍𝑑 ) 𝑐 (Θ𝑋𝑑 ) 𝑐 (Θ𝑍𝑑 ) 𝑐(Θ𝑌 ) 𝑠 (Θ𝑋𝑑 ) + 𝑐(Θ𝑋𝑑 ) 𝑠 (Θ𝑌 ) 𝑠 (Θ𝑍𝑑 ) 
𝑍𝑑 ) − 𝑐(Θ𝑍𝑑 ) 𝑠 (Θ𝑋𝑑 ) 𝑐 (Θ𝑋𝑑 ) 𝑐 (Θ𝑌 ) − 𝑠 (Θ𝑋𝑑 ) 𝑠 (Θ𝑌 ) 𝑠 (Θ𝑍𝑑 ) 

⎤ ⎥ ⎥ ⎦ (1)

n which c ( Θ) ≜cos ( Θ) and 𝑠 (Θ) = sin (Θ) . 
Similar to Ref [27] , it is assumed that translation and rotation of the

eam tip are less than 0.1 L and 0.1 rad, which means that the values of

 

′
𝑋 
, 𝑈 

′
𝑌 

and 𝑈 

′
𝑍 

are of the orders of 10 −2 , 10 −1 and 10 −1 of the length of

he beam, respectively, and we have 
 

Θ𝑌 ≈ − 𝑈 

′
𝑍 

Θ𝑍𝑑 ≈ 𝑈 

′
𝑌 

The curvatures along the direction of X d , Y d and Z d (denoted as

Xd , 𝜅Yd and 𝜅Zd , respectively) of the deflected beam can be given

s [21,27,32] as 

 

 

 

 

 

𝜅𝑋𝑑 ≈ Θ′
𝑋𝑑 

+ Θ′
𝑌 
Θ𝑍𝑑 = Θ′

𝑋𝑑 
− 𝑈 

′′
𝑍 
𝑈 

′
𝑌 

𝜅𝑌 𝑑 ≈ Θ′
𝑌 
+ Θ𝑋𝑑 Θ′

𝑍𝑑 
= − 𝑈 

′′
𝑍 
+ Θ𝑋𝑑 𝑈 

′′
𝑌 

𝜅𝑍𝑑 ≈ Θ′
𝑍𝑑 

− Θ𝑋𝑑 Θ′
𝑌 
= 𝑈 

′′
𝑌 
+ Θ𝑋𝑑 𝑈 

′′
𝑍 

(2) 

nd the normal strain along the 𝑋 𝑑 − direction (denoted as 𝜖XX ) as 

𝑋𝑋 = 𝑈 

′
𝑋 
+ 

1 
2 
𝑈 

′2 
𝑌 

+ 

1 
2 
𝑈 

′2 
𝑍 

− 𝑇 𝑌 𝜅𝑍𝑑 + 𝑇 𝑍 𝜅𝑌 𝑑 + 

1 
2 
𝜅2 
𝑋𝑑 

( 𝑇 2 
𝑌 
+ 𝑇 2 

𝑍 
) (3)

Because the beam we interested in is slender beam, the shear deflec-

ions caused by transverse loads ( F YL and F ZL ) are ignored. But the shear

train results from torsional moment give rise to the warping of the plane

nd makes great influence to torsional deflection for slender beams [21] .

n practice, the torsional deflection including cross-sectional warping

an be captured by using an effective torsional constant and for rectan-

ular beams, the exact torsional constant is given as [20] 

 = 

𝑇 𝑌 𝑇 
3 
𝑍 

3 

⎡ ⎢ ⎢ ⎣ 1 − 

192 𝑇 𝑍 
𝜋5 𝑇 𝑌 

∞∑
𝑛 =1 , 3 , 5…

tanh ( 𝑛𝜋 𝑇 𝑌 

2 𝑇 𝑍 
) 

𝑛 5 

⎤ ⎥ ⎥ ⎦ (4)

he equation involves summing up of an infinite series and requires

 ≥ T . Therefore, we use the torsional constant that is independent of
Y Z 
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Table 1 

The six load case. 

Case F XL (N) F YL (N) F ZL (N) M XL (N · m) M YL (N · m) M ZL (N · m) 

1 3 −1 , −0 . 9 , −0 . 8 , … , 1 0 0.07 0 0 

2 3 0 0 0.07 0 −0 . 07 , −0 . 063 , −0 . 056 , … , 0 . 07 
3 -3 0 −2 . 5 , −2 . 25 , −2 , … , 2 . 5 0.07 0 0 

4 -3 0 0 -0.07 −0 . 5 , −0 . 45 , −0 . 4 , … , 0 . 5 0 

5 −3 , −2 . 7 , −2 . 4 … , 3 0.05 2.5 0.07 0.5 0.05 

6 3 0.05 2.5 −0 . 08 , −0 . 072 , −0 . 064 , … , 0 . 08 0.5 0.05 

Fig. 3. A structure consisting of three mutually perpendicular beams is intro- 

duced in NLFEM. 
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he aspect ratio proposed in Ref [35] : 

 = 

2 𝑇 3 
𝑌 
𝑇 3 
𝑍 

7 𝑇 2 
𝑌 
+ 7 𝑇 2 

𝑍 

𝑓 ( 𝜂) (5)

here 𝜂 is the aspect ratio (i.e. the ratio between T Y and T Z ) and 

( 𝜂) = 

1 . 167 𝜂5 + 29 . 49 𝜂4 + 30 . 9 𝜂3 + 100 . 9 𝜂2 + 30 . 38 𝜂 + 29 . 41 
𝜂5 + 25 . 91 𝜂4 + 41 . 58 𝜂3 + 90 . 43 𝜂2 + 41 . 74 𝜂 + 25 . 21 

(6)

As the curvature and the strain are expressed with respect to the

ocal coordinate frame, the moments as this point should be given with

espect to this frame as well. The moments can be expressed by the free-

nd loads ( F XL , F YL , F ZL , M XL , M YL and M ZL as shown in Fig. 1 ) as follows:

 

 

 

 

 

𝑀 𝑋 = 𝑀 𝑋𝐿 + 𝐹 𝑍𝐿 ( 𝑈 𝑌 𝐿 − 𝑈 𝑌 ) − 𝐹 𝑌 𝐿 ( 𝑈 𝑍𝐿 − 𝑈 𝑍 ) 
𝑀 𝑌 = 𝑀 𝑌 𝐿 − 𝐹 𝑍𝐿 ( 𝐿 − 𝑋) + 𝐹 𝑋𝐿 ( 𝑈 𝑍𝐿 − 𝑈 𝑍 ) 
𝑀 𝑍 = 𝑀 𝑍𝐿 + 𝐹 𝑌 𝐿 ( 𝐿 − 𝑋) − 𝐹 𝑋𝐿 ( 𝑈 𝑌 𝐿 − 𝑈 𝑌 ) 

(7) 

sing the transformation in Eq. (1) and truncating the higher-order

erms, the moments with respect to the local coordinate frame can be

erived as 

 

 

 

 

 

𝑀 𝑋𝑑 = 𝑀 𝑋 + 𝑈 

′
𝑌 
𝑀 𝑌 + 𝑈 

′
𝑍 
𝑀 𝑍 

𝑀 𝑌 𝑑 = 𝑀 𝑌 − 𝑈 

′
𝑌 
𝑀 𝑋 + Θ𝑋𝑑 𝑀 𝑍 

𝑀 𝑍𝑑 = 𝑀 𝑍 − 𝑈 

′
𝑍 
𝑀 𝑋 − Θ𝑋𝑑 𝑀 𝑌 

(8) 

. Governing differential equations for spatial beams 

For a beam of rectangular cross-section deflected by a general end

oad (comprised of F XL , F YL , F ZL , M Xd , M Yd and M Zd ), the constitutive for-

ulas are given in reference [32] as (linear elastic material is assumed):

 

 

 

 

 

 

 

 

𝐹 𝑋𝐿 

𝐹 𝑌 𝐿 
𝐹 𝑍𝐿 

𝑀 𝑋𝑑 

𝑀 𝑌 𝑑 

𝑀 𝑍𝑑 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐸𝐴𝛾𝑋𝑑 

𝐺𝐴𝑘 𝑌 𝛾𝑌 𝑑 
𝐺𝐴𝑘 𝑍 𝛾𝑍𝑑 

𝐺𝐽𝜅𝑋𝑑 

𝐸𝐼 𝑌 𝜅𝑌 𝑑 
𝐸𝐼 𝑍 𝜅𝑍𝑑 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(9) 

here E is the Young’s modulus, G is the shear modulus, k Y and k Z are

he shear correction factors. 𝛾Xd , 𝛾Yd and 𝛾Zd are the strain components

n the 𝑋− , 𝑌 − and 𝑍− axes, respectively. I and I are the moments of
Y Z ⎩
231 
nertia in the directions of thickness and width, respectively, and J is

he torsional constant. 

Because we neglect the shear deflections produced by F YL and F ZL ,

he second and third formulas are dropped thus only four formulas re-

ain. The first formula represents the arc-length of the beam equals the

riginal length L plus the extension/contraction by the axial force F XL .

ccordingly, F XL is expressed as 

 𝑋𝐿 = 𝐸 ∬𝐴 

𝜖𝑋𝑋 𝑑𝐴 

= 𝐸 ∫
𝑇 𝑍 ∕2 

− 𝑇 𝑍 ∕2 ∫
𝑇 𝑌 ∕2 

− 𝑇 𝑌 ∕2 
( 𝑈 

′
𝑋 
+ 

1 
2 
𝑈 

′2 
𝑌 

+ 

1 
2 
𝑈 

′2 
𝑍 

− 𝑇 𝑌 𝜅𝑍𝑑 + 𝑇 𝑍 𝜅𝑌 𝑑 

+ 

1 
2 
𝜅2 
𝑋𝑑 

( 𝑇 2 
𝑌 
+ 𝑇 2 

𝑍 
)) 𝑑 𝑌 𝑑 𝑍 

= 𝐸𝐴 ( 𝑈 

′
𝑋 
+ 

1 
2 
𝑈 

′2 
𝑌 

+ 

1 
2 
𝑈 

′2 
𝑍 
) + 

𝐸( 𝐼 𝑦 + 𝐼 𝑧 ) 
2 

𝜅2 
𝑋𝑑 

≈ 𝐸𝐴 ( 𝑈 

′
𝑋 
+ 

1 
2 
𝑈 

′2 
𝑌 

+ 

1 
2 
𝑈 

′2 
𝑍 
) (10) 

here 
𝐸( 𝐼 𝑦 + 𝐼 𝑧 ) 

2 𝜅2 
𝑋𝑑 

represents the nonlinearity due to trapeze effect

hich is small enough to neglect for the spatial deflections [21] . Besides,

e have derived the M Xd , M Yd and M Zd in Eq. (8) and 𝜅Xd , 𝜅Yd and 𝜅Zd 

n Eq. (2) , respectively. Accordingly, governing differential equations of

he spatial deformed beam are expressed as 

 

 

 

 

 

 

 

 

 

 

 

 

 

Θ′
𝑋𝑑 

− 𝑈 

′′
𝑍 
𝑈 

′
𝑌 
= 

𝑀 𝑋 + 𝑈 

′
𝑌 
𝑀 𝑌 + 𝑈 

′
𝑍 
𝑀 𝑍 

𝐺𝐽 

− 𝑈 

′′
𝑍 
+ Θ𝑋𝑑 𝑈 

′′
𝑌 
= 

𝑀 𝑌 − 𝑈 

′
𝑌 
𝑀 𝑋 + Θ𝑋𝑑 𝑀 𝑍 

𝐸𝐼 𝑦 

𝑈 

′′
𝑌 
+ Θ𝑋𝑑 𝑈 

′′
𝑍 
= 

𝑀 𝑍 − 𝑈 

′
𝑍 
𝑀 𝑋 − Θ𝑋𝑑 𝑀 𝑌 

𝐸𝐼 𝑧 

𝐹 𝑋𝐿 = 𝐸𝐴 ( 𝑈 

′
𝑋 
+ 

1 
2 
𝑈 

′2 
𝑌 

+ 

1 
2 
𝑈 

′2 
𝑍 
) 

(11) 

hile the beam is fixed at point O , the geometric boundary conditions

an be expressed as 

 

𝑈 𝑋𝑂 = 0 𝑈 𝑌 𝑂 = 0 𝑈 𝑍𝑂 = 0 
Θ𝑋 𝑑 𝑂 = 0 𝑈 

′
𝑌 𝑂 

= 0 𝑈 

′
𝑍𝑂 

= 0 (12) 

A normalization scheme similar to Ref [1] is used, in which the nor-

alized parameters of the loads and deflections are defined as 

 

 

 

 

 

 

 

 

 

𝑓 𝑥 1 = 

𝐹 𝑋𝐿 𝐿 

2 

𝐸𝐼 𝑍 
𝑓 𝑦 1 = 

𝐹 𝑌 𝐿 𝐿 

2 

𝐸𝐼 𝑍 
𝑓 𝑧 1 = 

𝐹 𝑍𝐿 𝐿 

2 

𝐸𝐼 𝑍 

𝑚 𝑥 1 = 

𝑀 𝑋𝐿 𝐿 

𝐸𝐼 𝑍 
𝑚 𝑦 1 = 

𝑀 𝑌 𝐿 𝐿 

𝐸𝐼 𝑍 
𝑚 𝑧 1 = 

𝑀 𝑍𝐿 𝐿 

𝐸𝐼 𝑍 

𝑢 𝑦 = 

𝑈 𝑌 

𝐿 

𝑢 𝑧 = 

𝑈 𝑍 

𝐿 

𝜃𝑥𝑑 = Θ𝑋𝑑 𝑥 = 

𝑋 

𝐿 

(13) 
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By substituting Eq. (13) into Eq. (11) , the beam governing differen-

ial equations can be rewritten as 

 

 

 

 

 

 

 

 

 

 

 

𝜃′
𝑥𝑑 

− 𝑢 ′′
𝑧 
𝑢 ′
𝑦 
= 

𝑚 𝑥 + 𝑚 𝑦 𝑢 
′
𝑦 
+ 𝑚 𝑧 𝑢 

′
𝑧 

𝑘 44 
𝜃𝑥𝑑 𝑢 

′′
𝑦 
− 𝑢 ′′

𝑧 
= 𝛼( 𝑚 𝑦 − 𝑚 𝑥 𝑢 

′
𝑦 
+ 𝑚 𝑧 𝜃𝑥𝑑 ) 

𝑢 ′′
𝑦 
+ 𝜃𝑥𝑑 𝑢 

′′
𝑧 
= 𝑚 𝑧 − 𝑚 𝑥 𝑢 

′
𝑧 
− 𝑚 𝑦 𝜃𝑥𝑑 

𝑓 𝑥 1 
𝑘 33 

= 𝑢 ′
𝑥 
+ 

1 
2 𝑢 

′
𝑦 

2 + 

1 
2 
𝑢 ′
𝑧 

2 

(14)

here 𝛼 = 

𝐼 𝑍 

𝐼 𝑌 
, 𝑘 33 = 

𝐿 

2 𝐴 

𝐼 𝑍 
and 𝑘 44 = 

𝐺𝐽 

𝐸𝐼 𝑍 
. The normalized moments

 x , m y and m z are derived by combining Eqs. (7) , (8) and (13) : 

 

 

 

 

 

 

 

𝑚 𝑥 = 𝑚 𝑥 1 + 𝑓 𝑧 1 ( 𝑢 𝑦 1 − 𝑢 𝑦 ) − 𝑓 𝑦 1 ( 𝑢 𝑧 1 − 𝑢 𝑧 ) = 𝑚 𝑥 0 − 𝑓 𝑧 1 𝑢 𝑦 + 𝑓 𝑦 1 𝑢 𝑧 

𝑚 𝑦 = 𝑚 𝑦 1 − 𝑓 𝑧 1 (1 − 𝑥 ) + 𝑓 𝑥 1 ( 𝑢 𝑧 1 − 𝑢 𝑧 ) = 𝑚 𝑦 0 + 𝑓 𝑧 1 𝑥 − 𝑓 𝑥 1 𝑢 𝑧 

𝑚 𝑧 = 𝑚 𝑧 1 + 𝑓 𝑦 1 (1 − 𝑥 ) − 𝑓 𝑥 1 ( 𝑢 𝑦 1 − 𝑢 𝑦 ) = 𝑚 𝑧 0 − 𝑓 𝑦 1 𝑥 + 𝑓 𝑥 1 𝑢 𝑦 

(15)

here the subscripts ″ 0 ″ and ″ 1 ″ in the load parameters indicate that

hey are measured at the fixed end and the free end of the beam, re-
232 
pectively. The use of the moments at the fixed end makes the end

oad-displacement expressions more compact as will be shown in the

ext section. Especially, for beams of bisymmetrical cross-sections (i.e.

= 1 ), Eq. (14) should be similar to the governing equations in [27] .

owever, there are two key differences in these two sets of govern-

ng equations. One, the 1st and 4th equations in Eq. (14) neglect the

oupling between axial and torsion directions, which is shown as the

rapeze effect in reference [27] and makes very small contribution

 < 1% errors) to the results when the beam subject to spatial deflec-

ions. Another difference is that the 2nd and 3rd equations in Eq. (14) ,

hich represent the bending in XY and XZ planes, involve terms of

wisting angles that shows the coupling between bending and torsion.

hese terms were dropped in bisymmetric SBCM without loss of pre-

ision [27] , but they cannot be neglected for rectangular beam. Also,

hese governing equations are in agreement with those in Nijenhuis’s

aper [32] and Hodges’s paper [25] , both of which provide governing

quations for a general cross-section beam and not simply a bisymmet-

ic cross-section beam. It should be noted that Eq. (14) are noncon-

tant coefficient differential equations and cannot be solved directly.

o solve linear differential equations with variable coefficients, the

ower series method [36] has been used previously in the modeling
Fig. 4. Deflections vs. f y (load case 1). 
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Fig. 5. Deflections vs. m z (load case 2). 
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

t  

t{
f planar beams [1] . The same approach will be employed here as

ell. 

. Solution 

To solve a differential equation, the power series method assumes

hat the solution can be expressed as a power series with unknown coef-

cients, then substitutes the power series into the differential equation

o find the recurrence relations for the coefficients. 

By following the power series method, we express the deflections as

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑢 𝑥 = 

∞∑
𝑛 =0 

𝑎 𝑥 
𝑛 
𝑥 𝑛 ; 

𝜃𝑥𝑑 = 

∞∑
𝑛 =0 

𝑎 𝑥𝑑 
𝑛 
𝑥 𝑛 

𝑢 𝑦 = 

∞∑
𝑛 =0 

𝑎 𝑦 
𝑛 
𝑥 𝑛 ; 

𝑢 𝑧 = 

∞∑
𝑛 =0 

𝑎 𝑧 
𝑛 
𝑥 𝑛 ; 

(16) 
233 
ifferentiating Eq. (16) yields the following derivatives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑢 ′
𝑥 
= 

∞∑
𝑛 =1 

𝑛𝑎 𝑥 
𝑛 
𝑥 𝑛 −1 

𝜃′
𝑥𝑑 

= 

∞∑
𝑛 =1 

𝑛𝑎 𝑥𝑑 
𝑛 
𝑥 𝑛 −1 

𝑢 ′
𝑦 
= 

∞∑
𝑛 =1 

𝑛𝑎 𝑦 
𝑛 
𝑥 𝑛 −1 

𝑢 ′′
𝑦 
= 

∞∑
𝑛 =2 

𝑛 ( 𝑛 − 1) 𝑎 𝑦 
𝑛 
𝑥 𝑛 −2 

𝑢 ′
𝑧 
= 

∞∑
𝑛 =1 

𝑛𝑎 𝑧 
𝑛 
𝑥 𝑛 −1 

𝑢 ′′
𝑧 
= 

∞∑
𝑛 =2 

𝑛 ( 𝑛 − 1) 𝑎 𝑧 
𝑛 
𝑥 𝑛 −2 

(17) 

Substituting Eqs. (16 ) and (17) into the governing differential equa-

ions of Eq. (14) and applying the following geometric boundary condi-

ions 
 

𝑢 𝑥 0 = 0; 𝑢 𝑦 0 = 0; 𝑢 𝑧 0 = 0 
𝜃𝑥𝑑0 = 0; 𝑢 ′

𝑦 0 = 0; 𝑢 ′
𝑧 0 = 0 (18) 
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Fig. 6. Deflections vs. f z (load case 3). 
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(  

i  

o⎡⎢⎢⎢⎢⎣
 

𝜃

𝑢  
ield the recurrence relations, which are further used to solve for the

oefficients of the power series 𝑎 𝑥 
𝑛 
, 𝑎 

𝑦 
𝑛 , 𝑎 

𝑧 
𝑛 

and 𝑎 𝑥𝑑 
𝑛 

. However, since the

ecurrence relations are hard to derive by hand, we turn to use the soft-

are ”Maple ” to get the power series solution by using the command

dsolve ” and choosing the option as ”series ” (only the first eight coef-

cients in each power series are solved considering that the eighth and

igher power terms become insignificant). 

The coefficients are functions of loads and cross-sectional parame-

ers. When the beam is deflected in the intermediate range, the nor-

alized transverse loads are in [−1 , 1] range. Since the coefficients

f the 3rd and higher order terms of loads are much smaller than

he 1st order terms, these terms can be neglected directly. The 8th

nd higher power terms of x in Eq. (16 ) do not contain the 1st and

nd order terms of transverse loads, which means these terms are

uch smaller than the 7th and lower power terms, thus are dropped.

y taking the Taylor series expansions of the coefficients with re-

pect to f x 1 and m x 0 and dropping the third and higher power terms

they are insignificant for transverse deflections and rotations in the

ntermediate range), the following deflection-load relations can be
234 
btained: 

 

 

 

 

 

 

𝑢 𝑦 1 
𝑢 ′
𝑦 1 

𝑢 𝑧 1 
− 𝑢 ′

𝑧 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= ( 𝐶 1 + 𝑓 𝑥 1 𝐶 2 + 𝑚 𝑥 0 𝐶 3 + 𝑓 2 

𝑥 1 𝐶 4 + 𝑓 𝑥 1 𝑚 𝑥 0 𝐶 5 + 𝑚 

2 
𝑥 0 𝐶 6 ) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑓 𝑦 1 
𝑚 𝑧 0 
𝑓 𝑧 1 
𝑚 𝑦 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(19)

𝑥𝑑1 = 

𝑚 𝑥 0 
𝑘 44 

+ 

[
𝑓 𝑦 1 𝑚 𝑧 0 𝑓 𝑧 1 𝑚 𝑦 0 

]
( 𝐶 𝑡 1 + 𝑓 𝑥 1 𝐶 𝑡 2 + 𝑚 𝑥 0 𝐶 𝑡 3 ) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑓 𝑦 1 
𝑚 𝑧 0 
𝑓 𝑧 1 
𝑚 𝑦 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(20) 

 𝑥 1 = 

𝑓 𝑥 1 
𝑘 33 

+ 

[
𝑓 𝑦 1 𝑚 𝑧 0 𝑓 𝑧 1 𝑚 𝑦 0 

]
( 𝐶 𝑥 1 + 𝑓 𝑥 1 𝐶 𝑥 2 + 𝑚 𝑥 0 𝐶 𝑥 3 ) 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑓 𝑦 1 
𝑚 𝑧 0 
𝑓 𝑧 1 
𝑚 𝑦 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(21)
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Fig. 7. Deflections vs. m y (load case 4). 

i  

p  

c

𝐶

𝐶

𝐶

𝐶

n which C i ( 𝑖 = 1 , 2 , … , 6 ), C xj and C tj ( 𝑗 = 1 , 2 , 3 ) represent various as-

ects of compliance in the beam. By simplifying the remaining coeffi-

ients, C i , C xj and C tj are derived as 

 1 = 

1 
6 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
−1 3 0 0 
−3 6 0 0 
0 0 − 𝛼 −3 𝛼
0 0 3 𝛼 6 𝛼

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

 2 = 

1 
120 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
−1 5 0 0 
−5 20 0 0 
0 0 − 𝛼2 −5 𝛼2 
0 0 5 𝛼2 20 𝛼2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
235 
 3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 
𝑘 44 𝛼 + 2 𝛽
24 𝑘 44 

𝑘 44 𝛼 + 𝛽

6 𝑘 44 

0 0 
𝑘 44 + 2 𝛽
6 𝑘 44 

𝑘 44 𝛼 + 𝛽

2 𝑘 44 

− 

𝑘 44 − 2 𝛽
24 𝑘 44 

𝑘 44 𝛼 − 𝛽

6 𝑘 44 
0 0 

𝑘 44 − 2 𝛽
6 𝑘 44 

− 

𝑘 44 𝛼 − 𝛽

2 𝑘 44 
0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 4 = 

1 
5040 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
−1 7 0 0 
−7 42 0 0 
0 0 − 𝛼3 −7 𝛼3 
0 0 7 𝛼3 42 𝛼3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
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𝐶

 + 2 𝛽
0 𝑘 44 
 + 2 𝛽
0 𝑘 44 

0 

0 

𝐶

0 

0 

 44 ) 𝛼2

120 𝑘
 𝑘 44 ) 𝛼

24 𝑘

𝐶

𝐶

 

4 𝛼
2 +
1

4 𝛼
2 +

𝐶
 

𝛼2 + 8

 

𝛼2 +

𝐶

𝐶

 5 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 
𝑘 44 ( 𝛼2 + 𝛼)

72

0 0 
𝑘 44 ( 𝛼2 + 𝛼)

12

− 

𝑘 44 ( 𝛼2 + 𝛼) + 2 𝑘 44 − 6 𝛽
720 𝑘 44 

𝑘 44 ( 𝛼2 + 𝛼) − 𝛽( 𝛼 + 3) 
120 𝑘 44 

𝑘 44 ( 𝛼2 + 𝛼) + 2 𝑘 44 − 6 𝛽
120 𝑘 44 

− 

𝑘 44 ( 𝛼2 + 𝛼) − 𝛽( 𝛼 + 3) 
24 𝑘 44 

 6 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

( 𝑘 2 44 + 𝑘 44 ) 𝛼 + 2 𝑘 44 − 6 𝛽

120 𝑘 2 44 
− 

( 𝑘 2 44 + 𝑘 44 ) 𝛼 + 2 𝑘 44 − 6 𝛽

24 𝑘 2 44 
( 𝑘 2 44 + 𝑘 44 ) 𝛼 + 2 𝑘 44 − 6 𝛽

24 𝑘 2 44 
− 

( 𝑘 2 44 + 𝑘 44 ) 𝛼 + 2 𝑘 44 − 6 𝛽

6 𝑘 2 44 

0 0 
( 𝑘 2 44 + 2 𝑘

0 0 − 

( 𝑘 2 44 + 2

 𝑡 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 
3 𝑘 44 𝛼 + 2 𝛽

48 𝑘 44 
𝑘 44 𝛼 + 𝛽

12 𝑘 44 

0 0 − 

2 𝑘 44 + 𝛽

12 𝑘 44 
𝑘 44 𝛼 + 𝛽

4 
3 𝑘 44 𝛼 + 2 𝛽

48 𝑘 44 
− 

2 𝑘 44 + 𝛽

12 𝑘 44 
0 0 

𝑘 44 𝛼 + 𝛽

12 𝑘 44 
𝑘 44 𝛼 + 𝛽

4 
0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 𝑡 2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 
10 𝑘 24

0 0 − 

4 𝑘 4

10 𝑘 2 44 𝛼
2 + 5 𝑘 44 𝛼 + 4 𝛼2 − 4 
1440 𝑘 44 

− 

4 𝑘 44 𝛼2 + 4 𝑘 44 𝛼 + 𝛽( 𝛼 + 3) 
240 𝑘 44 

6 𝑘 44 𝛼2 + 𝑘 44 𝛼 + 𝛽(3 𝛼 + 1) 
240 𝑘 44 

− 

3 𝑘 44 𝛼2 + 𝑘 44 𝛼 + 𝛼2 − 1 
48 𝑘 44 

 𝑡 3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 𝑘 2 44 − 3 𝑘 44 𝛼 + 4 𝑘 44 − 2 𝛽

40 𝑘 2 44 

6 𝑘 2 44 𝛼 − 6 𝑘 44 𝛼 + 9 𝑘 44 − 4 𝛽

48 𝑘 2 44 
6 𝑘 2 44 𝛼 − 6 𝑘 44 𝛼 + 9 𝑘 44 − 4 𝛽

48 𝑘 2 44 

2 𝑘 2 44 𝛼 − 𝑘 44 𝛼 + 2 𝑘 44 − 𝛽

6 𝑘 2 44 

0 0 − 

4 𝑘 2 44

0 0 − 

4 𝑘 2 44

 𝑥 1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 

1 
40 

− 

1 
16 

0 0 

1 
16 

− 

1 
6 

0 0 

0 0 − 

𝛼2 

40 
− 

𝛼2 

16 

0 0 − 

𝛼2 

16 
− 

𝛼2 

6 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 𝑥 2 = − 

1 
1680 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

5 − 

35 
2 0 0 

− 

35 
2 56 0 0 

0 0 5 𝛼2 35 
2 𝛼

3 

0 0 35 
2 𝛼

3 56 𝛼3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
236 
(2 𝛼 + 1) 𝑘 44 ( 𝛼2 + 𝛼) + 𝛽(3 𝛼 + 1) 
120 𝑘 44 

(2 𝛼 + 1) 𝑘 44 ( 𝛼2 + 𝛼) + 𝛽(3 𝛼 + 1) 
24 𝑘 44 

0 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
0 

0 

 + 𝑘 44 + 6 𝛽

 

2 
44 

( 𝑘 2 44 + 𝑘 44 ) 𝛼2 + 𝑘 44 + 2 𝛽

24 𝑘 2 44 
2 + 𝑘 44 + 6 𝛽

 

2 
44 

− 

( 𝑘 2 44 + 𝑘 44 ) 𝛼2 + 𝑘 44 + 2 𝛽

6 𝑘 2 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

 5 𝑘 44 𝛼 + 4 𝛼2 − 4 
440 𝑘 44 

6 𝑘 44 𝛼2 + 𝑘 44 𝛼 + 𝛽(3 𝛼 + 1) 
240 𝑘 44 

 4 𝑘 44 𝛼 + 𝛽( 𝛼 + 3) 
240 𝑘 44 

− 

3 𝑘 44 𝛼2 + 𝑘 44 𝛼 + 𝛼2 − 1 
48 𝑘 44 

0 0 

0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
0 0 

0 0 

 𝑘 44 𝛼
2 − 11 𝑘 44 𝛼 − 6 𝛽

120 𝑘 2 44 
− 

4 𝑘 2 44 𝛼
2 + 5 𝑘 44 𝛼2 − 8 𝑘 44 𝛼 − 4 𝛽

48 𝑘 2 44 
 5 𝑘 44 𝛼2 − 8 𝑘 44 𝛼 − 4 𝛽

48 𝑘 2 44 
− 

𝑘 2 44 𝛼
2 + 𝑘 44 𝛼

2 − 2 𝑘 44 𝛼 − 𝛽

6 𝑘 2 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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 𝑥 3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

0 0 −

− 

𝑘 44 𝛼𝛽 − 2( 𝛼2 − 1) 
144 𝑘 44 

− 

3 𝑘 44 𝛼2 − 2 𝑘 44 𝛼 − 𝛽(3 𝛼 + 4) 
120 𝑘 44 

− 

2 𝑘 44 𝛼2 − 3 𝑘 44 𝛼 − 𝛽(3 𝛼 + 4) 
120 𝑘 44 

− 

𝑘 44 𝛼𝛽 − 𝛼2 + 1 
16 𝑘 44 

in which 𝛽 = 𝛼 − 1 . Besides, we have the following relations: 

 

 

 

 

 

𝑚 𝑥 0 = 𝑚 𝑥 1 + 𝑓 𝑧 1 𝑢 𝑦 1 − 𝑓 𝑦 1 𝑢 𝑧 1 
𝑚 𝑦 0 = 𝑚 𝑦 1 − 𝑓 𝑧 1 + 𝑓 𝑥 1 𝑢 𝑧 1 
𝑚 𝑧 0 = 𝑚 𝑧 1 + 𝑓 𝑦 1 − 𝑓 𝑥 1 𝑢 𝑦 1 

(22) 

These equations involve 15 parameters, including 6 deflection pa-

ameters and 6 load parameters at the free end, and 3 moments at

he fixed end. Given any 6 parameters, the other 9 parameters can be

btained by simultaneously solving these equations using the Newton-

aphson method. The matrices in the model are dimensionless and valid

or spatial beams of uniform and rectangular cross-section when de-

ected in the intermediate range. Similar to Ref. [27] , matrix C 1 repre-

ents the linear elastic compliances associated with the four transverse

ending loads. C 2 and C 4 capture load stiffening effects in these direc-

ions in the presence of axial load f x 1 . For example, in the presence of

ositive f x 1 , because the first terms of C 2 and C 4 are negative, the total

ompliance in the u y direction is reduced, which is the load stiffening

ffect. C 3 and C 6 capture load stiffening effects in the bending direc-

ions in the presence of torsional moment m x 0 and reveal a resulting

oupling between the two bending planes. C 5 captures the coupling be-

ween the two bending planes in the presence of axial force f x 1 and

orsional moment m x 0 . Although the matrix C t 1 in Eq. (20) relates the

orsional rotation to transverse direction loads, it can be shown that it

aptures the purely kinematic contributions of bending deflections to

orsional rotation that was shown in Ref [27] . Similarly, the matrix C x 1 

n Eq. (21) captures the purely kinematic contribution of bending de-

ections to the axial deflection. In a simmilar manner, C t 2 and C t 3 in

q. (20) and C x 2 and C x 3 in Eq. (21) capture the elastokinematic effects

n axial direction and torsion direction, respectively. 

As compared to SBCM that was developed for bisymmetric spatial

eams, this model provides designers an analytical tool for modeling

ectangular spatial beams. When 𝛼 = 1 (i.e. the cross section of the beam

s square), errors between these two load-displacement equations are

ess than 1%. Besides, there are two major differences between the load-

isplacement relations for these two models: (1) compliance terms are

sed in the rectangular beam’s equations, while stiffness terms are used

n the bisymmetric beam equations. Because the power series method

oes not provide closed-form load-displacement relations, it is hard to

nalytically transform the load-displacement equations (19) into a stiff-

ess form. By setting 𝛼 = 1 and numerically transforming this model to

tiffness form with some simplification, we can find that there is just a

ittle difference in the 𝑚 

2 
𝑥 1 terms, which results in very small changes to

he overall relations. (2) the load parameters at the free end are used

n the bisymmetric spatial beam’s equations, while the load parameters

oth at the fixed and the free ends take places in the rectangular beam’s

quations to make the load-displacement equations more compact in the

odeling of rectangular beam. 

. Validation 

This section provides validation of the end load-displacement

quations (i.e. Eqs. (19 )–(21) ) using nonlinear finite element models

NLFEM) established in ANSYS and Abaqus. The flexible beam be-

ng analyzed is assumed to be made of steel with Young’s modulus

 = 2 . 1 × 10 11 Pa and Poisson’s ratio 𝜇 = 0 . 26 . The length of the beam
237 
 

𝑘 44 𝛼𝛽 − 2( 𝛼2 − 1) 
144 𝑘 44 

− 

2 𝑘 44 𝛼2 − 3 𝑘 44 𝛼 − 𝛽(3 𝛼 + 4) 
120 𝑘 44 

𝛼2 − 2 𝑘 44 𝛼 − 𝛽(3 𝛼 + 4) 
120 𝑘 44 

− 

𝑘 44 𝛼𝛽 − 𝛼2 + 1 
16 𝑘 44 

0 0 

0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
 = 0 . 2 m, and the cross section is rectangular with width 𝑊 = 0 . 006 m
nd thickness 𝑇 = 0 . 001 m. 

To guarantee the accuracy of the NLFEM results, the flexible beam

as meshed into 50 elements using BEAM188 in ANSYS while 40 ele-

ents using B31 in Abaqus, respectively, with the geometric nonlinear-

ties option turned on. It should be noted that the output tip angles in

NSYS and Abaqus are not clearly defined, and may be different from

he Tait–Bryan angles used in this work (i.e., 𝜃xd , 𝜃zd and 𝜃y ). For the

urpose of comparison, a rigid structure consisting of three mutually

erpendicular beams (AB, AC, and AD, as shown in Fig. 3 ) are intro-

uced and attached to the tip of the beam (point A) in the NLFEM sim-

lation to calculate the Tait–Bryan angles. Length of these three beams

re 1. These structures can be considered as the deformed coordinate

rame at the beam tip ( 𝑋 𝑑𝐿 − 𝑌 𝑑𝐿 − 𝑍 𝑑𝐿 ). The transformation matrix

an be expressed by the coordinates of points A, B, C and D as: 

 = 

⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑟 13 
𝑟 21 𝑟 22 𝑟 23 
𝑟 31 𝑟 32 𝑟 33 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑋 𝐵 − 𝑋 𝐴 𝑌 𝐵 − 𝑌 𝐴 𝑍 𝐵 − 𝑍 𝐴 

𝑋 𝐶 − 𝑋 𝐴 𝑌 𝐶 − 𝑌 𝐴 𝑍 𝐶 − 𝑍 𝐴 

𝑋 𝐷 − 𝑋 𝐴 𝑌 𝐷 − 𝑌 𝐴 𝑍 𝐷 − 𝑍 𝐴 

⎤ ⎥ ⎥ ⎦ (23) 

ith the transformation matrix in Eq. (1) , the Tait–Bryan angles can be

alculated by the following expressions 

 

 

 

 

 

 

 

 

 

𝜃𝑥𝑑1 = arctan 
− 𝑟 32 
𝑟 22 

𝜃𝑦 1 = arctan 
− 𝑟 13 
𝑟 11 

𝜃𝑧𝑑1 = arctan 
𝑟 12 √ 

𝑟 2 11 + 𝑟 2 13 

(24) 

he tip angles can be represented by the twisting angle ( 𝜃xd 1 ), the rota-

ional angle in the XOZ plane ( 𝜃y 1 ) and the rotational angle in the XOY

lane ( 𝜃z 1 ). 𝜃z 1 can be derived by the Tait–Bryan angles as 

𝑧 1 = arctan 
tan 𝜃𝑧𝑑 
cos 𝜃𝑦 

(25) 

ix load cases are employed to verify the correctness of the load-

eflection equations, as listed in Table 1 . For each load case, we guar-

ntee that the deflections are within the intermediate range, that is, the

ormalized transverse deflections and the rotations won’t exceed ± 0.1.

For the first load case, Fig. 4 shows the variations of the normalized

ransverse deflections and the rotations of the beam as F YL incrementally

ncreases from −1 N to 1 N in 21 load steps while other load parameters

emain unchanged. The transverse deflections and the rotation angles

btained by this model agree well with those of the two commercial

nite element software packages (ANSYS and Abaqus), except for the

wisting angle 𝜃xd 1 . Interestingly, the results of 𝜃xd 1 obtained by ANSYS

nd Abaqus don’t agree with each other, while this model’s predictions

all in between those of the two software packages. To find out which

ne is more accurate, we simplified the load case to a pure torque load

ase ( 𝑀 𝑋𝐿 = 1 and all other load parameters were set to 0). The corre-

ponding results of 𝜃xd 1 obtained by this model, ANSYS and Abaqus are

.08045, 0.07742 and 0.08111, respectively. The torsion angle of this

eam can be calculated analytically by using the infinite series expres-

ion of J [20] : 

𝑥 = 

𝑀 𝑥 𝐿 



R. Bai, S. Awtar and G. Chen International Journal of Mechanical Sciences 160 (2019) 229–240 

Fig. 8. Deflections vs. f x (load case 5). 
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load exerts on the free end of the beam. 
here 

 = 𝑊 

3 𝑇 

( 

1 
3 
− 

64 
𝜋5 

𝑊 

𝑇 

∞∑
𝑖 =1 , 3 , 5 , …

tanh ( 𝑖𝑇 𝜋∕2 𝑊 ) 
𝑖 5 

) 

nd the analytical result is 0.08045. The results indicate that this model

s more accurate in calculating the twisting angle, nevertheless, the er-

ors between these methods are less than 5%. Similar results are ob-

erved in Fig. 5 for the second load case, in which M ZL incrementally

ncreases from −0 . 07 N · m to 0.07 N · m in 21 load steps while other

oad parameters remain unchanged. 

For the third and the fourth load cases, Figs. 6 and 7 show the vari-

tions of the normalized transverse deflections and the rotations of the

eam with respect to varying F ZL and M YL , respectively. Again, the this

odels results for 𝜃xd 1 fall in between those of ANSYS and Abaqus. This

odel and ANSYS agree well on predicting the axial elongation of the

eam ( u x 1 ), while Abaqus yields relatively large errors (with the max-

mum error of 9%). For all the other transverse deflections and the ro-

ation angles, the predictions of this model agree well with those of the

wo commercial finite element software packages. 
238 
At least 3 load parameters were set to 0 for each of the first 4 load

ases. To demonstrate more general loading conditions for the spatial

eam, we choose 5 non-zero load parameters and 1 varying load pa-

ameter for the fifth and the sixth load cases. Fig. 8 shows the results for

he fifth load case, from which we can see that, the predictions of this

odel for all the transverse deflections and the rotation angles agree

ell with those of ANSYS and Abaqus. Although there are noticeable

ifferences between this model’s predictions and those of ANSYS and

baqus for u z 1 and 𝜃y 1 (corresponding to bending of the beam along

he width direction), the relative errors are less than 1.3%. For the sixth

oad case, Fig. 9 shows that results of this model agree well with those

f ANSYS and Abaqus except the axial elongation u x 1 . The maximum

rediction error of this model for u x 1 is 8.3% and 9.3% as compared to

NSYS and Abaqus, respectively, which is still acceptable considering

hat u x 1 is along the degree of constraint of the beam and is always very

mall. 

Therefore, results of these load cases demonstrate that Eqs. (19) –(21)

re precise enough to calculate the end-displacements when a general
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Fig. 9. Deflections vs. m x (load case 6). 
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. Conclusions 

This paper has presented a compact nonlinear spatial beam that cap-

ures the constraint characteristics (i.e. stiffness and error motions) of

 slender beam with a general rectangular cross-section via parametric

nd load-displacement relations that capture relevant geometric non-

inearities in spatial beam mechanics. Previous SBCM was limited to

isymmetric uniform cross-section slender beams. The new model is ca-

able of capturing the relevant geometric nonlinearities in the interme-

iate deflection range (the transverse deflections and rotations are lim-

ted to 0.1 L and 0.1, respectively) and offers a parameterized tool for

nderstanding the constraint/motion behaviors of rectangular beams.

he model was validated to be accurate by comparing to commercial

nite element software packages. Our future work will be focused on

xtending this model for modeling large spatial deflections of rectangu-

ar beams by employing a discretization-based scheme. We also plan to

alidate the results of this paper via experimental testing. 
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