E|ectr0magnetic Coup”ng in a dc tional models of dc machines. The experimental test setup consists

of an integrated permanent magnet dc motor-tachometer unit from
Motor and Tachometer Assembly Electro-Craft (Part No. 0288-32-003 Both the motor and ta-
chometer in this assembly are two-pole permanent magnet stator
devices. A shaft of finite stiffness connects the tachometer and
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. . . and V., is obtained using a dynamic signal analyzer, SigLab,
Nuclear Engineering, Rensselaer Polytechnic from DSP Technology Inc. To characterize the dc motor-

Institute, 110 8th Street, Troy, NY 12180 tachometer unit by itself, no external load inertia was attached to

e-mail: craigk@rpi.edu the output shaft in the initial experiments. A lumped parameter
model of this mechanical assembly was used to obtain the transfer
function between the motor torque input and the tachometer rotor

This paper presents an enhanced tachometer model that takes Iz-rt]?gular position:

account the effect of electromagnetic coupling that can exist be- o K
tween the actuator and sensor in an integrated dc motor- t _ ) )
tachometer assembly, where the conventional model is found to be Trmotor  $7[JJIpnS?+K(Jp+ )]

inadequate. The tachometer dynamics identified in this paper is

experimentally verified, and incorporated in the modeling and pdhe following conventional models for dc motor and tachometer,
rameter identification of a motion system that has multiple flexib®mmonly found in the literaturf9,10], were used at this stage:
elements. It is shown that the tachometer dynamics contributes .

additional nonminimum phase zeros that degrade the servo system Tmoto= Kt motod 1 Viach= Kb tacrft - 3
performance in terms of closed-loop bandwidth, disturbance re- i i

jection and sensitivity to modeling uncertainty. The zeros of thésing Egs.(1)—(3), the overall system transfer function was de-
open loop system are found to vary with the geometric parametétged to be

of the motor-tachometer assembly. Based on the insight gained by

modeling the electromagnetic coupling, methods for eliminating it Viach Kamb_taciKt moto
?Sgll:tslcr)ejtljlltg}%?sggn;j]gtal effects are also suggested. Vi, 33,82+ K(3+ I (Tams+ 1)

(4)

The open-loop system frequency response predicted by this trans-
Keywords: Servomotor Control, Tachometer Model, Sensor Afer function was then compared to the experimentally obtained
tuator Crosstalk, Electromagnetic Coupling, Zero-Locus frequency response, both of which are plotted in Fig. 1. While the
experimental results agree with the analytical predictions in the
low frequency range, there is a significant deviation at frequencies
above 100 Hz. The model derived above clearly fails to predict
the experimentally observed system zeros. Furthermore, an unex-
Closed-loop control of a dc motor to drive load inertia is @lained phase drop of 180° can be seen at the first zero frequency
common industrial and research application. Very often, dc tar the experimental frequency response plot. This indicates that
chometers are used to provide velocity feedback for motion cotive corresponding complex conjugate zero pair lies in the right
trol [1-3]. In the presence of flexible components in the drivialf plane(RHP), thereby making the system nonminimum phase.
system, for example, a compliant motor-tachometer shaft or aThe above discrepancies called for a closer inspection of the
flexible mechanical coupling, this exercise in servo-control desiglystem modeling. Neglecting dissipative effects and assuming
becomes quite challengirig—8|. Furthermore, a perfect feedbacklumped parameters would not normally cause additional dynamics
of relevant states may not be available, and the sensors may fitkhe system response. Any possible amplifier dynamics, in the
up erroneous signals from other components in the servosystéraquency range of interest, is already captured in @&. The
resulting in additional dynamics. By means of an illustrative exextra zeros and their nonminimum phase nature revealed in the
ample, it is shown in this paper that an accurate model of tk&perimental frequency response measurement indicated that
sensor dynamics is critical in determining the limits of closedhere was some physical phenomenon in the system that had not
loop bandwidth and system performance, and therefore shoulddien adequately modeled. Since, the motor and tachometer ex-
incorporated in the overall system model before a compensatopigssiong3) represent textoook models of idealized electromag-
designed. netically isolated dc machines, it was suspected that these might
The motivation for this work comes from an experimental frebe oversimplifications for the pertinent analysis, and therefore de-
guency response measurement of a motor-tachometer system, fih@tided a careful reconsideration. The ensuing investigation, its
did not match initial analytical predictions based on the convefindings and the consequences of these findings are presented in
the this paper. Section 2 covers the basic background on modeling
Corresponding Author. dc machines and extends this to an integrated motor-tachometer
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1 Introduction and Background
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Fig. 1 Viaen ! Vi, Bode plot for the motor-tachometer system: Experimental measurement,

conventional model, and proposed model

2 Modeling an Integrated dc Motor-Tachometer As-
sembly

In the case of a dc motor, commutation ensures that the arma-
ture current produces an armature field that retains its orientation
in space and is always perpendicular to the stator field. The mo
armature then behaves like a magnetic dipole, and therefore ex

riences a counter clockwise torque in the presence of the st
field, which can be shown to be

Tmotor= (N1A1Bima) 1é Kt_motorI 1- %)

The backemfgenerated in the motor coil rotating in a radially,

uniform stator field is given by

(6)

Vb_motor: (N;A1Bm1) wmé Kb,motor“’m .

motor circuit relationship;

dl
11 1
V- Vbimotor_ NlT =Ri,=V;— bemotor“’m_ M 11E
=Ryl;. (7
Similar relationships hold for a dc tachometer:
Vb_tach= (N2A;Bm2) wté Kb_tacrﬂ)t ) 8)

Tiaci= (N2AB )| 2é Kt_tacrl 2
In this caseT,cniS a retarding torque resulting from the armatur

current, and opposes the rotation of the tachometer rotor. Laws
electromagnetism applied to the tachometer electrical circuit r

sult in
22 dl,
Vb taci™ No—= = (ReH RU1= Ky racior = Moz 5

=(Ry+R)I5. )

Journal of Dynamic Systems, Measurement, and Control

The terminal voltage as seen by a load resi&piis given by

dl,

Viachi= Rul2=Kp tactor = Moz =~ Ral 5. (10)

é"_lenRL is very large, the current,, drawn from the tachometer

r'minals is negligible and the above expression simply reduces to

tachi= Kp_tactwr - EXpressiong5)—(7) and (8)—(10) represent the
conventional models for an “electromagnetically isolated” dc mo-
tor and tachometer, respectived§,10].

We now consider a mechanically coupled motor and tachometer
placed in close proximity, like the system shown in Fig. 2. In
general, there can be an angular offset, gapetween the motor
stator poles and the tachometer stator pdBgg. and B,,,, are the
motor and tachometer stator fields, @B, andB,,, are the mo-

INGor and tachometer armature fields, respectively. The directions of

B, andB,,, are defined by the orientation of the permanent mag-
net stators, and the directions Bf;; andB,,, can be determined

to be perpendicular to the respective stator fields. Since the two
devices are not magnetically insulated, the tachometer armature
sees a weak fielB,,,, due to the motor armature currdnt Bi»

acts along the same line Bg,;, but is opposite in direction since
magnetic flux exists in closed paths. The tachometer also experi-
ences a weak field,,;,, resulting from the leakage flux of the
permanent magnets of the motor and hence is in the same direc-
tion asB,;. In a similar fashion, the motor armature experiences
& magnetic fieldB,,;, due to the current, in the tachometer
fnature. Once again, the direction Bfy; is opposite to the
irection of Byy,. The effect of the tachometer permanent mag-
nets as seen by the motor is a weak fiddg,,;, acting in the
direction of By, .

The effect ofB,,,1, on the tachometer equations aBg,, on the
motor equations, is negligible since these fields do not lead to any
additional dynamic effects. They simply result in a small static
variation in the torque andackemfconstants of the two devices.
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Nevertheless, the relationships given by E@, (6), and(8) re- wherek;; are constants that depend on material magnetic proper-
main unaltered. The presence of the auxiliary armature fiélgs, ties and geometry of the arrangement. In Figdg; is the flux
andB,,;, leads to mutual inductance between the two armatuliekage in coilj due to current in coil, and is given by

coils. It is important to visualize that although the armatures are

rotating physically, commutation in the two devices ensures that i =By Ay (13)

the respective directions of all the fields remain fixed in spa . . )

Therefore, the mutual inductance phenomenon between the rg@fg r?hsultant ﬂuxtll?lkaglt_e |kn motor tarrrrlaturet (coﬁ=1<1>%1+<b21 i
ing motor and tachometer armatures can be analyzed while tre%'?a)’ ?Dresx a?_ uf n afgel In tachometer armr? urle (C.O' I)
ing the two armatures as static in an electromagnetic sense, with 22 P12 Applying laws of electromagnetism to the electrica

TR o : [[cuit comprising the motor armature, and the electrical circuit
area vectors pointing in the direction of the respective armatuﬁc; mprising the tachometer armature, results in

fields.
In this case, there is a very weak transformer effect quite unlike d(dDyy+D,y)

an ideal transformer. In arideal transformer, winding resistance V1= Vy motor— N1 =Rylq, (14)

and core hysteresis losses are negligible, permeability of the core ) dt

is infinitely high, and all the flux is confined to the core thus d(D oyt D)

linking both the coils. The following input-output relations hold Vi e Ng——o—2 = (Ry+ R . (15)

for such anideal transformer when the excitation is sinusoidal e dt

11 Both equations now have an additional mutual flux term. The
V, N, l, N physical significance and sign of each term that appears in the
\71 = N_1 and E = N_2 (11) above equations can be explained by Faraday’s and Lenz’s Laws.

Employing Eqs.(12) and(13), one can next define inductances:

Clearly, the present case, as illustrated in Fig. 3, is very different _ N
from anideal transformer. There is no core between the two coils N;®ij =N;(Baj- A) =Ml . (16)
and the permeability of air is very low. Most part of the fluX; can pe shown thatM..=N:A.k Moo= N-AoK M
. . A \ . V11= N1A1Kg1, 22= N2A2K22, 21
linked with each coil is leakage flgx, and the mutual flux IS,=N1A1|(21COS(01), and M ,= N,A,ky,cos). Based on the re-
small. Moreover, there is a mechanical power outlet on the_ PHuirements imposed by Maxwell's Reciprocity, we can further
mary side as a consequence of motor action, and an additio Ql)ress the mutual inductance as
voltage source on the secondary side resulting from generator ac- '
tion. Since these issues are not accounted for in the standard trans- M 1,=M =M coq a).
former analysis, the relationshig$1) are obviously not valid for ) _ _
the motor-tachometer case. To analyze the present problemUsting the previously stated relation¥y moto= Kb motowm and
therefore becomes necessary to start from the fundamentals, ¥pdach= Kb tacrr» Which are still valid, and expressiolit6), the
make simplifying assumptions where appropriate. motor Eq.(14) reduces to

Ampere’s Law requires the magnitudes of the armature fields to di di
be linearly dependent on the respective armature currents as long _ o dh 22
as magnetic saturation is not reached: V1~ Ko motor@m ™~ Lag ~M coste) (g =Ruly, - (17)
Baij=Kkijli, (12) and the tachometer E¢L5) reduces to

686 / Vol. 126, SEPTEMBER 2004 Transactions of the ASME



A
P,
-

R
AN\ —
L \
RN + Viee
! AR Fzz
) ; \\‘ \\’\\\’
,,
Motor Armature Tachometer Armature
(Coil 1) (Coil 2)
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dl, dly I, N;
Kp tactwr— Lo———M coga) —— =(Ry+ R )12, TEN (20)
dt dt (18) Iy N,
dl, dly where 7 represents the strength of the transformer effect and is
=Viach= Ril 2= Ky tacio— LZW_ M coq «) rT Rol;. defined as the portion of flux generated by one coil reaching the
other coil[12]. Therefore, in the present case
Torque models for the motor and tachometer are the same as P P M2 co(a) |12
presented earlier in this section, and are not affected by the prox- n= F2_ Fa_|M tOSRA) (21)
imity of the motor and tachometer. Thus, the net torque output by by Dy M 1M,
the motor-tachometer assembly is Further algebraic manipulation leads to
Tour= Kt_motorI 1 Kt_tachl 2- (19) N
. . . . . e . p— l p—
At this stage in the derivation, some simplifications may be con- |2—N—2 \/W|COS( a)|[l;=R;l,=R[coda)|l;, (22)
sidered. A practical observation is that the load curteris much 12z

smaller than the motor curreht since the input impedanc®,_, where

of voltage measuring devices is typically very highl MQ). We

can therefore consider dropping the terms contaihjngvherever Rep, N1 M

they occur in Eqs(17)—(19). However, we propose to retain the =D T g

term “—R,l,” in the Vi, expression18). As shall be seen in Nz M1M2,

later derivations, although this term is insignificant for the lowncorporating these approximations, the motor-tachometer equa-
frequency response, it contributes to the damping of the systeions resolve to,

zeros that occur at higher frequencies. For some cases, the sign di

associated with this damping term can become crucial in deter- P 1_

mining whether the systeﬁw i% nonminimum phase or not. It may Motor equation: V1= Kp moiom = Margy =Ruls

be recalled that the initial experimental measurements indicated
negative damping being associated with some of the system zeros, . _ _ gl
an observation that can possibly be explained by retaining the Tachometer equation: Viaey=Kp actfor—M cos @) dt
—R,l, term, however small, because of its negative sign.

We now make a final observation regarding the weak trans- —Rlcoga)[l;. (23)
former effect that was mentioned earlier. Clearly, the motor ta-
chometer interaction is far from adeal transformer in general,
but in the high frequency region it may be fairly approximated b€ omparing these with the previously presented conventional mod-
anonideal transformef11]. Since the motor and tachometer rotoels, it is seen that the motor model and the torque expression
velocities are significantly attenuated for high frequency moteemain the same. Noticeably, the new tachometer model has ad-
current excitation, it can be safely assumed that the motor aditional terms that are not present in the conventional model. Re-
generator effects are negligible at these frequencies. Furthermaveiting the tachometer equation with-M cos@)£K,,, and
the excitation input is obviously sinusoidal at high frequencie®|cosf)|£K, ,

Given these conditions, the motor tachometer can be treated as a
nonideal transformewith finite core reluctance and leakage flux. _ it
For this nonideal case, it can be shown that Viachi= Kb tactor+ Kinigm = Kil 1. (24)

dl,

Torque equation: Tg,= K motod 1
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This is the final form of the enhanced tachometer model presenteSince the anglexr has a significant influence on the resulting
in this paperK,, andK, are defined as thelectromagnetic cou- system zeros, and therefore the closed-loop system performance, a
pling constantandloading effect constantespectively. locus of system zeros obtained by varying the anglaroves to
be very insightful. Such a zero-locus for the motor-tachometer
system is presented in Fig. 4. It should be recognized that the
. . . zeros of the closed-loop system are the same as the zeros of the
3 Experimental Verification and Key Attributes of the open-loop system. &=0°, thenK , is maximum negative and,
Proposed Model is maximum positive, which leads to additional zeros—a complex

The tachometer model derived in Sec. 2 can now be incorpgRnjugate pair close to the system poles, and a real pair placed
rated in the analysis of the motor-tachometer electromechanigyMMmetrically about the imaginary axis, resulting in a nonmini-
system described in Sec. 1. As earlier, there is no load inerfHM phase system. As the angle is increased to 90°, all these
connected to the system. Using E6B, (2), and(23), the overall Z€ros move out to infinity since the effect of the tachometer dy-
open-loop transfer function for the motor-tachometer electromB@mics gradually vanishes. As the angle is further varied from 90°

chanical system is, to 180° the mutual inductance increases, and new system zeros
reappear approaching from infinity. Far=180°, bothK,,, andK,
Viach Kamd Km(dens?—K, (dens+K; mowoKp tacK ] are maximum positive, which leads to two additional pairs of
Vi, (dens : complex-conjugate zeros—one pair that lies close to the system

(25) poles, and another that is at a much lower frequency. This latter
pair falls on the right side of the imaginary axis, and once again
the system is nonminimum phase. The significance of the signs

(den2[J3,3,,52+K(I+ 3] associated with<, andK,, is evident since these signs dictate the

. ) . o nature and location of the added zeros.
It is immediately clear that this transfer function is different from

the previously obtained transfer functi¢f), which was based on
the conventional tachometer modelKif, andK, were to be zero, 4 Implications on Motion Control Design
the two transfer functions become identical. A comparison be-
tween analytical predictions based on E25) and experimental
measurements is presented in Fig. 1, which shows that all
discrepancies that exist between the conventional model and
perimental measurements are resolved by the proposed mo
tachometer model.

where,

We next proceed to consider a servo system design using the dc
otor-tachometer assembly described in Sec. 1, so as to determine
fe extent by which the above identified sensor—actuator interac-
dn changes the system dynamics and affects closed-loop perfor-
Hnce. As illustrated in Fig. 5, a flexible coupling now connects

The most important feature of the new tachometer model is t he motor shaft to a load inertia, WhICh IS in the form of two
presence of an electromagnetic coupling constari, 2 rtia elem_ents mounted ona compliant shaft. A lumped param-
eter model is used to describe the mechanical system, and results

—M cosa, Wh'Ch. IS S'”.‘p'y ‘hﬁ‘ mutual inductance between th?n the following transfer function between the tachometer angle
two armature coils. It directly links the tachometer voltage to thﬁnd motor torque:
n :

motor current. Because of the electromagnetic coupling term, t

denominator of the mechanical system transfer function finds a 0, (num)

place in the numerator of the overall system transfer function, as T - m (26)

is evident in expressiof25), thus resulting in additional system m

zeros. Furthermore, these additional zeros are strongly dependehére,

on the system poles, thereby making the effect of the tachometer

dynamics system dependent. (num) =K[J1358"+ (31K + 35K +2K2)$*+ KiKo],
The other important parameter that appears in the proposasd

tachometer expression is the loading effect constant, 6 4
K,2R|cosal, which is always positive. Being very smail, has (48N =81JJmJ1Jo]+ S TK;d1Imds + Kiddmda+ Kodidmd>

an insignificant effect on the magnitude of the frequency response. FKI- T+ KIT T+ KK 31+ 2T K K530
Importantly though, when the additional zeros are complex con- meiT2 tidotKaKd1Jo] [KiK2ddm
jugate, the negative sign associated vikthpushes some of these +KK5J1Jm+ KK 1J5J KK 5J5d o+ KK5JJq

zeros into the right half of s plane. This phenomenon helps in

explaining the 180° phase drop at some of the zero frequencies in +KK1J1J2KK23J,+ Ky K2didy + KK 11 Jo+ K Kada e

the phase plot. Thus, the presencekefmakes the system non-

minimum phase, which significantly affects the closed-loop per- KKKt It J1+35) ).

formance. This is an interesting find because complex zeros in #hough not shown in the above model, mechanical damping in

RHP are uncommon in purely mechanical systems. the system is assumed to be viscous in nature. Using the enhanced
As the preceding analysis indicates, it is difficult to calculatgotor-tachometer modgR3) the following overall system trans-

the constantK,, andK, because of their dependence on the mder function can be obtained:

terial magnetic properties and the geometry of the motor- 2

tachometgr arrangerrrl)ent. Experimentalgestimatda{sncneflndKr are Viaen_ Kamd Kms“(den) —K,s(den + Kt motofb_tacNUM] )

obtained by locking the motor and tachometer rotors in place, and Vin s(den(Tamps+1)

supplying a regulated sinusoidal current of a known high fre- (27)

quency to the motor armature. Because of the coupling effecice again, a sine-sweep experiment is performed on the actual

described above, a voltage is generated across the tachometersigitem to obtain its frequency response. The experimentally ob-

minals. The component of the generated voltage that is in phaaged frequency response is compared with that predicted by the

with the excitation current provides an estimatekgf, and the conventional model and the proposed model in Fig. 6. The open-

component that is 90° out of phase with the excitation provides &bp system response based on the proposed tachometer model

estimate ofK,. For the given motor-tachometer, in its factorymatches the experimental measurement almost exactly in terms of

assembled staté,, is determined to be 8.62565L0 ° Henry the magnitude and phase variations over the entire frequency

andK, is determined to be 2.665610 2 Q). It is noteworthy that range. On the other hand, as was expected, the conventional mod-

althoughK,, and K, are very small numbers, they significantlyeling fails in predicting the system zeros and their nonminimum

affect the high frequency system dynamics. phase nature. Open-loop complex conjugate poles and zeros of the
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Fig. 4 Locus of motor-tachometer system zeros as angle a varied from 0° to
180°

motor-tachometer-load system are listed in Table 1. These cotem, as is evident in Fig. 5. This is a case where multiple inertia
parisons yet again confirm the validity of the new tachomet@lements are connected by flexible elements, and while the torque
model, and justifies its use in system identification and contrid applied to the motor rotor, angular measurement is made at the
system design. tachometer rotor. From previous wofk—6), it is known that,

We shall now consider the closed-loop system characteristicsilike colocated systems, achieving robust stability for noncolo-
first without the tachometer dynamics, and then with the tachomated systems is relatively difficult. In a colocated system, that is
eter dynamics present. For the sake of brevity, the terms poles anud attached to the ground, all poles are preceded by zeros, and
zeros have been used to denote complex conjugate poles and coemce there is no overall phase loss. But the same does not hold
plex conjugate zeros, respectively. for a noncolocated system, and as seen in the present case, the

If the tachometer dynamics did not exist, the open-loop systetmird pole occurs without a preceding zero, resulting in a phase
transfer function for the motor-tachometer-load system under cdoss of 180° at~2230 Hz (Fig. 6). Irrespective of whether the
sideration would represent a classic noncolocated mechanical sgehometer signal is used for velocity control or position control,

Flexible
Coupling

Shaft
=4

N 7 7

7 K

Tach Motor Inertial Inertia2

Fig. 5 Motor-tachometer-load system
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Fig. 6 Viaen/ Vi, Bode plot for the motor-tachometer-load system: Experimental measure-
ment, conventional model, and proposed model

this last resonance peak determines the stability margins. Highmich is 178 Hz. In this case, the smaller the damping at zero, the
stability margins, and hence better closed-loop robustness canhiigher is the gain margin. The closed loop bandwidth is now
achieved if this pole is well damped, a fact that is seen easily frolimited by the first nonminimum phase zero frequency. This is due
Nyquist plots. In the absence of adequate damping, classicaltaghe fact that the zeros of the open-loop system also appear as
well as modern control approaches may be used, for exampletha zeros of the closed-loop system, irrespective of the control
low pass filter to attenuate the noncolocated pole, a “notch-filtescheme used. This implies that there will always be a 180° closed-
compensator[3], a LQG based optimal controllef4], or loop phase drop at the nonminimum phase zero frequencies, even
H-infinity based robust controllefg,8]. Yet, each scheme has itsif the closed-loop gain stays close to 0 dB until a higher fre-
own disadvantages in terms of control effort, robustness, and sgumency. One may try to compensate for the phase loss at 178 Hz,
sitivity. Generally speaking, the close-loop performance is limitely adding a minimum phase notch filter controller at a slightly
by the first noncolocated pole frequency, 2230 Hz in this case.lower frequency. With this strategy, although the closed-loop
In the case where tachometer dynamics is present, the velogtyase will be restored, the closed-loop gain will drop severely at
feedback signal is modified and results in reshuffled open-lodpe zero frequency, once again, limiting the bandwidth. In light of
system zeros, some of which are nonminimum phase. This, alaihgse observations, the zero locus plot presented earlier gains fur-
with the effects of mechanical compliance in the system, mak#ger significance because it is the location of the zeros and not the
the feedback control design for the tachometer-motor-load syst@ules that determines the closed-loop bandwidth of the motor-
yet more challenging. As seen in Fig. 6, apart from losing phasetathometer-load system.
the pole frequencies, the system also loses phase at the nonminApart from bandwidth and stability, other closed-loop perfor-
mum phase zero frequencies. It can be deduced from the Nyquisince parameters are also affected in this case. It is well known
plot of the open-loop system that the cross-over frequency is dbat a small value for the open-loop sensitivity transfer function is
termined by the location of the first nonminimum phase zerdgsirable for good disturbance rejection and robustness against

Table 1 Experimentally measured and analytically predicted complex conjugate pole and zero
frequencies for the tachometer-motor-load system

Experimentally

Analytically predicted

Analytically predicted using

Complex conjugate measured using the proposed the conventional tachometer

pair (Hz) tachometer modglHz) model (Hz)

Zero 178 170 321

Pole 420 416 416

Zero 455 449 847

Pole 762 860 860

Zero 782 862

Zero 2200 2217

Pole 2230 2231 2231
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small model parameter variation. Nonminimum phase zeros im- A; = area vector of the motor armature
pose an additional analytic constraint on the sensitivity transfer A, = area vector of the tachometer armature
function—requiring sensitivity to be arbitrarily small over some J,, = motor armature inertia
frequency ranges forces it to be arbitrarily large over other fre- J; = tachometer armature inertia
quency rangg13,14]. Furthermore, Fig. 6 also shows that the J; = ith inertia element
tachometer dynamics results in large open-loop gains at high freK ., = amplifier voltage-to-current gain
guencies, thus making the system naturally more sensitive to high no.or= motor backemf constant
frequency noise. In summary, the tachometer dynamics not oy, .., = tachometer backmf constant
limits the closed-loop system bandwidth, but also increases tKg ooy = Motor torque constant
system sensitivity to output disturbances, parameter variations, ,cn = tachometer torque constant
and high frequency noise. N, number of motor armature coils

) N, = number of tachometer armature coils
5 Conclusion Tmotor = torque produced by the motor

Conventional dc tachometer model is found to be inadequate inltach = torque consumed by the tachometer
predicting the frequency response of an integrated motor- K = stiff of the motor-tachometer shaft
tachometer system. Based on fundamental principles of electro- Ki = stiffness ofith spring element
magnetism, an enhanced tachometer model is derived that in-Yin = voltage input to the amplifier
cludes the effects of mutual induction between the motor andVtach = t<’lehOfﬂe_ter_outp_ut voltage
tachometer armatures. The tachometer-motor interaction results in ¢ = angle ofith inertia element
complex dynamics that introduces additional nonminimum phase fm = motor angle
zeros in the loop transfer function. Predictions based on this ¢: = tachometer angle
model are found to agree with the experimental measurements. ©@m = Mmotor angular velocity
The tachometer dynamics identified in this paper is shown to be @t = tachometer angular velocity
detrimental to the closed-loop bandwidth and performance. Using7amp = amplifier time constant
conventional control schemes, the system bandwidth is practically
limited by the first nhonminimum phase zero frequency. Even
though well understood, the tachometer dynamics is best avoided
due to the complications that it introduces. For two-pole perm&eferences
nent magnet stator dc machines, the derived model provideg) awtar S., 2000, “Magnetic Coupling Between DC Motor and Tachometer and
means for eliminating the tachometer-motor interaction. The two {;sesligegeggsg/llggrogocliyczg(t:rﬁ;i‘i:nl ézgtui‘éesTig;eN(:: Shaft Compliance,” M.S.
devices can be electromagnetically insulated by means of an ap: 1S, (s 1IOY, MY
propriate housing design, or the orientation anglean be set at FEZ] gslztraNlj 1998Modern Control EngineeringPrentice Hall, Upper Saddle
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. . . . dissertation, Stanford University, Stanford, CA.
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sented. Such an analysis will depend on the number of stator pp. 546-553.
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. Noncolocated Control in Flexible Systems,” ASME J. Dynamics Syst. Mea-
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