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We present an analytical model for characterizing the motion trajectory of an arbitrary
planar compliant mechanism. Model development consists of identifying particular mate-
rial points and their connecting vectorial lengths in a manner that represents the mecha-
nism topology; whereby these lengths may extend over the course of actuation to account
for the elastic deformation of the compliant mechanism. The motion trajectory is repre-
sented within the model as an analytical function in terms of these vectorial lengths,
whereby its Taylor series expansion constitutes a parametric formulation composed of
load-independent and load-dependent terms. This adds insight to the process for design-
ing compliant mechanisms for high-accuracy motion applications because: (1) inspection
of the load-independent terms enables determination of specific topology modifications
that reduce or eliminate certain error components of the motion trajectory; and (2) the
load-dependent terms reveal the polynomial orders of principally uncorrectable error
components in the trajectory. The error components in the trajectory simply represent the
deviation of the actual motion trajectory provided by the compliant mechanism compared
to the ideally desired one. A generalized model framework is developed, and its utility
demonstrated via the design of a compliant microgripper with straight-line parallel jaw
motion. The model enables analytical determination of all geometric modifications for
minimizing the error trajectory of the jaw, and prediction of the polynomial order of the
uncorrectable trajectory components. The jaw trajectory is then optimized using iterative
finite elements simulations until the polynomial order of the uncorrectable trajectory
component becomes apparent; this reduces the error in the jaw trajectory by 2 orders of
magnitude over the prescribed jaw stroke. This model serves to streamline the design pro-
cess by identifying the load-dependent sources of trajectory error in a compliant mecha-
nism, and thereby the limits with which this error may be redressed by topology
modification. [DOI: 10.1115/1.4026269]

Keywords: compliant mechanism, accuracy, path generation, flexure, microgripper, to-
pology optimization, extensible-link, kinematic model, load dependency

1 Introduction

By virtue of having zero backlash and no Coulomb friction,
compliant mechanisms are particularly suited for executing preci-
sion tasks requiring high-accuracy motion, including micro- and
nano-manipulation [1–4], mechanical transduction [5,6], compo-
nent alignment [7–9], and metrology [10,11]. Moreover, compli-
ant mechanisms are ubiquitous in microfabricated devices and
systems because monolithic construction is easily achieved by li-
thography and etching of silicon wafers [12].

A compliant mechanism is typically designed to provide a
desired motion trajectory within a set of constraints, which may
include the available mechanism area (i.e., the “footprint”), the
means of actuation, the material properties, and the capabilities of
the fabrication process. As shown schematically in Fig. 1, a com-
pliant mechanism must be designed to fit within the mechanism
area, be anchored at the available ground location(s), and
comprise the “trajectory body,” with respect to which the desired

motion trajectory, Xd(n), is defined. This trajectory, Xd(n), is
the translation of a particular material point on, or the translation/
rotation of, the trajectory body; and is traced out by actuation of
the compliant mechanism via an applied load. This load may
be applied by various means, including: displacement of a linear/
rotary actuator; induced strain of a portion of the compliant mech-
anism (thermal, piezoelectric, etc.); or by an applied electrostatic
and/or electro-magnetic body force (comb-drive actuator, voice-
coil actuator, etc.). The desired trajectory can be expressed as a
function of a stroke parameter, n, which may represent either the
applied load or the motion component of a body in the compliant
mechanism that is critical to defining the desired trajectory. Here,
n0 corresponds to the undeformed state of the compliant mecha-
nism. The design task for high-accuracy motion applications rep-
resented by Fig. 1 is therefore to design a compliant mechanism
that achieves the desired trajectory, Xd(n), given a prescribed
mechanism area (dashed rectangle), ground location, and load
application.

An important part of this design process is to evaluate a candi-
date compliant mechanism by determining the accuracy with
which it can trace the desired trajectory. This evaluation is impor-
tant because the extent to which the desired motion trajectory can
be realized via the compliant mechanism determines its efficacy
for the motion application. Generally speaking, this motion trajec-
tory is dependent on the load application, as well as the
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mechanism topology and shape. These dependencies are coupled,
which adds difficulty to understanding and predicting the exact
motion characteristics of the mechanism.

Topology symmetry is often utilized to avoid this complication,
yet this is only feasible where there is adequate available mecha-
nism area, and only for certain desired trajectories (i.e., straight
lines). Application-specific requirements often place strict limita-
tions on some aspects of the design domain, such as: mechanism
size; location and orientation of the applied load; type of actuator
for applying the load; available ground locations; location of, and
attachment points to, the trajectory body; and material selection.
If topology symmetry is not feasible given the shape of the desired
trajectory and/or design domain limitations, the task of evaluating
the trajectory accuracy of a candidate compliant mechanism is
nontrivial.

Several analytical methods have been developed that address
this evaluation task. For instance, the Pseudo-Rigid-Body Model
(PRBM) [13,14] expedites the synthesis and design iteration of a
candidate compliant mechanism topology by means of an analo-
gous rigid-body kinematic linkage. While there are specific com-
binations of mechanism topologies and loading conditions for
which PRBM provides an accurate trajectory approximation, the
exact trajectory of a compliant mechanism need not be entirely
representable by the motion of a rigid-body kinematic linkage.
This is because a fixed topology rigid-body kinematic model does
not adequately capture all the elastic deformations that arise over
the desired range of motion of the mechanism. As an alternative
to PRBM, closed-form analytical solutions have been developed
for compliant mechanisms built from beam flexures to capture ki-
nematic, elastic, and elastokinematic effects [15,16]. But this
modeling effort addresses a limited range of beam shapes, and
extending it to any general mechanism topology and beam shapes
remains a challenge [17].

While these two analytical methods are certainly useful, the na-
ture of the applied load, and/or the intricacy of mechanism topol-
ogy/shape may not allow these methods to accurately evaluate
trajectory accuracy. For such cases, finite elements (FE) modeling
is the only well-established tool for quantitative evaluation of the
exact trajectory accuracy of a candidate compliant mechanism.
FE modeling is therefore often utilized in conjunction with the
aforementioned analytical models, as well as with recursive nu-
merical procedures that integrate one or more the following
design steps: (1) synthesis of a candidate compliant mechanism
topology; (2) evaluation of the mechanism’s trajectory accuracy;
and (3) optimization by means of modifying the mechanism topol-
ogy and shape so as to minimize trajectory inaccuracy.
Approaches include multi-criteria [18,19], continuous material
distribution [20,21], and genetic [22,23] numerical optimization
algorithms. With sufficient FE simulation iterations, it is possible,
in many cases, to modify a candidate compliant mechanism’s to-
pology and shape so that it exhibits sufficient trajectory accuracy.
However, a residual error trajectory often exists after optimiza-
tion, in terms of the mechanism’s ability to trace the desired
motion trajectory.

Importantly, neither FE modeling nor the recursive optimiza-
tion methods elicit an intuitive understanding regarding the

existence, magnitude, or characteristic form of this residual error
trajectory. The designer is therefore left without a clear under-
standing regarding why this residual error exists, or to what extent
it may, in principle, be redressed. It is possible for considerable
time to be spent modifying the mechanism’s topology and shape
in an attempt to redress this residual error trajectory, which may
in fact be fundamentally uncorrectable due to some aspect of the
mechanism topology. If unsuccessful in sufficiently reducing the
error trajectory, and being no more informed as to its source
within the compliant mechanism, the designer is left to simply
“guess” either: (1) a new model if synthesizing by PRBM, or (2)
new/additional initial conditions if synthesizing by a recursive nu-
merical method.

To address this difficulty, we have developed an analytical
approach that aids in understanding and evaluating the motion tra-
jectory characteristics of an arbitrary planar compliant mechanism
designed to accomplish a high-accuracy motion task (Fig. 1).
Here, a model is created that consists of vectorial lengths spanning
between selected material points which represent locations of con-
nection between segments comprising the compliant mechanism.
This may be intuitively visualized as a kinematic linkage, wherein
the link lengths extend over the course of mechanism actuation to
account for the elastic deformation of the compliant mechanism
under the actuation loading. Within this model framework, the tra-
jectory of the compliant mechanism, as well as extensions of the
link lengths, are expressed as analytical functions with respect to
a stroke parameter, n. A Taylor series expansion of the mecha-
nism’s trajectory is then performed with respect to n. This enables
the trajectory to be represented by two parametrically separated
motion components: rigid-body terms that contain only link
lengths and orientations related to the undeformed state of the
compliant mechanism; and deformation terms that, in addition,
contain link extension components.

The significance of this parametric representation is that the
rigid-body terms and the deformation terms comprise load-
independent and load-dependent components of the compliant
mechanism’s motion trajectory, respectively. Because the rigid-
body terms are both load-independent and solely described by the
undeformed state of the compliant mechanism topology, they con-
stitute a well-defined motion trajectory component that is entirely
specifiable by design. Conversely, the deformation terms capture
all load-geometry interdependencies, which necessarily arise over
the course of mechanism actuation. Therefore, their magnitudes
are also dependent on the mechanism’s shape. Within this frame-
work, trajectory optimization may be regarded as a procedure in
which the summation of the motion contributions from the rigid-
body terms and deformation terms is designed to produce the
desired trajectory.

This approach can streamline the compliant mechanism design
process because: (1) inspection of the rigid-body terms enables
specific topology modifications to be determined for minimizing
the error trajectory; and (2) the polynomial orders of principally
uncorrectable trajectory components are captured by the deforma-
tion terms. While quantitative optimization of the compliant
mechanism trajectory must still be performed by iterative FE sim-
ulation, all geometric correction parameters for the mechanism to-
pology, as well as the characteristic form of the residual error
trajectory, are known beforehand. As a result, some ineffective
mechanism designs and topology modifications may be disre-
garded without FE simulation, and time is not spent attempting to
redress trajectory errors that are principally uncorrectable via to-
pology modification. This serves to reduce the amount of time and
number of numerical iterations necessary to arrive at a compliant
mechanism that meets or exceeds the requirements for motion
accuracy.

This paper presents the analytical framework for an extensible-
link kinematic model (ELKM) and details how it may be utilized,
in conjunction with FE modeling, as a design and trajectory opti-
mization method (Sec. 2). Its utility is then demonstrated in a case
study (Sec. 3), where a compliant gripping mechanism with a

Fig. 1 Representative compliant mechanism design scenario
for high-accuracy motion applications
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straight-line parallel jaw trajectory is designed. The model is used
to determine the polynomial order of the jaw’s residual error tra-
jectory, and to guide the process of optimizing the jaw motion by
iterative FE simulation. The model is then summarized and
discussed in context of the case study results (Sec. 4).

2 Generalized Model

2.1 Definitions and Concepts for Model Development. The
desired motion trajectory, Xd(n) (denoted in a global coordinate
frame), of a candidate compliant mechanism, is considered a func-
tion of stroke parameter, n (Fig. 1). The actual motion trajectory
of this corresponding material point/body on the compliant mech-
anism is defined by Xc(n), which is a function of the same stroke
parameter, n. Ideally, the compliant mechanism trajectory, Xc(n),
and the desired trajectory, Xd(n), are equivalent. Therefore, the
error trajectory, d(n), is the difference Xc(n)�Xd(n). Here, n0 cor-
responds to the undeformed state of the compliant mechanism;
and the deformed states within the range of actuation are defined
by n�n0. Because this actuation range is limited by finite material
strain, it is likely that Xd(n) and Xc(n) may each be entirely repre-
sented by a single smooth continuous function. However, in gen-
eral, Xd(n) and Xc(n) may each comprise a set of piece-wise
smooth continuous functions defined with respect to global coor-
dinates, whereby the following analysis would be performed for
each function in the set.

Generally speaking, the distance, l, between any two material
points in a deformable continuum body (Fig. 2(a)) may admit
decomposition into (Eq. 1(a)): an initial length, l0, corresponding
to the undeformed state, n0; and an extensible component, f(n),
expressed as a function of n. The extensible component simply
describes the change in distance between the two material points
over the course of deformation. This imparts a requirement that
f(n) be a continuous function that is equal to zero at the
undeformed state, n0 (Eq. 1(b)). Regarding the actuation of a

compliant mechanism, f(n) is attributable to the load-dependent
elastic and geometric deformation that arises during loading.

l ¼ l0 þ f ðnÞ (1a)

f ðn0Þ ¼ 0 (1b)

Significance, from a design perspective, is gained by selecting
particular material points that represent locations of connection
between segments comprising a compliant mechanism topology—
namely: (1) the centers of thin compliant hinges between
significantly wider sections (i.e., lumped-compliance shapes)
(Fig. 2(b)); and (2) the end-points of compliant beams (i.e.,
distributed-compliance shapes) (Fig. 2(c)). Notice that no restric-
tion has been placed on the deformation or shape complexity of
these segments (Figs. 2(b) and 2(c)) for the decomposition of
Eq. (1) to be applicable. It is in this context an “arbitrary” compli-
ant mechanism is defined as a composition of such lumped- and
distributed-compliance segments (Figs. 2(b) and 2(c)), whose con-
figuration (i.e., location and orientation of l0 lengths) represents
the mechanism topology. The particular shape of the compliant
segments affects only the extensible components, f(n).

The complete set of selected material points for the model
therefore consists of: (1) the locations of connection between
compliant segments (Figs. 2(b) and 2(c)); and (2) the point defin-
ing the motion trajectory, Xc(n) (Fig. 1). The model simply com-
prises the connected vectorial lengths, l, which represent the
material spanning between the selected material points. This is
illustrated in Fig. 3 for the lumped-compliance (Fig. 3(a)) and
distributed-compliance (Fig. 3(b)) shapes of an example compli-
ant mechanism topology (Fig. 3(c)). Notice that the material of
the trajectory body spans distances e and f as well. Because both
shapes (Figs. 3(a) and 3(b)) have identical coordinate locations
where the segments comprising each compliant mechanism are
connected (i.e., identical topologies), both share identical model
arrangements at the undeformed state, n0 (i.e., the same l0 lengths
in Fig. 3(c)). The extensible components, f(n), of the distances, l,
comprising the models for each respective shape, however, may
change differently across the range actuation, n�n0.

The motions of the vectorial lengths, l, may be equivalently
envisioned as an analogous kinematic mechanism (Fig. 3(d)),
wherein extensible links are connected by pin joints residing at
the selected material points (i.e., an extensible-link kinematic

Fig. 2 (a) The distance, l, between any two material points on a
continuum body admits the decomposition of Eq. (1) upon de-
formation due to loading. Design insights are gained by consid-
ering the distances between (b) compliant hinges in lumped-
compliance shapes, and (c) end-points of compliant beams.
Given a compliant mechanism, these distances, l, therefore rep-
resent the comprising compliant segments.

Fig. 3 Example (a) lumped compliance and (b) distributed
compliance mechanisms sharing the same (c) topology, or
equivalently, (d) analogous kinematic model at undeformed
state, n0.
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model). While Figs. 3(c) and 3(d) are mathematically equivalent,
the latter is henceforth adopted because it provides an intuitive
context—especially for visualizing the load-independent motion
component in the following derivation. It also reinforces the
applicability of classical kinematic analysis in performing the vec-
tor algebra to construct the model trajectory, Xe(n), in terms of the
lengths and orientations of the extensible links, and as a function
of the same stroke parameter, n (Fig. 3(d)). The trajectories Xe(n)
and Xc(n) are therefore equivalent so long as the links in the
model extend in the proper manner over the range of actuation,
n�n0.

While determining explicit formulas for the extensible compo-
nents is generally nontrivial, the initial link lengths (i.e., l0) are
identified simply from the undeformed state of the compliant
mechanism, n0, according to this straightforward procedure. It
will be shown that explicit formulation of the extensible compo-
nents is inconsequential for distinguishing the load-independent
and load-dependent motion contributions to the compliant mecha-
nism trajectory. It is for this reason that the following derivation
considers extensible length components, f(n), simply as smooth
continuous functions, thereby granting admission to treat Xe(n) as
equal to Xc(n). The design goal, again, is to have these equivalent
trajectories, Xc(n) and Xe(n), match the desired trajectory, Xd(n).

2.2 Analytical Formulation. Without admitting any link
length decomposition, and without loss of generality, Xe(n) may
be expressed by its Taylor series expansion (Eq. (2)) with respect
to n, about the undeformed state of the mechanism (n¼ n0). All
coefficients in the expansion, kn, are functions of the extensible
link lengths and orientations. Because the range of actuation,
n–n0, is finite, it can be expected that the expansion may be trun-
cated as an ith-order polynomial, where higher-order terms are
negligible.

XeðnÞ ¼
X1
n¼0

XðnÞðn0Þ
n!

n� n0ð Þn ffi
Xi

n¼0

kn n� n0ð Þn (2)

By now admitting the decomposition of Eq. (1), the kn coefficients
in Eq. (2) become functions of the initial lengths, l0, as well as n
due to the extensible components (Eq. (3)). Each kn coefficient
may therefore be represented by its respective Taylor series
expansion, with respect to n, about the undeformed state, n0.
Based on the magnitude of the extensible components, f(n), over
the stroke, the Taylor series expansion for each kn coefficient may
be truncated at some jth order, with respect to (n�n0), such that
the higher-order terms, kn,m>j, are negligible.

XeðnÞ ffi
Xi

n¼0

knðnÞ½ � n� n0ð Þn ¼
Xi

n¼0

X1
m¼0

kn;m n� n0ð Þm
" #

n� n0ð Þn

ffi
Xi

n¼0

Xj�n

m¼0

kn;m n� n0ð Þnþm ¼ Xe;RBðnÞ þ Xe;DðnÞ

Xe;RBðnÞ ¼D
Xi

n¼0

kn;0 n� n0ð Þn

Xe;DðnÞ ¼D
Xi

n¼0

Xj�n

m¼1

kn;m n� n0ð Þnþm
(3)

As a result of Eq. 1(b), the first term in each kn Taylor series, kn,0,
contains only l0 lengths; these are referred to as rigid-body terms.
Their constitution is unaffected by the extensible components,
f(n), and therefore they collectively represent a motion trajectory
component that is independent of the deformation of the compli-
ant segments (i.e., depends only on their configuration). Further-
more, these kn,0 terms exactly constitute the rigid-body motion
trajectory, in series-representation, of the kinematic mechanism
comprising only l0 link lengths (i.e., as if all f(n)�0); and this is

denoted by Xe,RB(n) in Eq. (3). The order of truncation, i, is there-
fore determined by the number of significant terms in Xe,RB(n) for
the range of actuation, n�n0. Thus, Xe,RB(n) represents a compo-
nent of the compliant mechanism trajectory, Xc(n), that is inde-
pendent of the applied load, segment shapes, and material
properties; and it may be derived simply from the compliant
mechanism’s undeformed state, n0, using rigid-body kinematics.

All remaining terms in each kn Taylor series, kn,m>0 (Eq. (3)),
contain initial link lengths, l0, as well as derivatives of the extensi-
ble components up to the mth-order, evaluated at n0 (i.e., f(n0)(m)).
These are referred to as deformation terms. Their constitution is
of a form such that they require the existence of extensible com-
ponents, f(n), to be nonzero valued; and their magnitudes corre-
spond to the magnitudes of the extensible component derivatives
(i.e., f(n0)(m)). This is shown explicitly in the case study (Eq. (12),
Sec. 3). The motion trajectory of a compliant mechanism, Xc(n),
therefore contains a load-dependent component that is represented
within the model by the collective contribution of the deformation
terms, Xe,D(n) (Eq. (3)). Hence, the values of the deformation
terms: (1) capture the load-geometry interdependencies arising
over the course of mechanism actuation; and (2) reflect the shape
of the compliant mechanism.

The entire series expansion is now written explicitly, grouping
like-ordered kn,m terms (Eq. (4)). For clarity, these terms are
expressed as functions of Dn, which represents the displacement
from the mechanism’s undeformed state. The rigid-body, kn,0, and
deformation, kn,m>0 (notated in bold), terms are now represented
in a parametric form showing that there is one rigid-body term per
polynomial order, terminating at the ith order with respect to Dn.
Deformation terms may range from 1st order to jth order, for
some j> i.

XeðDnÞ ffi k0;0

� �
þ k1;0 þ k0;1

� �
Dnþ k2;0 þ k1;1 þ k0;2

� �
Dn2

þ :::þ ki;0 þ
Xi�1

n¼0

kn;i�n

" #
Dni þ

Xi

n¼0

kn;i�nþ1

" #
Dniþ1

þ :::þ
Xi

n¼0

kn;j�n

" #
Dnj n ¼D n0 þ Dn (4)

Similarly, the desired motion trajectory, Xd(n), may be repre-
sented by its Taylor series expansion, with respect to n, about the
undeformed state of the mechanism, n0 (Eq. (5)).

XdðDnÞ ¼
X1
n¼0

dn Dnð Þn ¼ d0 þ d1Dnþ d2Dn2 þ ::: (5)

The summation of rigid-body and deformation terms per polyno-
mial order (Eq. (4)) is ideally equivalent to that of the desired tra-
jectory (Eq. (5)). Since the actual compliant mechanism motion
trajectory, Xc(n), and the model trajectory, Xe(n), may be consid-
ered equivalent (i.e., Xc(n)¼Xe(n)), the error trajectory,
Xc(n)�Xd(n), may also be written as the difference Xe(n)�Xd(n)
(Eq. (6)).

dðDnÞ ¼ XeðDnÞ � XdðDnÞ
¼ k0;0 � d0

� �
þ k1;0 þ k0;1

� �
� d1

� �
Dn

þ k2;0 þ k1;1 þ k0;2

� �
� d2

� �
Dn2

þ :::þ ki;0 þ
Xi�1

n¼0

kn;i�n

 !
� di

" #
Dni

þ
Xi

n¼0

kn;i�nþ1

 !
� diþ1

" #
Dniþ1

þ :::þ
Xi

n¼0

kn;j�n

 !
� dj

" #
Dnj (6)
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Note that, as the magnitudes of the extensible components
approach zero (i.e., | f(n)|!0), the magnitudes of the deformation
terms, kn,m>0, also approach zero (i.e., lim|f(n)|!0 Xe,D(n)¼ 0).
Here, the model’s motion trajectory, Xe(n), approaches the rigid-
body kinematic trajectory, Xe,RB(n). This limiting case corresponds
to a limiting compliant mechanism shape: extreme lumped com-
pliance, such that both the length and bending stiffness (i.e., thick-
ness) of the compliant hinges approach zero. At this limit, the
motion trajectory of the compliant mechanism, Xc(n), becomes
equivalent to the motion trajectory of the rigid-body terms,
Xe,RB(n).

An important observation here is that the deformation terms for
any physical compliant mechanism will be nonzero; their magni-
tudes may only be minimized by lumped-compliance shapes or
maximized by distributed-compliance shapes. And, these limits of
compliance distribution are also typically bounded by practical
considerations such as: (1) the material yield strain, given the
range of mechanism actuation, n�n0; (2) the available mechanism
area (Fig. 1); and (3) the details of the chosen fabrication process.
In contrast, the magnitudes and signs of the rigid-body terms are
entirely determined by the locations of connection (i.e., kinematic
constraint) between the segments comprising the compliant mech-
anism in its undeformed state, n0; and these locations can be
altered within the available mechanism area (Fig. 1) by design.
Hence from a design perspective, the values of the rigid-body
terms may be considered “completely specifiable by design,”
while the values of the deformation terms may be considered
“partially specifiable by design.”

By this insight, the procedure for minimizing the trajectory
error (Eq. (6)) of a compliant mechanism—via modification of its
topology—may be regarded as follows within the model frame-
work: per polynomial order, the value of each rigid-body term is
designed to compensate for the corresponding deformation terms

so as to provide the correct overall motion trajectory of that order.
In other words, the configuration of compliant segments (i.e., the
mechanism topology) is designed to compensate for load-
dependent trajectory components that arise during actuation.
Within this context, Eq. (6) illustrates that the error trajectory
only up to the ith order may be, in total or in part, redressed by
modification of the mechanism topology. All trajectory compo-
nents greater than or equal to the (iþ1)th order are exclusively de-
formation terms, and are therefore, in principle, uncorrectable
(i.e., only minimizable). By the nature of Taylor series expan-
sions, it is likely that the (iþ1)th order contribution will dominate
that of any higher-order deformation terms over the finite actua-
tion range, n�n0.

Given a specific candidate compliant mechanism, the effective-
ness of redressing the error trajectory can be determined by
inspection of the rigid-body terms within the model. The formula-
tion for each kn,0 term indicates how its value may be modified by
changing the initial lengths/orientations (i.e., l0 in Eq. 1(a)). This
thereby indicates how corresponding geometric changes to the
compliant mechanism topology affect its trajectory, provided its
shape remains largely invariant. Ideally, there would be i-number
of unique geometric parameters available, each of which could be
independently changed to modify the value of corresponding kn,0

terms. In this case, the residual trajectory error would consist of
significant (iþ1)th to jth order polynomial components. Having
less than i-number of suitable geometric modifications forces a
tradeoff in the optimization procedure between the values of two
or more kn,0 terms in order to minimize the error trajectory.

Recall that increasing the distribution of compliance increases the
magnitude of the deformation terms, kn,m>0, without affecting the
value of the rigid-body terms, kn,0. Regarding trajectory optimiza-
tion, this indicates that a larger distribution in compliance may
amount to more extensive geometric modifications and a larger
magnitude residual error trajectory. Given material strain limita-
tions, this implies a tradeoff between range of motion (i.e., increased
by larger compliance distribution) and trajectory accuracy.

Overall, the extensible-link kinematic model illustrates a depar-
ture from classical rigid-link mechanism design, in which a
desired motion trajectory is, in principle, traceable without error if
fabrication is perfect. In contrast, Eq. (6) shows that the material
deformation of a compliant mechanism during actuation can
effectuate a load-dependent error trajectory, even if the topology
and shape could be fabricated with perfect accuracy. Generally
speaking, the model shows that, although material deformation in
a compliant mechanism inherently provides motion repeatability,
it is a source of trajectory error, which is critical in high-accuracy
motion applications (Fig. 1).

The model is useful for understanding the qualitative motion
characteristics of compliant mechanisms and for guiding the
design process. Notably, developing this model framework
required no assumptions or constraints regarding the compliant
mechanism shape, material properties, or load application. These
specifications are all contained within the extensible components,
f(n), which, again, are generally nontrivial to express analytically.
The practical utility of the model therefore comes from not having
to specify explicit equations for the extensible components in
order to identify load-independent and load-dependent motion
components; and this makes it amenable to analysis of compliant
mechanisms that cannot otherwise be represented in an analytical
closed-form. For such cases, FE simulation can be used to infer
the values of extensible components, f(n), and deformation terms,
kn,m>0. This thereby enables minimization of the trajectory error
by iterative modification of the geometric parameters identified
within the model. This procedure is summarized below, and
depicted in Fig. 4. Note that it may be analytical until the last
step, where iterative numerical simulation is used to minimize the
error trajectory (Fig. 4, dashed box).

(1) The formulations of the rigid-body terms, which constitute
the trajectory Xe,RB(n), are determined by kinematic

Fig. 4 Compliant mechanism design procedure utilizing the
ELKM
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analysis. The model (Fig. 3(d)) is derived based on the
locations of connection between the segments that comprise
the compliant mechanism at its undeformed state, n0.

(2) The rigid-body terms are then analyzed to determine the
geometric correction parameters. These parameters will
correspond to the orientations and/or l0 lengths of particular
links at the undeformed state, n0. If less than i-number of
independent geometric parameters exist (Eq. (6)), a tradeoff
must be determined between the values of two or more kn,0

terms in the trajectory optimization procedure; and the de-
signer may make a judgment call on whether to proceed
with the current topology candidate, or to synthesize a new
topology, resulting in a new extensible-link kinematic
model. This step also enables the polynomial order of the
residual error trajectory to be predicted (i.e., the error tra-
jectory remaining after modification of the geometric
parameters).

(3) The error trajectory is minimized via modification of the
geometric parameters, where FE simulation is used to quan-
tify the exact trajectory, Xe(n). Since the values of the
rigid-body terms, kn,0, are known analytically, fitting a jth-
order polynomial curve to the FE simulated trajectory
quantifies the net motion contribution of the deformation
term(s) per polynomial order.

(4) The magnitude and sign of these net deformation term con-
tributions inform the designer on how to modify each geo-
metric correction parameter for the next FE simulation.

(5) This iteration may continue until: (1) the magnitude of the
error trajectory is reduced below the design specifications;
or (2) the polynomial order of the residual error trajectory
becomes apparent, since this signifies the limit of trajectory
correction—via modification of the geometric parame-
ters—for the compliant mechanism.

3 Design of a Microgripper With Straight-Line Jaw

Trajectory

3.1 Statement of Design Task. The utility and validity of the
extensible-link kinematic model is now demonstrated by design-
ing a compliant gripping mechanism with a straight-line parallel
jaw trajectory. Straight-line jaw motion may be desired for micro-
mechanical tension/compression tests [24], and for gripping soft
objects such as cells [25], gels [26], and assemblies of micro and
nanostructures [27]. These and other applications are sensitive to
normal and shear forces, and therefore it is important to decouple
these two loading conditions.

It is required that the compliant mechanism fits within the
indicated mechanism area (Fig. 5, dashed box), and enables pure
X-direction translation of the gripper jaw links without rotation.
Translation of the jaw link in the Y-direction, as well as jaw link
rotation, the constitute error trajectories. For practical use of this

gripper in micromanipulation tasks, a 400 lm jaw actuation range
(i.e., 6100 lm X-displacement per jaw link) is desired, over
which the Y-displacement of the jaw trajectory is less than 10 nm.

In order to achieve mirrored precision motion of both gripper
faces, a single input motion provided by one actuator drives the
actuation of both gripper jaws. This is enabled by the armature
configuration (Fig. 5), which serves to translate linear motion of
the input tab, provided by the actuator, to rotary motion, h, about
a grounded pivot. By design, the gripper jaw displacement may be
proportional to the input tab displacement by means of a small
angle approximation with respect to h (Eq. (7)). This proportional
relationship may be tuned based on armature length, q, which
makes this configuration, and variants thereof, suitable for either
amplifying the displacement of piezoelectric actuators or deampli-
fying the motion of classical linear actuators. The design task is
therefore to determine a compliant mechanism topology that fits
within the mechanism area, anchors at the available ground, and
converts rotation of the grounded armature pivot, h, to horizontal
translation of the gripper jaws.

h ¼ h0 þ Dh for : Dh : �2 deg; 2 deg½ � (7)

The location of the mechanism area (Fig. 5) is driven by two main
considerations: (1) it is desirable to minimize the overall mecha-
nism size; and (2) the mechanism area may not extend vertically
above the jaw link, otherwise sample manipulation and viewing
are obstructed. Note that this second consideration rules out the
possibility of utilizing symmetry in the mechanism topology to
achieve straight line motion. This design scenario is common in
compliant gripping mechanism applications, and the typical solu-
tion is to utilize a parallelogram mechanism topology for guiding
the jaw links (Fig. 6) [28–32]. In Sec. 3.2 , the precise motion
characteristics and shortcomings of this topology are demon-
strated within the context of the extensible-link model. Motivated
by these findings, a new compliant mechanism topology is devel-
oped based on the classical Hoekens four-bar linkage that ensures
improved trajectory accuracy. Presenting this design procedure
illustrates the utility of the model for streamlining the selection
and evaluation of candidate compliant mechanism topologies, as
well as guiding the iterative procedure for optimizing the trajec-
tory accuracy of the jaw in conjunction with FE simulation.

The suitability of both the parallelogram-based and Hoekens-
based mechanisms for this application are evaluated with respect
to the motion paths of points P1 and P2, which define the rigid-
body trajectory of the jaw link. Here, the rigid-body translation of
the jaw link is regarded as equivalent to the trajectory of P1, and
jaw link rotation as attributable to inaccurate duplication of the P1

motion at P2. Ideally, P1 translates horizontally and this motion is
perfectly duplicated at P2. Separating rigid-body translation and

Fig. 5 Displacement-constraint design problem for parallel-
jaw gripping mechanism, where mirror-image topologies fill
right and left mechanism areas Fig. 6 The typical topology solution within the mechanism

area (Fig. 5) is (a) a parallelogram, where (b) the trajectory of P1

is constrained by a beam having extensible length l
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rotation in this manner greatly simplifies the following analysis of
the accuracy limits of gripper jaw trajectory.

It is important to keep in mind that the majority of the design
process presented here is analytical. FE simulation is not unneces-
sary until the final design step, where it is utilized to iteratively
modify geometric parameters identified within the compliant
mechanism to minimize the error trajectory of the jaws (Fig. 10).
These modifications were performed manually in the same CAD

software program used to create the initial 2D compliant gripper
contour. The CAD model was exported into ANSYS and meshed
appropriately. Only 10s of nonlinear FE simulation iterations
were necessary, meaning that the total time requirement for opti-
mization amounted to less than half a day. The efficiency of this
process is attributable to two main factors: (1) the appropriate ge-
ometry modifications as well as the polynomial order of the resid-
ual error trajectory were analytically determined before FE
simulation; and (2) as a result, it was not necessary to implement
an automated algorithmic optimization procedure, which may
have taken more time and would not provide the same insights as
to how the compliant mechanism topology affects the jaw error
trajectory.

3.2 Parallelogram Mechanism The trajectory of P1 for the
parallelogram topology is modeled by the pivoting of a beam with
extensible length l (Fig. 6, Eq. (8)).

P1 ¼
x
y

� �
¼ l sin h

l cos h

� �
(8)

It can be shown by kinematic analysis that the 2nd-order Taylor
series expansion (i.e., i¼ 2 in Eq. (3)) of the rigid-body P1

trajectory, about the nominal position, h0, is sufficient to capture
all significant motion contributions for small angular perturba-
tions, Dh (Eq. (7)). This may be written as a 2nd-order polynomial
function, y(Dx), in the global X-Y coordinate system (Eqs. (9) and
(10)). Here, the y-direction motion is represented as a function of
the gripping direction displacement, Dx (i.e., the stroke parame-
ter), whereby the desired trajectory is: y(Dx)¼ constant (i.e., hori-
zontal translation of P1).

yðDxÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l0 sin h0 þ Dx

l

	 
2
s

ffi k0 þ k1Dxþ k2Dx2 (9)

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � l0 sin h0ð Þ2

q
(10a)

k1 ¼
�l0 sin h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � l0 sin h0ð Þ2
q (10b)

k2 ¼
�l2

2 l2 � l0 sin h0ð Þ2
� �3=2

(10c)

The decomposition l¼ l0 þ f(Dx) (Eq. (1)) is now admitted for the
kn terms (Eq. (10)), where l0 is the initial length and the extensible
component, f(Dx), is a smooth continuous function satisfying
f(0)¼ 0. Equation (11) is then constructed by Taylor series expan-
sion of each kn term about Dx¼ 0 for j¼ 3 (referencing Eq. (3)),
and collection of like-ordered terms. Here, it is clear that the 3rd-
order trajectory component is, in principle, uncorrectable because
it contains only deformation terms (notated in bold). It is therefore
sufficient to truncate this series representation at j¼ 3 because all
higher-order terms are exclusively deformation terms, and will be
dominated by this 3rd-order contribution over the stroke range
(i.e., Dx¼6100 lm). Note that it is not necessary to specify an
explicit function for f(Dx) to see the formulation of all kn,m terms
(Eq. (12)). Moreover, the deformation terms, kn,m>0, are all of a
form such that they require the existence of the extensible compo-
nent to be non-zero-valued (Eqs. (12b)–(12d), (12f), (12g), and

(12i)); and may contain only up to its mth-order derivative (i.e.,
f(m)(0)). This is generally true regardless of the kinematic linkage
arrangement (i.e., mechanism topology).

yðDxÞ ffi k0;0 þ k1;0 þ k0;1

� �
Dxþ k2;0 þ k1;1 þ k0;2

� �
Dx2

þ k2;1 þ k1;2 þ k0;3

� �
Dx3 (11)

k0;0 ¼ l0 cos h0 (12a)

k0;1 ¼
f 0ð0Þ
cos h0

(12b)

k0;2 ¼
1

2 cos h0

f 00ð0Þ � tan2 h0

2l0 cos h0

f 0ð0Þ2 (12c)

k0;3 ¼
1

6 cos h0

f 000ð0Þ � tan2 h0

2l0 cos h0

f 00ð0Þf 0ð0Þ þ tan2 h0

2l0 cos3 h0

f 0ð0Þ3

(12d)

k1;0 ¼ � tan h0 (12e)

k1;1 ¼
tan h0

l0 cos2 h0

f 0ð0Þ (12f )

k1;2 ¼
tan h0

2l0 cos h0

f 00ð0Þ �
tan h0 2þ sin2 h0

� �
2l2

0 cos4 h0

f 0ð0Þ2 (12g)

k2;0 ¼
�1

2l0 cos3 h0

(12h)

k2;1 ¼
1þ 2 sin2 h0

2l2
0 cos5 h0

f 0ð0Þ (12i)

The rigid-body, kn,0, terms (Eqs. (12a), (12e), and (12h)) are now
inspected to determine the extent to which the trajectory error
may be redressed by adjustment of the mechanism topology. The
1st-order error trajectory may be corrected since the magnitude
and sign of k1,0 may be designed to compensate for k0,1 by modi-
fying h0. However, for the 2nd-order trajectory, the only addi-
tional geometric parameter available in k2,0 is l0. The formulation
of this term (Eq. (12 h)) shows that its magnitude, but not its sign,
may be changed by modifying l0; and this is true regardless of the
shape of the corresponding segment in the compliant mechanism.
Depending on how the mechanism deforms during actuator load-
ing, it is possible that the 2nd-order trajectory error may not be re-
dressable (i.e., if k1,1þ k0,2< 0). Moreover, the inverse
relationship between the magnitudes of k2,0 and l0 means that l0
may become impractically large if small values of k2,0 are
required. This may therefore force a tradeoff between the values
of k1,0 and k2,0 to minimize the error trajectory, even presuming
perfect duplication of the P1 trajectory at P2. Ideally, two geomet-
ric parameters would be available that could be independently
changed in a practical manner to control both the magnitude and
sign of k1,0 and k2,0.

3.3 Hoekens-Derived Mechanism. Now consider replacing
beam l (Fig. 6) with a four-bar mechanism (Fig. 7). Here, the
extensible-link kinematic model within the mechanism area con-
sists of a closed four-bar mechanism (hashed shading) that defines
the path of P1, and a parallelogram-based mechanism that serves
to replicate the motion of P1 at P2 (Fig. 7(a)). Again, the trajectory
of P1 is evaluated, which represents the translation of the jaw link.
Referencing the classical Hoekens linkage as a starting point, the
geometric parameters of the four-bar are defined as follows
(Fig. 7(b)): a¼ crank, g¼ ground, b¼ follower, h¼ output,
d¼ extension of h to P1 at angle w. The vector trajectory of P1 is
written in the global X-Y coordinate system (Eq. (13)) such that it
consists of the input crank angle, h, defined with respect to the X-
axis as shown, and the kinematic linkage arrangement (i.e., exten-
sible link lengths and angle w). The expression for the internal
angle, u, is derived based on the kinematic constraint that the
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ends of link h must coincide with the respective ends of links a
and b.

P1 ¼
x

y

� �
¼ a

cos h

sin h

� �
þ h

cos u

sin u

� �
þ d

cos uþ wð Þ
sin uþ wð Þ

� �

u ¼D arcsin
b2 � a2 � h2 � g2 þ 2ag cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ah sin hð Þ2þ 2hða cos h� gÞð Þ2
q

0
B@

1
CA

� arctan
a cos h� g

a sin h

	 

(13)

By kinematic analysis, the P1 trajectory may expressed as the
function, y(Dx), in the global X-Y coordinate system, where its

2nd-order Taylor series expansion (i.e., i¼ 2 in Eq. (3)) is suffi-
cient to capture all significant motion contributions for small
angular perturbations, Dh (Eq. (7)). The series representation of
y(Dx) here is therefore identical in form to Eq. (11), but with the
following equations for the rigid-body, kn,0, terms (Eq. (14)). The
equations for the deformation terms, kn,m>0, are not shown here
because they are lengthy and their computation is not necessary
within the context of the following trajectory optimization
procedure.

k0;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

0

q
h0 þ d0 cos wð Þ þ R0d0 sin w (14a)

k1;0 ¼
a0 þ g0 � R0 h0 þ d0 cos wð Þ þ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

0

p
sin wffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
0

p
h0 þ d0 cos wð Þ þ R0d0 sin w

(14b)

k2;0 ¼

R2
0h0 a0 � g0ð Þ þ R0g0 a0 þ g0ð Þ � h0a0

2h0a0

	 

h0 þ d0 cos wffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
0

p � R0h0 a0 � g0ð Þ þ g0 a0 þ g0ð Þ
2h0a0

	 

d0 sin w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

0

p
h0 þ d0 cos wð Þ þ R0d0 sin w

� �2

R0 ¼D
a2

0 þ h2
0 þ g2

0 � b2
0 þ 2a0g0

2h0 a0 þ g0ð Þ

(14c)

For brevity, these expressions (Eq. (14)) include the substitution
h0¼ 180 deg, which was determined, by inspection, to be requisite
for a symmetric P1 trajectory about the undeformed state of the
mechanism. Here, symmetric trajectories occur for the following
kinematic relationships: w¼ 00, h0¼ b0¼ d0, considering equal
angular perturbations of the crank (i.e., link a) about h0.
Additionally, perfect horizontal straight-line motion (i.e.,
k1,0¼ k2,0¼ 0) is achieved for the following kinematic relation-
ship: h0¼ b0¼ d0¼ l0, such that l0/a0¼ 4 and g0¼ l0�a0. These
link length relationships are slightly different than that of the clas-
sical Hoekens mechanism (i.e., l0/a0¼ 2.5). To achieve the
desired jaw range (0–400 lm) given the small-angle restriction
(Eq. (7)), the link length a0¼ 1.67 mm is required, which is
practically feasible.

Analysis of the rigid-body terms (Eq. (14)) reveals that both the
sign and magnitude of k1,0 and k2,0 may be controlled by inde-
pendently changing w and g0, respectively (Fig. 8). Therefore, the
1st- and 2nd-order trajectory errors caused by the corresponding-
order deformation terms may be completely corrected by proper
modification of these two geometric parameters. Hence, the
residual error trajectory of the gripper jaw is predicted to be a 3rd-
order polynomial that is, in principle, not correctable. Note that,
even though the 3rd-order rigid-body term (i.e., k3,0) is negligible,
the cumulative contribution from the 3rd-order deformation terms
(i.e., k2,1þ k1,2þ k0,3) may be significant in magnitude.

So far, only the trajectory of P1 has been considered. To
achieve the desired gripper jaw motion, the P1 trajectory must be
duplicated at P2 by the parallelogram linkage portion of the mech-
anism (Fig. 7(a)). The above analysis may be performed for this
parallelogram linkage as well in order to express the motion of P2

in a parametric form. But, for brevity and clarity, it is simply
noted that all significant contributions to the trajectory of P2 may
be captured in the form on Eq. (11) because all links in the paral-
lelogram linkage are subject to the small angle constraint
(Eq. (7)). Therefore, by analogy, adjusting / (Fig. 7(a)) modifies
the linear trajectory of P2. This angle will be optimized in order to
minimize gripper jaw rotation, x; and as the FE results will show,
this linear correction of the P2 trajectory is sufficient.

The Hoekens-based kinematic mechanism (Fig. 7(a)) is trans-
lated into a lumped-compliance flexure mechanism (Fig. 9) now

that all suitable geometric modifications have been determined.
Here, the geometric centers of thin compliant hinges (Fig. 9) coin-
cide with the locations of the pin joints in the kinematic model
(Fig. 7(a)). The hinges have a cycloidal profile [33] which, com-
pared to other compliant hinge contours, maximizes in-plane rota-
tional compliance and translational stiffness for a prescribed
angular deflection limit (Eq. (7)) and allowable material strain.
For microfabrication of the gripper from a silicon wafer, a strain
limit of 0.5% [34] is chosen. Note that a lumped-compliance
shape has been chosen in order to minimize the magnitude of the
deformation terms, kn,m>0, and thereby the magnitude of the resid-
ual error trajectory.

The jaw trajectory of the compliant mechanism is now opti-
mized by iterative manual adjustment of the geometric parameters
(i.e., Dw, Dg0, D/) and evaluated using nonlinear FE simulation
in ANSYS. The rotation (Fig. 10(a)) and translation (Fig. 10(b)) of
the jaw over the stroke, Dx, are plotted for the initial (*) and final
(o) FE simulations. The compliant mechanism for the initial simu-
lation has model link lengths corresponding to k1,0¼ k2,0¼ 0, and
therefore the error trajectory here is entirely attributable to the de-
formation terms, kn,m>0, in the model. The polynomial curves fit-
ted to the jaw rotation, x(Dx), and P1 trajectory, y(Dx), quantify
the net deformation-term motion contribution per polynomial
order, which informs the designer on how to modify the geometric
parameters (i.e., Dw, Dg0, D/) to minimize the error trajectory.
The results from the initial FE simulation (Figs. 10(a) and 10(b),
asterisks) indicate the following modifications: increase / with
respect to w to redress jaw rotation [16]; decrease w and g0 to
redress jaw translation errors (Fig. 8). All three geometric
parameters may be modified at once.

The influence of these modifications is evaluated by subsequent
FE simulation, and iteration continues until the polynomial order
of the predicted residual error trajectory becomes apparent. To
illustrate the validity of this model, an intermediate step is also
shown where only the linear trajectory component of P1 (i.e., Dw)
is corrected, resulting in a parabolic error trajectory (Fig. 10(b),
triangles). It is to be noted that the deformation terms, kn,m>0,
include initial link lengths (i.e., l0 in Eq. (1a)) as well as extensi-
ble components, f(n), and therefore their magnitude is partially
dependent on the undeformed state of the mechanism. This
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implies that the trajectory error correction procedure here is inher-
ently iterative because modifying the geometric parameters
changes the value of the rigid-body terms and deformation terms.

Fewer than 30 iterations were required to optimize the jaw tra-
jectory, and the final geometric modifications with respect to the
initial topology, as denoted in Fig. 9, were: Dw¼�0.850 deg,
Dg0¼�0.7 mm, D/¼�0.354 deg. The final compliant gripper
exhibits jaw rotation less than 0.8 lrad and translation error less
than 5 nm over the entire stroke according to the final FE simula-
tion (Figs. 10(a)–10(c); circles). The residual error trajectory of
the gripper jaw is 3rd-order, as predicted (Fig. 10(c)). This is
therefore the limit of trajectory error correction for the compliant
microgripper (Fig. 9).

4 Summary and Discussion

Within the proposed model framework, the error trajectory of a
compliant mechanism may generally include both load-
independent and load-dependent components (Eq. (6)). The rigid-
body terms, kn,0, comprise a load-independent trajectory
component, Xe,RB(n), that is attributable to only the mechanism’s
topology, irrespective of the mechanism shape. The deformation
terms, kn,m>0, comprise a load-dependent component, Xe,D(n),

that is determined by the mechanism’s topology and shape, as
well as the applied load and material properties.

Modification of the mechanism topology alone (i.e., shape
remains invariant) may redress trajectory errors up to the ith order,
provided that i-number of geometric parameters exist within the
model framework (i.e., by analysis of the kn,0 terms in Eq. (6)).
Having less than i-number of suitable geometric parameters forces
a tradeoff between the values of two or more kn,0 terms in the opti-
mization procedure, regardless of the mechanism shape—and alle-
viation of this tradeoff would require a different mechanism
topology.

Modification of the compliant mechanism’s shape, on the other
hand, only affects the magnitude of the load-dependent trajectory
component. Within the model, the shape of the segments compris-
ing the compliant mechanism (Figs. 2(b) and 2(c)) affects the ex-
tensible components, f(n), but not the initial lengths, l0, that define
the mechanism topology. Moreover, error trajectories of at least
(iþ1)th order are composed exclusively of deformation terms,
kn,m>0, and therefore require compensatory loading to be com-
pletely redressed—recall that lumped-compliance shapes may
minimize, but not eliminate, load-dependent trajectory compo-
nents. This is illustrated in the case study, wherein the residual
error trajectory of the gripper jaw exhibits a dominant polynomial
order of: (iþ 1)¼ 3 (Fig. 10(c)). It is therefore entirely load-
dependent and uncorrectable by topology modification alone (i.e.,
modification of the geometric parameters: Dw, Dg0, D/), and will
exist irrespective of the compliant mechanism shape.

It is important to realize that the presented model does not
assume or impose the motion of a rigid-body kinematic linkage
(i.e., as in PRBM). Model construction consists of: (1) identifying
particular material points in the compliant mechanism that
represent locations of connection between segments comprising

Fig. 8 Modifications of geometric parameters DW and Dg0 cor-
rect 1st- and 2nd-order P1 trajectory errors, respectively. The
trajectory is plotted as: Dy 5 y(Dx)2k0,0.

Fig. 9 Lumped-compliance gripper with straight-line parallel-
jaw trajectory based on the Hoekens four-bar linkage

Fig. 7 (a) Mechanism solution for straight-line horizontal jaw
displacement, which utilizes (b) a four-bar mechanism based
on the Hoeken’s linkage to determine the motion of P1
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the topology; and (2) composing the trajectory, Xe(n) (Eq. (2)), in
terms of the vectorial distances, l, between these material points.
The ability to separate load-independent, Xe,RB(n), and load-
dependent, Xe,D(n), components in the Taylor series expansion of
the trajectory, Xe(n) (Eq. (3)), is simply a consequence of admit-
ting the decomposition of Eq. (1). Remarkably, the load-
independent trajectory component, Xe,RB(n), is equivalent to the
trajectory of the rigid-body kinematic linkage corresponding to
the undeformed state, n0, of the compliant mechanism topology
(i.e., as if all f(n)� 0).

While the extensible components, f(n), (and therefore the de-
formation terms) are generally nontrivial to calculate, the calcula-
tion for the load-independent trajectory, Xe,RB(n), is exact and
independent of the compliant mechanism shape, as it depends
only on the l0 lengths. Herein lies the practical utility of the
model because the contributions of topology versus shape to the
compliant mechanism’s trajectory may be distinguished by: (1)
noting the existence of significant deformation terms and (2) cal-
culating only Xe,RB(n). This is illustrated in the case study,
wherein analysis and minimization of the gripper jaw’s error tra-
jectory (Fig. 10) required only Eqs. (11) and (14) despite the
complicated shape of the microgripper (Fig. 9). The proposed
model may also, without difficulty, be extended to three dimen-
sions, as well as to compliant mechanisms with multiple input
loads and/or output trajectories.

Last, it is recognized that some ambiguity exists in the selection
of material points representing locations of connection which may
enable variation, between designers, in the partitioning of a com-
pliant mechanism into segments (Figs. 2(b) and 2(c)); and this
variation results from a designer’s interpretation of a compliant
mechanism’s topology versus shape. The important point is that
the proposed model shows how the configuration of segments—as

identified by the designer—affects the motion trajectory of the
compliant mechanism. While it is, in principle, possible to com-
pute the vector algebra between an arbitrary set of selected mate-
rial points, design insight is only gained if the locations of the
selected material points unambiguously represent the positions of
corresponding geometric features in the compliant mechanism.
For example, it would be inappropriate to select a material point
in the middle of segment b or d (Figs. 3(a) and 3(b)) because arbi-
trary adjustment of its position would not correspond to a clear
modification of the compliant mechanism topology—as is typi-
cally the case with the locations of hinge centers (Fig. 2(b)) and
beam ends (Fig. 2(c)).

5 Conclusion

We have developed an analytical model for understanding the
motion characteristics of an arbitrary planar compliant mecha-
nism. The model is composed of extensible vectorial lengths, l,
which represent the configuration of compliant segments compris-
ing the mechanism; whereby the motion trajectory is constructed
as an analytical function in terms of these vectorial lengths. Utiliz-
ing Taylor series expansion, the trajectory is separated into motion
components that are either: (1) load-independent and entirely
specifiable by the mechanism topology (i.e., rigid-body terms); or
(2) load-dependent and represent all load-geometry interdepen-
dencies that arise during mechanism actuation (i.e., deformation
terms). A compliant microgripper (Fig. 9) is designed in the case
study, which demonstrates the utility of this model for streamlin-
ing the compliant mechanism design and trajectory optimization
processes, in conjunction FE simulation. As demonstrated in the
case study, the model is particularly useful for nonsymmetric
mechanism topologies with shapes that are too complex to repre-
sent in an analytical closed form.
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Nomenclature

n ¼ stroke parameter
n0 ¼ stroke parameter at the undeformed state of the

mechanism
n�n0 ¼ actuation range

l ¼ extensible link length
l0 ¼ initial length of l (corresponding to n0)

f(n) ¼ extensible component of l
Xd(n) ¼ desired motion trajectory
Xc(n) ¼ compliant mechanism motion trajectory
d(n) ¼ error trajectory

Xe(n) ¼ model motion trajectory
Xe,RB(n) ¼ load-independent component of model motion

trajectory
Xe,D(n) ¼ load-dependent component of model motion

trajectory
kn,0 ¼ rigid-body terms (that comprise Xe,RB(n))

kn,m>0 ¼ deformation terms (that comprise Xe,D(n))
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