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Modeling Complex
Nonminimum Phase Zeros
in Flexure Mechanisms
This paper presents a model to explain complex nonminimum phase (CNMP) zeros seen
in the noncollocated frequency response of a large-displacement XY flexure mechanism,
which employs multiple double parallelogram flexure modules (DPFMs) as building-
blocks. Geometric nonlinearities associated with large displacement along with the kine-
matic under-constraint in the DPFM lead to a coupling between the X and Y direction
displacements. Via a lumped-parameter model that captures the most relevant geometric
nonlinearity, it is shown that specific combinations of the operating point (i.e., flexure
displacement) and mass asymmetry (due to manufacturing tolerances) give rise to CNMP
zeros. This model demonstrates the merit of an intentionally asymmetric design over an
intuitively symmetric design in avoiding CNMP zeros. Furthermore, a study of how the
eigenvalues and eigenvectors of the flexure mechanism vary with the operating point and
mass asymmetry indicates the presence of curve veering when the system transitions from
minimum phase to CNMP. Based on this, the hypothesis of an inherent correlation
between CNMP zeros and curve veering is proposed. [DOI: 10.1115/1.4036032]

1 Introduction and Motivation

This research investigation is motivated by the need to achieve
large range, high precision, and high-speed—all simultaneously—
in multi-axis flexure-based motion systems [1,2]. Such capability
is of practical importance in various applications such as compact
and affordable motion stages for semiconductor wafer inspection [3]
and microelectromechanical system scanners for high-speed imag-
ing [4]. Flexure mechanisms are well-suited for these applications
because of their joint-less construction and inherently high precision
due to lack of friction and backlash, but present significant tradeoffs
between large displacement and dynamic performance [5].

Large displacement generally implies transverse deformation of
the constituent beams in the flexure mechanism greater than 5%
of the beam length. This corresponds to several millimeters of dis-
placement or motion range for a desktop size flexure-based
motion system. The relevant system dynamics include natural fre-
quencies, mode shapes, and transfer functions between the points
of actuation and sensing. The closed-loop dynamic performance
objectives include high bandwidth, good noise and disturbance
rejection, good command tracking, small steady-state error, fast
point-to-point positioning and settling, stability robustness, low
sensitivity to plant variations, etc.

While recent results have demonstrated large range as well as
high precision in multi-axis flexure mechanisms, achieving
dynamic performance remains a challenge [5,6]. Figure 1(a) shows
an XY nanopositioning system based on a parallel-kinematic flexure
mechanism, designed to achieve a range of 10 mm and precision of
625 nm per axis. This mechanism employs a systematic and
symmetric layout of eight double parallelogram flexure module
(DPFM). This design provides: a high degree of geometric decou-
pling between the X and Y motions of the motion stage resulting
in large unconstrained motion range; actuator isolation that allows
the use of large-stroke single-axis actuators (X actuator and Y
actuator); and a complementary endpoint sensing using commonly
available sensors (e.g., sensors 1 and 2 for the X direction). For
reference, relevant dimensions of this flexure mechanism are sum-
marized in Table 3 in the Appendix.

There are many factors that make the dynamics of such a flexure
mechanism challenging. Large displacements lead to geometric
nonlinearities in flexure mechanics. Given their dependence on dis-
placement, these nonlinearities (and their impact on system dynam-
ics) vary with the operating point of the flexure mechanism.
Furthermore, large displacements require relatively low stiffness in
the motion directions and therefore low natural frequencies of the
first few modes. Any attempt to achieve a closed-loop bandwidth
that is greater than these low natural frequencies requires a proper
understanding of higher-order dynamics, which is complicated by
the above-mentioned geometric nonlinearities. Furthermore, while
the symmetric layouts (e.g., Fig. 1(a)) help provide large range,
cancel undesired motions, improve space utilization, and enhance
quasi-static performance, they also result in multiple closely
spaced modes that are highly sensitive to manufacturing tolerances.
This results in parametric uncertainty in the system dynamics.

Figure 1(b) shows an experimental measurement of the noncol-
located X direction frequency response from force input Fx to the
displacement output Xms, for different values of Y displacement
(Yms¼ 0, 1.5, 3 mm) [5,7]. One may notice that there are multiple
closely spaced modes around 150 Hz. These correspond to the nat-
ural frequency of the secondary mass in each DPFM (discussed
further in Sec. 3). It is also noteworthy that the X direction fre-
quency response changes with the Y direction operating point. At
the operating points yms¼ 1.5 and 3 mm, the frequency response
shows an additional phase drop of 360 deg and 720 deg, respec-
tively, near 150 Hz compared to the nominal operating point
yms¼ 0. The magnitude and phase below and above 150 Hz
remains the same for all the operating points. Such observation
cannot be explained by minimum phase zero pairs. Thus, such
phase drop is due to complex nonminimum phase (CNMP) zero
pairs on the right half plane. This dynamic response was unex-
pected, and the existence and number of CNMP zeros seemed
arbitrary. From closed-loop performance stand-point, it is well
known that nonminimum phase (NMP) zeros severely limit band-
width, stability robustness, and positioning speed [8,9]. When and
why do these CNMP zeros appear? Can they be analytically pre-
dicted? Do they have physical meaning? Can they be avoided via
physical system design? Addressing these questions is the motiva-
tion behind this investigation.

The paper is organized as follows: Section 2 provides an over-
view of the relevant literature on modeling geometric nonlinear-
ities in flexure mechanics and NMP zeros in the dynamics of
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flexible systems. Section 3 presents closed-form kinematic rela-
tions to capture the relevant nonlinearity and coupling in the
DPFM. In Sec. 4, these relations are employed in initially investi-
gating the X direction dynamics of a simple representative XY
flexure mechanism for different Y operating points. This simple
mechanism has all the essential attributes of the more complex XY
flexure mechanism of Fig. 1(a), but is more conducive for an ini-
tial investigation. A closed-form, parametric dynamic model helps
predict the range of operating points and parametric asymmetry
where CNMP zeros appear in a noncollocated transfer function of
this simple flexure mechanism. Similar modeling and CNMP pre-
diction is then extended to the XY flexure mechanism of Fig. 1(a).
Section 5 explores a potential correlation between these CNMP
zeros and the phenomenon of curve veering, which lends some

physical insight into the former. The paper concludes in Sec. 6 with
a list of contributions and future tasks. One of the key findings is
that the intentional use of specific parametric asymmetry, which is
counter-intuitive, helps avoid the CNMP zeros altogether.

2 Literature Review

In recent years, there has been a growing body of research liter-
ature on the dynamics of flexure mechanisms. Lan et al. [10] pre-
sented a distributed-parameter dynamic modeling approach of
elastic flexure mechanisms. The resulting equations of motion in
the time-domain were solved using numerical methods, which are
not very suitable for frequency domain analysis of complex NMP
zeros. Akano and Fakinlede [11] used finite element-based nonlin-
ear analysis to predict the effect of design parameters on the
dynamic performance of flexure mechanisms. While accurate,
these methods are computationally intensive and provide limited
physical insights in the frequency domain. Alternatively, lumped-
parameter closed-form modeling approaches have also been
investigated. Shilpiekandula and Youcef-Toumi [12] derived a
lumped-parameter dynamic model of a diaphragm flexure using
Timoshenko beam theory, but did not include geometric nonli-
nearities. Awtar and Parmar [5] captured the nonlinear variation
in the stiffness of flexure building-blocks to create a lumped-
parameter dynamic model of a XY flexure mechanism (Fig. 1(a)),
but did not capture the nonlinear coupling between X and Y direc-
tions in a DPFM and therefore were unable to predict the NMP
behavior seen experimentally (Fig. 1(b)). The pseudorigid-body
approach has also been used for modeling the nonlinear dynamics
of flexure mechanisms [13–15]. While this approach leads to sim-
ple lumped-parameter closed-form models, the model parameters
are computed via numerical optimization and depend on the
boundary conditions of each beam, thereby increasing the model-
ing complexity in flexure mechanisms that have a large number of
beams.

Dynamic modeling of rigid link mechanisms with inherent flex-
ibilities, e.g., robotic manipulators, has also been an active area of
research. An overview and classification of various modeling
approaches is found in the review paper by Dwivedy and Eberhard
[16]. Research in this area includes the study of manipulators with
one or more flexible links as well as one or more flexible joints.
Various methods including finite elements, assumed modes,
lumped parameter, and inverse dynamics have been adopted to
study the relevant dynamics. This body of work assumes small
deformation of the links, compared to rigid body motion, which is
justified since the links are designed to be stiff. However, this
assumption fails for flexure mechanisms that provide large defor-
mation in their motion directions.

The large deformation of constituent elements or beams in a
flexure mechanism results in geometric nonlinearities arising from
arc-length conservation, cross-sectional warping, trapeze effect,
and Wagner’s effect in beam mechanics [17–23]. The impact of
these nonlinearities on the dynamics of flexible beams and struc-
tures has been studied extensively, as reported in the review
papers by Modi [24] and Pandalai [25]. Furthermore, the dynam-
ics and control of flexible beams with an end-mass [26] as well as
rotating beams [27] have also been investigated. In further gener-
alization, DaSilva formulated the nonlinear differential equations
of motion for Euler–Bernoulli beams experiencing flexure along
two principal directions, along with torsion and extension [28].
Jonker has formulated a highly generalized model for spatial
beams taking into account relevant nonlinearities, using finite
element-based multibody dynamics computations [19,29]. Nayfeh
modeled the nonlinear transverse vibration of beams with proper-
ties that vary along the length [30]. Zavodney and Nayfeh studied
the nonlinear response of a slender beam with a tip mass to a prin-
cipal parametric excitation [31]. Moeenfard and Awtar studied the
in-plane flexural and axial vibration of a flexure beam with a tip
mass while accounting for the nonlinearity associated with arc-
length conservation [32]. While the resulting nonlinear equations

Fig. 1 (a) Large-displacement XY nanopositioning system and
(b) X-direction frequency response
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of dynamics are solved in time-domain via perturbation, homotopy,
or computational methods, this prior work [32] does not pursue the
frequency domain investigation relevant to the present work.

Separately, there exists a significant body of work in the fre-
quency domain dynamics of lumped or distributed-parameter flex-
ible systems [33–35]. It has been shown that lightly damped
flexible systems with collocated sensor and actuator have alternat-
ing poles and zeros along the imaginary axis and are easy to stabi-
lize in closed-loop [36,37]. Noncollocated systems do not share
these attributes and, under certain conditions, exhibit real nonmi-
nimum phase (NMP) zeros in the right half plane [38–40]. Spector
and Flashner [38] studied the sensitivities of beam cross section,
material properties, and sensor placement on the locations of poles
and zeros in flexible systems. They showed that as the sensor
placement is moved away from the actuator, the conjugate zeros,
originally located along the imaginary axis, migrate toward infin-
ity and then reappear along the real axis. Miu [39] provided a
physical explanation for these real NMP zeros stating that they are
related to the nonpropagation of energy within the structural sub-
system confined by the actuator and sensor. Unlike real NMP
zeros, CNMP zeros are relatively rare and have been reported in
the context of a noncollocated acoustical transfer function of a
room [41], as well as in a noncollocated transfer function of a
lumped-parameter spring–mass system [42,43]. Awtar and Craig
identified CNMP zeros arising due to an electromagnetic coupling
between a direct current motor and tachometer used in a servosys-
tem [44]. These studies on CNMP zeros simply report a mathe-
matical or experimental observation, without providing further
insight into when or why the zeros appear.

3 Modeling Geometric Nonlinearity in Double

Parallelogram Flexure Modules

A DPFM, shown in Fig. 2, comprises a reference stage, a sec-
ondary stage, and a primary stage connected via two parallelo-
gram flexures in series. This arrangement uses geometric reversal
to cancel the X direction kinematic error motion (i.e., parabolic
trajectory) of one parallelogram with that of the second parallelo-
gram. In quasi-static operation, these two error motions exactly
cancel out, resulting in a straight-line motion along the Y direction
between the primary and reference stages while providing high
stiffness in the X and H axes. Furthermore, the DPFM provides
large-displacement range and low stiffness in the Y direction for a
given footprint. For a building block, these are desirable attributes
because they help minimize various error motions and enable
large motion range in the resultant flexure mechanisms [5].

One of the limitations of the DPFM is that it presents a kine-
matic under-constraint associated with the Y displacement of its
secondary stage. In quasi-static operation, this under-constraint

adversely impacts the X direction stiffness, as reported previously
[23]. In dynamic operation, this leads to an additional degrees-of-
freedom (DOF) in the DPFM even though it is intended to be a
single-DOF building block. Referring to the X and Y displacements
of the primary and secondary stages with respect to the reference
stage in Fig. 2, the following quasi-static relations hold [7,23]:

Xi � Xj ¼ �0:6 ðYi � YjÞ2=L (1)

Xj � Xk ¼ 0:6 ðYj � YkÞ2=L (2)

Here, L stands for the beam length (Fig. 2). These kinematic
relations, which define the X direction error motion of the paralle-
logram flexures, are the result of the geometric nonlinearity associ-
ated with beam arc-length conservation. Relative to the reference
stage, there are four displacement coordinates in the DPFM (i.e.,
Xi, Yi, Xj, and Yj); of these, only two are independent because of
the above kinematic relations. This illustrates the 2DOFs of the
DPFM and its under-constraint.

The above quasi-static relations are based on certain core
assumptions that may be extended to low-frequency dynamics
spanning the resonance of the secondary stage of a DPFM with
respect to the reference and primary stages. In the flexure mecha-
nism of Fig. 1, this is the frequency range in which complex non-
minimum phase zeros appear. Since the secondary stage mass is
small compared to the other stages and the X direction stiffness of
the beams is relatively high, modes associated with beam stretch-
ing appear at much higher frequencies. This observation justifies
the first assumption that the individual flexure beams may be
treated as inextensible. Beam inextensibility also eliminates H
displacement coordinates in the DFPM. Furthermore, in the fre-
quency range of interest, the beams are also assumed to be mass-
less, given the relatively larger masses of the various stages. This
implies that the beams deform in the quasi-static S-shape with
amplitude dictated by the relative Y displacement of the relevant
parallelogram flexure [22,23]. At higher frequencies, there will be
other beam shapes dictated by the resonance of individual beams,
in which case the above relations will no longer hold.

Because of large out-of-plane stiffness, the out-of-plane dis-
placements (and associated modes) are neglected in the dynamic
modeling. Also, damping is neglected since the flexure mecha-
nism is monolithic with no sliding joints. Experiments confirm
that the dissipation from material hysteresis and viscous effects is
very low (damping ratios< 0.001). Beyond arc-length conserva-
tion, there are several other nonlinearities in beam mechanics
[20,21], but these are systematically estimated and neglected
using an order of magnitude analysis [7,45].

4 Dynamic Modeling of XY Mechanisms

The kinematic nonlinearity of Eqs. (1) and (2) may be incorpo-
rated in deriving the equations of motion for a flexure mechanism
involving the parallelogram or double parallelogram flexure mod-
ules. To investigate how the frequency domain dynamic response
varies with the operating point, these nonlinear relations may be
linearized about an arbitrary operating point. But this potentially
holds the risk of premature linearization. To test this possibility,
we retain the nonlinear kinematic relations throughout the deriva-
tion of the dynamic equations of motion and linearize the latter in
the end. The results prove to be the same as when the kinematic
relations themselves are linearized at the onset [45].

Thus, defining Yij¼Yi� Yj, using the subscript “o” to denote
nominal values at an operating point, and lower case letters to
denote deviation from these nominal values, Eq. (1) becomes

Xio þ xi � ðXjo þ xjÞ ¼ �0:6 ðYijo þ yijÞ2=L (3)

Since the nominal values are still related by Eq. (1), Eq. (3)
may be linearized for small deviations about the nominal valuesFig. 2 Double parallelogram flexure module (DPFM)
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xi � xj ¼ �1:2 ðYijo=LÞ yij¢� a � yij (4)

Here, a is a coupling coefficient that depends on the operating
point Yijo and captures the coupling between the X and Y axis dis-
placement coordinates.

Next, for the purpose of investigating CNMP zeros in XY flex-
ure mechanisms that have multiple DPFM building-blocks, we
select a simple representative flexure mechanism shown in Fig. 3
to initially limit modeling complexity and enable physical insights
into the observed dynamic phenomena. Yet, this design captures
all the essential attributes of more complex flexure mechanisms
(e.g., Fig. 1). The layout comprises the smallest number of sym-
metrically placed DPFMs (i.e., two) needed to produce multiple
(i.e., two) closely spaced modes associated with the kinematic
under-constraint of the secondary stages (two and three). This
mechanism allows stage ‹ to displace in the X and Y directions.
The former is due to the X direction bearings (indicated by the
rollers) at stages fl and �, and the latter is due to large bending
deformations of the beams in the two DPFM. Large deformation
leads to the geometric nonlinearity and associated coupling
between X and Y displacements, mentioned earlier. For this

mechanism, the operating point is given by a static displacement
of stage 1 in the Y direction with respect to ground (Y1o) caused
by a constant force FY1o. Thus, the noncollocated transfer from an
X direction force P on stage fl to the X displacement of stage ‹

(X1) can be investigated for different values of Y1o. In fact, this
simple mechanism is representative of a portion (indicated by
the larger dashed rectangle) of the more complex XY mechanism
of Fig. 1(a).

The five stages have eight displacement coordinates, as shown
in Fig. 3; lower case versions of these coordinates represent the
respective deviations with respect to an operating point. Further-
more, these coordinates are related by four kinematic relations
(Eq. (4)), one for each parallelogram. Thus, this mechanism has
4DOF and is therefore referred to as the simple representative
4DOF (SR4DOF) mechanism in this paper. The displacement
coordinates x1, y1, y2, and y3 are chosen for this analysis, to be
able to study the X displacement of stage ‹ and the Y displace-
ments of stages › and fi with respect to stage ‹.

Assuming a lumped-parameter Y direction bending stiffness for
each of the parallelograms (k12, k24, k13, and k35), the equations of
motion for the SR4DOF may be derived to be the following:

M€z þ Kz ¼ Q

z ¼ ½ x1 y1 y2 y3 �T and Q ¼ ½ 1 a �2a 0 �T � P

M ¼

m1 þ m2 þ m3 þ m4 þ m5 aðm2 þ m4 � m3 � m5Þ �aðm2 þ 2m4Þ aðm3 þ 2m5Þ

aðm2 þ m4 � m3 � m5Þ m1 þ a2ðm2 þ m3 þ m4 þ m5Þ �a2ðm2 þ 2m4Þ �a2ðm3 þ 2m5Þ

�aðm2 þ 2m4Þ �a2ðm2 þ 2m4Þ m2 þ a2m2 þ 4a2m4 0

aðm3 þ 2m5Þ �a2ðm3 þ 2m5Þ 0 m3 þ a2m3 þ 4a2m5

2
6666664

3
7777775

K ¼

k4 þ k5 aðk4 � k5Þ �2ak4 2ak5

aðk4 � k5Þ k12 þ k13 þ a2ðk4 þ k5Þ �2a2k4 � k12 �2a2k5 � k13

�2ak4 �2a2k4 � k12 4a2k4 þ k24 þ k12 0

2ak5 �2a2k5 � k13 0 4a2k5 þ k13 þ k35

2
6666664

3
7777775

(5)

It should be noted that the lower case displacement coordinates
in the above equations of motion represent the small deviations
about the respective nominal operating point values. Based on
these equations, one can derive the transfer function G(s) from the
input force P to output displacement x1 for different values of a,
which depends on Y1o

a ¼ 0:6Y1o=L (6)

In the above stiffness matrix, the Y direction bending stiffness
for each parallelogram (k12, k24, k13, and k35) is nominally
24EI/L3, where E is the bending modulus, L is the beam length, and
I is the second moment of area about the Z axis [23]. To obtain
numerical results, we use the same dimensions as those for the XY
flexure mechanism of Fig. 1(a) (see Table 3 in the Appendix). Fur-
thermore, although not included in the above derivation, small
nominal values for damping are assumed to avoid singularities in
the numerical simulation. Although the SR4DOF is intended to be
symmetric, there is the possibility for parametric asymmetry between
(m4 and m5), (m2 and m3), (k4 and k5), or (k12, k24, k13, and k35) result-
ing from finite manufacturing tolerances. Initially, we assume the
parameters be perfectly symmetric; but the above lumped-parameter
model allows us to study the impact of asymmetries in Sec. 4.2.

The last three of the four predicted modes are shown in Fig. 4
(relative to the displaced configuration/operating point of Fig. 3),
while all modes are quantified in Table 1. There are three key
observations: (1) The first mode (not shown in Fig. 4) is the “rigid
body” mode in which all the stages vibrate together in the X direc-
tion due to springs k4 and k5; (2) the second mode is associatedFig. 3 Simple representative flexure mechanism
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with the in-phase Y direction vibrations of stages ‹, ›, and fi;
and (3) the third and fourth modes are primarily associated with
the Y direction vibrations of the two secondary stages (› and fi)
in the opposite and same directions, respectively, with natural fre-
quencies close to each other.

The third and fourth modes arise due to the under-constrained
secondary stages in the DPFM. When Y1o¼ 0 (i.e., a¼ 0), the
vibration of the secondary stages does not cause any X direction
motion of stage ‹. Therefore, these two modes are unobservable
in the G(s) transfer function. However, when Y1o 6¼ 0, the X and Y
displacements of the DPFMs get coupled, which affects the third
and fourth modes differently. For the third mode, the Y vibration
of the two secondary stages is coupled to the X vibration of stage
‹. However, in the fourth mode, the two secondary stages have
the same vibration magnitude and phase in the Y direction, which

results in a cancelation of the coupling at stage ‹ in the X direc-
tion. Instead, the coupling results in X direction vibrations at
stages fl and � (Fig. 4(c)). Thus, when parameters are symmetric
but Y1o 6¼ 0, the third mode shows up in the G(s) transfer function,
while the fourth mode remains unobservable.

4.1 Parametric Asymmetry and Complex Nonminimum
Phase Zeros. While the SR4DOF was assumed to be perfectly
symmetric so far, some parametric asymmetry is inevitable in a
practical situation due to manufacturing tolerances. Using the
above lumped-parameter model, we varied parametric asymmetry
over a 65% range for (m4 and m5) and (k4 and k5). This did not
have much of an effect on the flexure mechanism dynamics in
terms of mode shapes and transfer functions. But an asymmetry in
(k12, k24, k13, and k35) or (m2 and m3) impacts the vibrations of the
secondary stages (i.e., third and fourth modes) and therefore the
overall flexure mechanism. Of the two sets of parameters, the
mass parameter is more sensitive. When the DPFM is used as a
building block, its secondary stage size and mass are minimized
to reduce footprint and raise the resonance frequency at which it
vibrates. For example, in the XY flexure mechanisms of Figs. 1(a)
and 3, the nominal mass of the secondary stage is 18 g. Therefore,
even a small additional mass such as 0.9 g results in a relatively
large variation (5%). Therefore, in this section, we investigate
how an asymmetry in masses, Dm23 (¼m2/m3� 1), affects the
dynamics of SR4DOF.

As seen via the respective eigenvectors in Table 1, the impact
of nonzero Dm23 on the first and second modes is minimal. This
mass asymmetry primarily impacts the vibration of the two sec-
ondary stages, which directly influence the third and fourth
modes. As noted earlier, the fourth mode of the SR4DOF flexure
mechanism is unobservable in the transfer function G(s) for any
Y1o (zero or nonzero) when Dm23¼ 0. However, for a small para-
metric asymmetry, e.g., Dm23¼ 5%, the two secondary stages
have different vibration magnitudes as seen in the eigenvector in
Table 1. Thus, the X direction coupling no longer cancels out at
stage ‹, and the fourth mode appears in G(s). Similarly, the
impact of Dm23¼ 5% on the third mode is significant.

G(s) is plotted in Fig. 5 as Y1o varies from 0% to 5%, for
Dm23¼ 0% and 5%. Key observations are: (1) As expected, the
fourth mode is unobservable when Dm23¼ 0 but appears when
Dm23 ¼ 5%. (2) The natural frequencies of the third and fourth
modes drop as Y1o increases. As the X vibration of stage ‹ gets
increasingly coupled with the Y vibration of the secondary stages,
the modal mass increases more than the modal stiffness, resulting
in reduced natural frequencies. (3) A 360 deg phase drop is
observed at around 150 Hz in the asymmetric case (Dm23¼ 5%)
when Y1o¼ 5% but not in a symmetric case (Dm23¼ 0%). In the
latter case, the phase drop due to the complex pole pair (third
mode) is offset by a phase rise due to the complex zero pair
(“valley”), resulting in no net phase drop. For the asymmetric case,
there are two stable complex pole pairs (third and fourth modes),
each contributing 180 deg phase drop. But since the overall phase
drop is 360 deg, this implies that there is no phase rise or drop at
the valley even though there are two pairs of complex zeros at in
this frequency region (�153 Hz). This indicates the presence of a
quartet of complex zeros, with one pair in the left half plane and
the second pair in the right half plane, thereby contributing no net

Fig. 4 Mode shapes of the SR4DOF. The black arrows indicate
the relative motion direction of each stage. (a) Second mode,
(b) third mode, and (c) fourth mode.

Table 1 Eigenvectors of the SR4DOF mechanism at operating point Y1o 5 5% of L

Dm23¼ 0% f1¼ 18.2 Hz f2¼ 27.6 Hz f3¼ 153.2 Hz f4¼ 154.3 Hz Dm23¼ 5% f1¼ 18.2 Hz f2¼ 27.6 Hz f3¼ 150.1 Hz f4¼ 153.9 Hz

x1 0.9999 0 �0.0231 0 x1 0.9999 �0.0000 �0.0189 �0.0139
y1 0 0.8075 0 0.0481 y1 0.0000 0.8073 0.0294 �0.0387
y2 0.0068 0.4171 �0.7069 �0.7063 y2 �0.0068 0.4176 �0.9845 0.1384
y3 �0.0068 0.4171 0.7069 �0.7063 y3 0.0068 0.4169 0.1718 0.9895
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phase change. This is an important observation because it suggests
that CNMP zeros can arise at certain combinations of operating
points and parametric asymmetry.

4.2 Existence of Complex Nonminimum Phase Zeros.
Next, we proceed to analytically determine the conditions under
which CNMP zeros arise. Based on modal decomposition, the
transfer function G(s) may be written as follows, where bi is the
modal residue and xi is the corresponding natural frequency:

G sð Þ ¼
X4

i¼1

bi

s2 þ x2
i

¼u¢s2 b3u3 þ b2u2 þ b1uþ b0

a4u4 þ a3u3 þ a2u2 þ a1uþ a0

¼ N uð Þ
D uð Þ

(7)

The decomposed form can also be expressed via a numerator
N(u) and a denominator D(u), each a polynomial. Note that there
are no odd power s terms because damping is ignored. If N(u),
which is a cubic polynomial, has two complex conjugate roots, then
G(s) will have a quartet of complex zeros. Two of these zeros will be
in the right half plane (i.e., CNMP zeros). For this to happen, the fol-
lowing inequality in the coefficients of N(u) has to hold [46]:

D ¼ 18b3b2b1b0 � 4b3
2b0 þ b2

2b2
1 � 4b3b3

1 � 27b2
3b2

0 < 0 (8)

Therefore, this is the mathematical condition for the existence
of CNMP zeros in the G(s) transfer function. Shown in Fig. 6, D is
plotted in a contour map against a range of operating points
and parametric asymmetry values for the SR4DOF flexure mecha-
nism. The color in the contour map represents the magnitude of D:
red represents higher positive values, blue represents lower posi-
tive values, and the black region represents the conditions for
which D becomes negative, indicating the presence of CNMP
zeros. This particular mechanism is seen to be very sensitive to
positive asymmetry, i.e., if m2 is greater than m3 even by a small
amount, then CNMP zeros arise in specific ranges of Y1o. How-
ever, if m2<m3, then the entire operating range is free of CNMP
zeros. The reason for such asymmetric behavior is due to the
physical asymmetry introduced by the actuator placement in
Fig. 3.

With this finding, we are able to replicate via modeling some
aspects of the NMP phenomenon previously observed experimen-
tally (Fig. 1(b)). Although, for this study, we intentionally chose the
SR4DOF mechanism to keep modeling complexity and assump-
tions minimal, it is representative of the more complex designs in
that it incorporates the key attributes of DPFM building-blocks
(with their under-constrained secondary stages), geometrically sym-
metric design, large displacements leading to nonlinear coupling
between axes, noncollocated transfer functions, and parametric
asymmetry.

In the design of multi-DOF flexure mechanisms, it is a common
guideline to employ symmetric and/or periodic geometries to can-
cel undesired motion, improve space utilization, and enhance
quasi-static performance [1]. However, the above dynamic model
for the SR4DOF mechanism indicates that a perfectly symmetric
layout is sensitive to parametric asymmetry, which is likely to
occur due to manufacturing tolerances and can give rise to CNMP
zeros. But if the design is intentionally made asymmetric (i.e., if
Dm23 is sufficiently negative), then CNMP zeros can be avoided
even if there are finite manufacturing tolerances.

This also shows that one can choose the springs in the flexure
mechanism (i.e., beam flexures dimensions and layout) to be sym-
metric to achieve the desired quasi-static performance, while
choose certain masses to be asymmetric which provides the
desired dynamic performance without impacting quasi-static per-
formance. This combination of symmetry in certain attributes and
asymmetry in others is rather counter-intuitive but helps meet
both quasi-static and dynamic performance goals.

With CNMP zeros thus eliminated via physical design, we also
create the possibility of achieving closed-loop bandwidth higher
than 150 Hz, while maintaining robustness, in the SR4DOF flex-
ure mechanism. This would have been impossible in the presence
of CNMP zeros at around 150 Hz.

4.3 Modeling a Complex XY Mechanism. So far, we mod-
eled the SR4DOF flexure mechanism to predict CNMP zeros at
around 150 Hz. Next, we extend this modeling approach to the
more complex (and practically relevant) XY flexure mechanism of
Fig. 1(a). The transfer function X actuator force Fx to the X dis-
placement of the motion stage Xms is investigated. The Y actuator
is used to provide a constant force Fyo to achieve various Y direc-
tion operating points Ymso. There are 13 rigid stages in this case,
each with an X and Y displacement coordinate. Each of the 16
parallelogram flexures provides one kinematic relation between
relative X and Y coordinates. Therefore, the model has ten inde-
pendent DOFs, which results in the same number of equations of
motion, natural frequencies, and mode shapes. There is a rigid
body X vibration mode, a rigid body Y vibration mode, and eight
modes associated with the vibration of the secondary stages (all
around 150 Hz) in the eight DPFM. Next, we arbitrarily vary these
secondary stage masses with respect to their nominal value and
use the model to predict the 0 deg/360 deg/720 deg phase dropFig. 6 Contour map of D function

Fig. 5 G(s) transfer function for different operating points (Y1o)
and mass asymmetry (Dm23)
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seen in Fig. 1(b) and the existence of CNMP zeros. The secondary
stages are identified by the subscript a–h, as shown in Fig. 1(a).
We present three cases in Table 2 with different combinations of
secondary stage mass variations that result in the three different
phase drops. Thus, we are able to analytically predict the seemingly
unexplained phenomena observed experimentally in Fig. 1(b).

5 Possible Relation Between Complex Nonminimum

Phase Zeros and Curve Veering

As noted earlier, the SR4DOF mechanism considered in this
paper has a symmetric and repetitive geometry, which leads to
multiple closely spaced modes (i.e., the third and fourth modes
shown in Table 1). Furthermore, these modes vary with the oper-
ating point and parametric asymmetry. The operating point deter-
mines the extent of the cross-axis coupling between X and Y
displacements, thus building a connection between the third and
fourth modes. All these features make the phenomenon of curve
veering (or mode veering) potentially relevant in this study.

Curve veering occurs when the eigenvalue loci of two closely
spaced modes in a system approach each other and then diverge,
as a result of parameter variation [47]. The point in the parameter
space where the two modes are the closest is called the veering
point. The special case when the two modes intersect at the veer-
ing point is called mode crossing [48]. In the vicinity of the veer-
ing point, eigenvectors undergo dramatic changes. As a result, the
system could become so-called “critically configured” meaning
that small changes in a system parameter could cause large
changes in system response [49].

In the SR4DOF flexure mechanism dynamics, we observe curve
veering close to the operating point and parametric asymmetry
value at which the CNMP zeros arise. Figure 7(a) shows the
eigenvalue loci of the third and fourth modes as a function of the
operating point (Y1o) and parametric asymmetry (Dm23). When
the structure is completely symmetric (i.e., Dm23¼ 0), the two
loci intersect with each other at a frequency of 153 Hz and
Y1o¼ 6.6%. Graphically (Fig. 7(a)) as well as qualitatively, this is
mode crossing. When the structure is asymmetric (e.g., Dm23> 0),
the two loci do not intersect. Instead, they approach each other and
then diverge as Y1o increases. Thus, the point when Y1o¼ 6.6% is
the veering point.

In the third and fourth modes, the Y direction vibrations of the
two secondary stages (i.e., y2 and y3) are dominant in the respec-
tive eigenvectors (see Table 1). Therefore, only the evolution of
y2 and y3 are plotted in Fig. 7. Figure 7(b) shows such evolution
of the third mode. When Dm23¼ 0 and Y1o¼ 0, y2 is 0.7 and y3 is
�0.7 (i.e., opposite directions). When Y1o reaches the crossing
point, the value of y3 suddenly changes from �0.7 to 0.7 and stays
constant with y2 unchanged (i.e., y2 and y3 become in the same
direction); in other words, modes 3 and 4 “swap” at the crossing
point. This transition is more gradual (i.e., without a discontinuity)
for nonzero Dm23. Similarly, as shown in Fig. 7(c), in the fourth
mode, y2 and y3 change from being in the same direction to oppo-
site directions. Note that mode shapes shown in Fig. 4 correspond
to those before curve veering has happened.

To summarize, the eigenvalues and eigenvectors of the third and
fourth modes exhibit veering. Furthermore, for the asymmetric case

Table 2 Deviations of masses that cause different phase drops

% deviation in masses

Phase drop (deg) Yms (% of L) ma mb mc md me mf mg mh

0 0 0 0 0 0 0 0 0 0
360 4.88 �8.16 13.10 8.57 �13.21 �13.24 0.66 �4.80 �13.12
720 9.54 8.47 12.08 �14.19 �12.78 6.59 �2.42 14.97 5.14

Fig. 7 (a) Eigenvalue loci of the third and fourth modes and (b)
and (c) eigenvector elements of the third and fourth modes. The
sign of magnitude indicates the phase.
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(Dm23> 0) at the veering point, y3 becomes zero while y2 becomes
one in the third mode, while opposite happens in the fourth mode.
This is recognized to be mode localization [50].

The above analysis shows that curve veering exists in the
SR4DOF flexure mechanism dynamics. However, the more impor-
tant observation here is that the curve veering happens at about the
same operating point (Y1o¼ 6.6%), positive parametric asymme-
try (Dm23> 0), and frequency (153 Hz) at which CNMP zeros
appear (see Figs. 5 and 6). Moreover, the CNMP phenomenon and
curve veering share the same key factors such as closely spaced
modes, parametric asymmetry, and mode coupling (caused by oper-
ating point variation in this case). Therefore, we hypothesize that
this is not merely a coincidence, and that there exists a fundamental
relationship between these two phenomena. If established, this
would allow a new physical perspective and interpretation of the
CNMP phenomenon and may help guide physical system design.

6 Contributions and Conclusion

The key contributions of this paper are: (1) A lumped-
parameter modeling approach is proposed to analytically model
the dynamics of flexure mechanisms comprising the parallelogram
or double parallelogram modules. This model captures the key rel-
evant geometric nonlinearity in large-displacement flexure
mechanics. Linearization about any arbitrary operating point ena-
bles frequency domain analysis. (2) Based on this model, we are
able to predict previously unexplained CNMP zeros seen experi-
mentally. The model establishes the existence of CNMP zeros
under certain combinations of operating point and parametric
asymmetry in the noncollocated transfer function of a simple rep-
resentative XY flexure mechanism. (3) This finding helps generate
the design insight that, rather than an intuitively symmetric
design, an intentional asymmetry in mass can avoid CNMP zeros
and make the system conducive to better dynamic performance.

In addition, there are several new questions posed by this work
that are currently being addressed: (1) Experimental validation of
the analytical predictions such as the CNMP map (Fig. 6) that can
validate the modeling simplifications and assumptions. (2) While
CNMP zeros were predicted for the SR4DOF as well as the full
XY flexure mechanisms, these results are mathematical; greater
physical insight into what causes the CNMP zeros is desirable. (3)
The potential correlation between CNMP zeros and curve veering
was based on observations in this paper but needs to be investi-
gated scientifically. (4) Based on the findings of this paper, physi-
cal and control system design can be explored to achieve the
originally stated dynamic performance goals of large range, high
precision, and high-speed.

This overall investigation potentially has relevance not just to
the XY flexure mechanisms considered in this paper but also to a
broader range of flexible systems.
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