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Abstract 

Analytical load-displacement relations for flexure mechanisms, formulated by integrating the individual 

analytical models of their building-blocks (i.e. flexure elements), help in understanding the constraint characteristics 

of the whole mechanism. In deriving such analytical relations for flexure mechanisms, energy based approaches 

generally offer lower mathematical complexity, compared to Newtonian methods, by reducing the number of 

unknowns – specifically, the internal loads. To facilitate such energy based approaches, a closed-form non-linear strain 

energy expression for a generalized bisymmetric spatial beam flexure is presented in this paper. The strain energy, 

expressed in terms of the end-displacement of the beam, considers geometric nonlinearities for intermediate 

deformations, enabling the analysis of flexure mechanisms over a finite range of motion. The generalizations include 

changes in the initial orientation and shape of the beam flexure due to potential misalignment or manufacturing. The 

effectiveness of this approach is illustrated via the analysis of a multi-legged table flexure mechanism. The resulting 

analytical model is shown to be accurate using non-linear finite elements analysis, within a load and displacement 

range of interest.  
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1. INTRODUCTION AND BACKGROUND 

Flexure mechanisms rely on the elastic deformation of flexure elements to provide small but smooth and 

precise motions, and are important in machine design at all scales [1, 2].  

 

Figure 1: Spatial Beam Flexure, Undeformed and Deformed Configurations 

One of the commonly used flexure elements is a spatial beam, which exhibits relatively high stiffness along 

its centroidal axis in comparison to displacements in the transverse direction and torsion. Figure 1 illustrates an initially 

straight slender prismatic spatial beam of length L that connects rigid bodies (1) and (2). An analytical model of the 

spatial beam, which we refer to as the spatial beam constraint model (SBCM), relates the six independent end-

displacements  to the six independent end-loads over an intermediate translational and angular displacement range of 

0.1L and 0.1 radians, respectively, was formulated in reference [3]. The primary advantage of SBCM over other 

existing models of spatial beams [4, 5] is its generality in the application of loads and displacements and its relatively 

simpler mathematical form. Here the relative displacements, i.e. translations and angular rotations of rigid body 2 with 

respect to rigid body 1, are represented by  , ,  and XL YL ZLU U U  and  , , XdL ZL YLU U   , respectively. The twist XdL  

is measured about the tangent to the centroidal axis of the deformed beam. Furthermore,  and ZL YLU U  , which are 

the slopes of the projection of the beam on XZ and XY planes respectively, are often approximated as angles 

 and YL ZL   for small values of the order of 0.1. The six independent end-loads are 

 , , , ,  and 
XL YL ZL XL YL ZL

F F F M M M  as shown in Figure 1. The ‘L’ in the subscript of the loads and displacement 

variable indicate that the values are measured at the end of the beam i.e. at X=L. The term ‘load’ is used here in a 

generalized sense, indicating both forces and moments. 

The SBCM is applicable to slender prismatic beams with ‘bisymmetric cross-section’ which is defined in 

this paper as a cross-section for which area moments of inertia IYY and IZZ are equal and IYZ is zero. The two equal area 

moments of inertia IYY and IZZ  are represented simply as I. This restriction makes a closed-form solution of the beam 
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governing equations possible, as shown later. Examples of such bisymmetric cross-sections are circles and even-sided 

regular polygons. The key contribution of SBCM is that it captures geometric nonlinearities associated with arc-length 

conservation and coupling between XY and XZ bending planes due to torsion in a closed-form manner without 

sacrificing accuracy or generality in the loading or displacement conditions [3]. Additionally, a compatible expression 

of strain energy in terms of the end-displacements and loads FXL and MXL was provided. This enables the use of energy 

methods such as principle of virtual work [6], as an alternative to Newtonian methods for the analysis of flexure 

mechanisms. With these attributes, it was shown that SBCM is able to capture the constraint characteristics of flexure 

mechanisms in terms of stiffness values and error motion with 95% accuracy over a range of 0.1L and 0.1 radians for 

translational and angular displacements.
  

 

Figure 2: A 3-DoF Spatial Flexure Mechanism 

In order to improve the versatility of the SBCM, this paper captures the effect of angular misalignments and 

variable cross-sections in spatial bisymmetric beams. These geometric generalizations are reflected in a new closed-

form non-linear strain energy expression for spatial beams. The resulting generalized SBCM is used to analyze a 

spatial table flexure with multiple legs, shown in Figure 2, using energy methods. It is assumed that the multiple legs 

in this table flexure are not perfectly parallel due to manufacturing defects or intentional design.  

In practice, the multi-legged table flexure mechanism is used to provide relatively high stiffness against out-

of-plane translational displacements along X and out-of-plane rotational displacements about Y and Z while allowing 

in-plane translation motions along Y and Z and in-plane rotation about X. A 4-legged version of this mechanism has 

been used make precision positioning stages [7] while a 3-legged version with tilted beams is used to make a compliant 

assembly device [8], a vibratory bowl feeder [9], and a minimally invasive surgical tool [10]. Furthermore, this spatial 

mechanism provides alternative designs [11] to leaf flexure based planar positioning stage [12].  

Although a linear model of the spatial beam flexure [13] can be used to derive  basic insight, a nonlinear 

analysis technique is desirable in order to capture geometric effects. Nonlinear analysis may be numerical in nature 
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like FEA or closed-form. In this article we explore a closed-form nonlinear analysis methodology. Nonlinear closed 

formed analysis of the multi-legged table flexure mechanism, comprising n spatial beam flexures connected to a rigid 

motion stage, using Newtonian methods is difficult because it requires solving 12n+6 unknowns (each leg contributes 

6 internal end-loads and 6 internal end-displacements while the motion stage contributes 6 displacements) from 12n+6 

simultaneous equations (each leg contributes 6 load-displacement relations between its respective end-loads and end-

displacements  and 6 geometric compatibility relations between its end-displacements and the motion stage 

displacements, and the motion stage contributes 6 load-equilibrium relations). Although Hao presented such an 

analytical formulation for a three-legged table with vertical beam flexures [14], the complexity of the derivation 

showed that a similar analysis for four or more legged table would be difficult.  

The mathematical complexity increases even more for a multi-legged table flexure mechanism with non-

parallel spatial beam flexures. This is because the local co-ordinate frame for each spatial beam flexure is different 

from global co-ordinate frame of the multi-legged table flexure mechanism. Although, often a numerical approach 

such as Finite Element Analysis (FEA) is used to overcome the complexity, as a tradeoff, parametric design insights 

that help us improve the design become non-obvious.  

Accordingly, this paper recognizes that this problem may be solved more tractably using an energy based 

approach and focuses on finding a closed form model for multi-legged (arbitrary n) table flexure with non-parallel 

legs. To this end, section 2 derives the SBCM of bisymmetric spatial beam flexure with a small but otherwise arbitrary 

tilt. By including the effect of tilt in the strain energy expression of SBCM itself, there is no longer a need for co-

ordinate transformation as the displacement variables of all the spatial beam flexures can be defined in the global co-

ordinate system. This also simplifies the mathematical procedure considerably and allows us to easily model a highly 

generalized multi-legged table flexure mechanism with non-parallel spatial beam flexures in a closed-form manner. 

In order to show the validity of the form of SBCM for spatial beam flexures with generalized shape, this 

paper also discusses the fundamental relations between the beam characteristic coefficients [H1]-[H7] in section 3. 

This analysis shows that the pertinent effects associated with the geometric nonlinearities for a bisymmetric spatial 

beam flexure with varying cross-section, can be captured in SBCM by only changing the beam characteristic 

coefficients [H1]-[H7]. Furthermore, this discussion also illustrates the formulation of the entire SBCM of such a beam 

flexure using the solution of the linearly coupled differential equations associated with bending in the XY and XZ 
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plane only. This implies the nonlinear differential equations associated with axial extension, torsion and strain energy 

need not be solved for determination of SBCM.  

Section 4 uses the generalized SBCM that captures tilt as well as shape variation to model a multi-legged 

table flexure mechanism with n identical legs with small but otherwise arbitrary tilt. For validation, the load-

displacement results of a 3 legged table, composed of 3 prismatic slender spatial beams, are compared with FEA.  

Finally, section 5 provides a conclusion this paper with a brief discussion on contributions and future work. 

2. STRAIN ENERGY OF A BISYMMETRIC SPATIAL BEAM WITH ARBITRARY TILT 

A slender beam with equal thickness that is not perfectly parallel with the X-axis of a global reference co-

ordinate frame X-Y-Z, due to manufacturing/assembly defects or intentional design, is shown in Figure 3. The 

orientation of the unloaded undeformed beam may be described by rotating a beam that is initially aligned with the 

X-axis, through an Euler rotation sequence of β about the Y axis and γ about the rotated Z axis. The resulting co-

ordinate frame is called XT-YT-ZT where YTZT represents the cross-sectional plane which XT represents the centroidal 

axis of the tilted beam.  

Next, we express the deformation of the beam in terms of displacement variables defined in the X-Y-Z co-

ordinate frame. The deformation of any cross-section perpendicular to the undeformed centroidal axis is determined 

to be a rigid body translation and rotation followed by an out of plane warping. This deformation assumption is based 

on (i) the Euler Bernoulli assumption which ignores shear effects due to shear forces FYL and FZL in comparison to 

bending for slender beams with thickness/length ratio less than 1/20 [15], and (ii) St. Venant solution of slender 

prismatic beam that shows in-plane distortion to be absent. A more detailed analysis of the assumptions can be found 

the analysis of non-tilted uniform bisymmetric spatial beam in reference [3]. The translation of the centroidal point P 

of any cross-section perpendicular to the undeformed centroidal axis to its deformed position P’ is represented by 

,   and X Y ZU U U along the X, Y and Z axes, respectively, as shown in Figure 3(a). The rigid body rotation of the 

cross-section containing P is defined by three Euler rotations –φ–β about the Y axis followed by ψ+γ about the rotated 

Z axis followed by ΘXd about the rotated X axis  as shown in Figure 3(b). Let the resulting deformed co-ordinate frame 

be called Xd-Yd-Zd in which Xd axis is defined along the tangent to the deformed centroidal axis while YdZd forms the 

deformed cross-sectional plane prior to warping. Finally, in addition to rigid body translation and rotation, the warping 

of the cross-section causes small displacements along the Xd axis. 
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Figure 3: (a) Tilted Spatial Beam deformation (b) Relating the orientation of the XT-YT-ZT co-ordinate frame and Xd-

Yd-Zd co-ordinate frame 

Using this beam deformation, the strain at any general point before deformation with coordinate position (X, 

Y, Z) may be defined using Green’s strain measure.  

0 0 2

T

XX XY XZ

d d YX YY YZ

ZX ZY ZZ

dX dX

dR dR dR dR dY dY

dZ dZ

  

  

  

     
    

        
         

      (1) 

Here 0R  is the position vector of this point before deformation and equal to  
T

X Y X Z X   . 

Position vector dR  represents the position of this point after deformation and is calculated by vectorially adding the 

relative displacement of P’ with respect to P, the relative displacement of this point with respect to P’ in the deformed 

configuration and displacement due to warping at his point which is along Xd. The transformation matrix relating X-

Y-Z co-ordinate frame and Xd-Yd-Zd co-ordinate frame is essential in determining dR  and can be expressed using 

derivatives of ,  ,  and X Y Z XdU U U   using Figure 3(b). The final expression for non-linear strain, approximated to 

the second order, may be derived using Eq.(2) to be:  
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 

2 2

2 2 2

1 1

2 2

1
           

2

XX X Y Z Y Z

Zd Yd Xd

U U U U U

Y Z Y Z

  

  

        

   

  (2) 

                     where XY Xd W W

d
Y Y Y

dZ


     (3) 

                    where XZ Xd W W

d
Z Z Z

dY


    (4) 

The rate of twist angle, κXd, and bending curvatures κYd and κZd can be expressed, to the second order 

approximation, as follows: 

 

   

   

;  

sin cos ;     

cos sin

Xd Xd Z Y

Yd Xd Y Xd Z

Zd Xd Y Xd Z

U U

U U

U U

  

  

  

    

  

  

 (5) 

The out-of-plane warping along Xd is estimated to be Xd  [16], where λ is a warping function dependent on only the 

local cross-sectional coordinates Yd and Zd and independent of coordinate X. 

Using the strain expressions in Eqs.(2) -(4), the strain energy for the initially tilted spatial beam flexure is 

expressed below by assuming linear material properties. It should be noted that for a slender beam, stresses along Y 

and Z axes may be approximated to be zero and hence strains εYY and εZZ do not appear in the calculation of the strain 

energy. 

 2 2 2

2 2
xx xy xz

vol vol

E G
V dAdX dAdX       (6)

  

Once the total strain energy for the spatial beam has been obtained, the Principle of Virtual Work (PVW) [6] 

may be applied to generate the beam differential equations and boundary conditions. According to the PVW, the 

virtual work done by external forces over a set of geometrically compatible but otherwise arbitrary ‘virtual’ 

displacements is equal to the change in the strain energy due to these ‘virtual’ displacements:  

W V   (7) 

Using PVW, the beam governing differential equations and natural boundary conditions is derived using a 

similar procedure as described in reference [3]. Also, at this stage we introduce that following normalization scheme: 
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The normalized beam governing differential equations are 
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 (9) 

The normalized natural boundary conditions are 

1 1 1

1 1 1

1 1

1 1

          y y z

z z y

z y

y z

u u u

u u u

u u

u u

    

    
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 (10) 
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2

2

1
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
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All the loads and displacements are normalized per the following scheme to make the equations and results 

compact: 

Here E is the elastic modulus, while L is the length of the projection of the spatial beam flexure along the X 

axis. TY is the thickness of the beam along Y. Since 
1yu    and 1zu    are approximately equal to rotations about 

Z and Y axes respectively, xd1m  is simply the normalized equivalent torsional moment expressed along the deformed 

centroidal axis at the free end of the beam. The normalized geometric boundary conditions are: 

       

       
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1 1

1 1 1 1

0 0 ;  0 0  ;   0 0  ;   0 0 ;

0 0 ;  0 0 ;  1 ;   1 ;   

1 ;   1 ;  1  ;   1

y z y z

x xd y y z z

y y z z x x xd xd

u u u u

u u u u u

u u u u u u



 

    

 

   
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It should be noted that at this stage if β and γ are set to zero, then the differential equations became same as 

that for a non-tilted beam [3] as expected. The strain energy expression can be also stated compactly as follows after 

normalization: 

 
1

2 2

2

0

21

2 2 2
y z

x x

v u u dx
k k k k 

     
2 2 2

xd1 x1 xd1 x1m f m f
 (11) 

Capturing the various non-linear coupling effects renders the governing equations of extension and torsion 

non-linear. However the bending equations are still linear albeit coupled in uy and uz. This allows the first two 

equations of Eq.(9), along with associated boundary conditions, to be solved using linear algebra techniques and then 

the results can be substituted in last two equations of Eq. (9) to solve for ux and θxd, which provide the two geometric 

constraint conditions. The results may also be substituted in the strain energy term.  

To express this result in a form that is mathematically concise and provides insight into the effects of 

geometric non-linearities that are relevant to constraint characterization, we carry out a Taylor series expansion of the 

solution of fy1, fz1, my1, and mz1 in terms of the axial and torsional loads, fx1 and mxd1 and drop third and higher power 

terms. Since the coefficients of fx1 and mxd1 diminish quickly with increasing powers, this truncation results in less 1% 

error in the displacement and load range of interest. Similarly Taylor series expansion of the solutions of ux1 and θxd1 

in terms of fx1 and mxd1 are also carried out and second and higher power terms are dropped. Error due to truncation 

in this case is less than 5% for the normalized fx1 and mxd1 values less than 5. The SBCM for tilted spatial beam flexure 

is 
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0 0

20 15

0 0 0 2

0 0 2 11

0 2 0 04

2 1 0 0

H H

H

 
 

       
    
   
    

 
 
 

 
 

 
 
 
 
  

 4

1 1
0 0

700 1400

1 11
0 0

1400 6300
,  

1 1
0 0

700 1400

1 11
0 0

1400 6300

H

 
 

 
 
 
 
 
 
 
 
 

   5 6

0 0 0 1 4 2 0 0

0 0 1 0 2 1 0 01 1
 ,  

0 1 0 0 0 0 4 260 20

1 0 0 0 0 0 2 1

H H

   
   


   
   
   
   

 

 7

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

H

 
 
 
 
 
 

 

All nonlinear effects that are significant when the translational and angular displacement range of the beam 

end is limited to 0.1L and 0.1 radians, respectively, are captured in Eqs. -(15). On setting β and γ to zero, Eq.(12) -
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(15) reduce to the known results of a non-tilted spatial beam [3]. Equation (12), which is the transverse load-

displacement relation, expresses bending loads  y1 z1 z1 y1
f m f m as a product of bending stiffness values and 

bending displacement.  

 

Figure 4:(i) Normalized force fy1 vs normalized displacement uy1 for varying tilt angle β and γ (ii) Normalized (mz1-

4θz1)/mxd1 vs normalized moment mx1 at θy1=0 and θz1=0.02 radians for varying tilt angle β (iii) Normalized 

displacement ux1 vs normalized displacement uy1 for varying β and γ (iv) Rotational displacement θxd1 vs Rotational 

displacement θy1 for varying γ 

 

The first term in Eq. (12),   1 1 1 1 1

T

y y z zH u u u u  , captures the linear bending stiffness values of 

1 1 1 1

,  ,   and 
y z z y

d dd d
du du du du 

y1 y1z1 z1
f mf m

 and can be easily shown to be in agreement with the linear load-

(i) (ii) 

(iii) (iv) 
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displacement curves for cantilever beams [17]. The first and second powers of fx1 and mxd1 in the bending stiffness 

values capture the variation in bending stiffnesses due to axial loads. In particular, the stiffness terms with single 

power of fx1 and mxd1 are a result of the geometric arc length conservation and are called load or geometric stiffening 

terms [17]. The terms that are quadratic in fx1 and mxd1 are relatively less significant than the load stiffening terms but 

are retained to maintain truncation consistency with Eqs.  (13) and (14). Due to the initial beam tilt, the load 

displacement curves shift while maintaining the stiffness values. This curve shift is more significant for the transverse 

force (fy1 or fz1) vs. transverse displacement (uy1 or uz1) as shown in Figure 4(i). For the transverse moment vs. 

transverse rotation curve, the shifts due to tilt angles β and γ (i.e. mxd1 1zu  in my1 vs. 1zu , and –mxd1 1yu  in mz1 vs. 
1yu

) are much smaller due to the limited range of 1zu  and 
1yu . However, this shift becomes crucial for an accurate 

determination of bending moments, my1 and mz1, at small bending angles. For a small angle, 
1yu  = 0.02 rad, Figure 

4(ii) plots this curve shift divided by mxd1 for varying mx1. Noticeable fluctuations are seen in the FEA validation 

results, indicating that this term is of the order of other second approximations made during model derivation.  

Equation(13), which quantifies the axial displacement ux1, is the constraint equation because of the inherent 

high stiffness in the axial stretching direction with respect to the bending direction. The first two terms in Eq. represent 

the elastic stretching of the beam due to fx1 and mxd1. The stretching due to mxd1 is the well-known trapeze effect, 

which occurs due to the additional axial stresses developed during torsion by unequal contraction of axial fibers 

parallel to but at different distance from the centroidal axis of the beam. The third term in Eq. (13), that is dependent 

only on transverse displacements due to bending represents the shortening of the projection of the beam on the X-axis 

due to the geometric arc length conservation. The fourth and the fifth terms represent additional kinematic relation 

between the bending displacements and axial displacement ux1. This kinematic behavior is shown in Figure 4(iii). 

Essentially due to the tilt, the parabola in the ux1 vs. uy1 plot gets shift vertically as well as horizontally. The fourth 

term in Eq. (13), which is dependent on both displacements and loads, fx1 and mxd1, represents a variation in the amount 

of shortening of the projection of the beam on the X-axis as fx1 and mxd1 change the shape of a bent beam by producing 

additional bending moments. From a different point of view, this term quantifies the softening of the X direction 

stiffness of a deformed (i.e. bent) beam with respect to a straight beam. Since this term is non-zero only in the presence 

of both loads and displacements, it is an elastokinematic effect. It should be noted that tilt angles β and γ have no 

significant impact on the axial stiffness. 
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Equation (14) parametrically quantifies the dependence of the twist θxd1 on the axial and torsional loads, fx1 

and mxd1, and transverse bending displacements. Similar to Eq.(13), elastic, kinematic/geometric and elastokinematic 

terms are present. The only difference is that the trapeze effect can only vary stiffness rather than produce an 

independent twist displacement as in the case of Eq. (13). Tilt angle γ gives rise to an additional kinematic dependence 

of twist θxd1 on bending displacements. This relation is verified using FEA in Figure 4(iv). It is interesting that tilt 

angle β does not affect twist θxd1, but not surprising because the sequential definition of the Euler angles introduces a 

lack of symmetry between beta and gamma in the formulation. Because of the mathematical similarity with Eq. (13), 

Eq.(14) is also referred to as a constraint equation in spite of a relatively low stiffness in the twisting direction.  

Equation (15) represents the total strain energy stored in the beam in the presence of end-displacements, ux1 

and θxd1. The first, second, and third terms are really functions of displacements, but are written in terms of axial and 

torsional loads, fx1 and mxd1, for convenience and compactness of representation. Terms associated with [H2], [H3] and 

[H7] correspond to purely kinematic effect, and hence have no contribution to the strain energy. However, the strain 

energy due to the elastokinematic effects is captured via the terms with quadratic powers of fx1 and mxd1. Since β and 

γ shows up in load-stiffening effect in bending and kinematic stretching and twisting, all of which are non-elastic 

effects, these angles have no effect on the strain energy.  

Therefore, with Eqs.(12) -(15), even if the beam is tilted, the SBCM can still be expressed in the global co-

ordinate frame X-Y-Z rather than tilted co-ordinate frame XT-YT-ZT. It should be noted that if the tilt in the spatial 

beam flexure also has a rotational misalignment of α about the X axis, the SBCM can be easily modified to be 

expressed in the global co-ordinate frame by replacing the bending displacements 
1 1 1 1,  ,   and y z y zu u u u   by 

   1 1cos siny zu u  ,    1 1cos sinz yu u  ,    1 1cos siny zu u    and    1 1cos sinz yu u    and the 

bending loads ,  ,   and 
y1 z1 y1 z1

f f m m  by    cos sin 
y1 z1

f f ,    cos sin 
z1 y1

f f ,    cos sin 
y1 y1

m m  

and    cos sin 
z1 y1

m m .  

The primary change in the SBCM due to the addition X rotation α is that the beam characteristics [H] matrices 

for the global co-ordinate frame in this case needs to be calculated from the beam characteristics [H] matrices in Eqs. 

(12) -(15) as 
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   

 

   

   

   

   

       

   for 1,..,7

c 0 s 0

0 c 0 s
where    

s 0 c 0

0 s 0 c

cos ,    sin  

T

iR H R i

R

c s

 

 

 

 

   

   

 
 

 
 
 
  

 (16) 

3. FUNDAMENTAL RELATIONS BETWEEN BEAM CHARACTERISTIC COEFFICIENTS  

We next proceed to generalize the SBCM further by showing that for the structure of SBCM is invariant for 

slender beams2 with variable cross-section and only the [H] matrices change in its numerical value. The main utility 

of such a generalized model is that a closed-form model of any flexure mechanism that uses flexure elements with 

varying cross-sections rather than only simple prismatic beams can be derived without any additional mathematical 

complexity.  

Let the area moment of inertias of a slender beam with a bisymmetrical but otherwise arbitrary cross-section 

that varies along the length be represented by IYY(X) = IZZ(X) = I0ξ(X) where I0 is the cross-section at X=0. Similarly, 

let the area and the torsion constant be   0 1A f X  and   0 2J f X  respectively. Here, it is assumed that ξ(0) = 1 

thus implying that A0 and J0 are the area and torsion constant at X=0 while f1 and f2 are functions of ξ(X). The 

normalization scheme remains the same as Eq.(8), with the exception that I0 is now used in place of I. Using the same 

modeling assumptions and following a PVW procedure analogous to the one outlined in Sec. 2, one may derive the 

following normalized governing equations and natural boundary conditions for this case as 

  

  

0;      

0

y y z

z z y

x u u u

x u u u





    

    

x1 xd1

x1 xd1

f m

f m

 (17) 

2 2

2

2

1 1
;     

2 2

2

x y z

x x

xd z y

x

u u u
k k k

u u
k k k



 



     

    

2

x1 xd1

xd1 xd1 x1

f m

m m f
 (18) 

                                                 
2 A slender beam is defined as a beam, the thickness and width of which are at least 1/20th of its length.  
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 

 

 

 

1 1 1

1 1 1

1 1

1 1

;     

;     

y y z

z z y

z y

y z

u x u u

u x u u

x u u

x u u









    

    

   

  

y1 x1 xd1

z1 x1 xd1

y1 xd1

z1 xd1

f f m

f f m

m m

m m

 (19) 

Here 
xk and k are the linear elastic stretching and twisting stiffness values associated with the beam with varying 

cross-section. 

Given the arbitrary choice of ξ(X), a closed-form solution to this ordinary differential equation with variable 

coefficients (Eq.(17)) is no longer trivial. Nevertheless, the bending direction governing equations in Eq.(17) and 

associated boundary conditions in Eq.(19) remain linear in the transverse loads  ,  ,  ,  and 
y1 z1 y1 z1

f f m m  and 

transverse displacements (
1 1 and y zu u and its derivatives). This implies that the resulting normalized relation 

between the transverse end-loads and end displacement also has to be linear, of the form 

  

 

1

1

1

1

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

; ;            

where  

y

y

z

z

u

u
k x

u

u

k k k k

k k k k
k

k k k k

k k k k



   
      

     
   
     

 
 
 
 
 
 

y1

z1

x1 xd1

z1

y1

f

m
f m

f

m

 

The effective stiffness terms (k’s) will now be some functions of the axial loads fx1 and mxd1, dictated by the 

beam shape ξ(X) and might be difficult or impossible to determine in closed form. Nevertheless, these functions may 

certainly be expanded as a generic infinite series in fx1 and mxd1, 

1

1( , )

0 0 1

1

y

n
yn i i n i i

n i z

z

u

u
k

u

u


 

 

   
      

     
   
     



y1

z1

x1 xd1

z1

y1

f

m
f m

f

m

 (20) 

Similarly, it may be shown that irrespective of the beam shape, the solution to the constraint equations (18) 

will be quadratic in bending displacements 1 1 1 1,  ,   and y z y zu u u u   and therefore may be expanded as 
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1 1

1 1( , )

1 2
0 0 1 1

1 1

T

y y

n
y yn i i n i i

x

n i z zx x

z z

u u

u u
u g

u uk k k

u u




 

 

   
       

        
   
        


2

x1 xd1

x1 xd1

f m
f m  (21) 

1 2

1 1

1 1( , )

0 0 1 1

1 1

2
xd

x

T

y y

n
y yn i i n i i

n i z z

z z

k k k

u u

u u
e

u u

u u

 




 

 

 

   
       

      
   
        



xd1 xd1 x1

x1 xd1

m m f

f m

 (22) 

Here [g(n-i,i)] and [e(n-i,i)] are 4×4 matrices similar to   [k(n-i,i)]. 

Along the same lines, the strain energy for a variable cross-section beam may be shown to be quadratic in 

the transverse displacements
1 1 1 1,  ,   and y z y zu u   , and some unknown function of the loads fx1 and mxd1. This 

expression may be expanded as follows: 

2

1 1

1 1( , )

0 0 1 1

1 1

2

2 2

1

2

x x

T

y y

n
y yn i i n i i

n i z z

z z

v
k k k k

u u

u u
v

u u

u u

 


 

 

  

   
       

      
   
        



2 2 2

xd1 x1 xd1 x1

x1 xd1

m f m f

f m

 (23)

 

The 4×4 matrices in equations (20) - (23),  [k(n-i,i)], [g(n-i,i)],  [e(n-i,i)] and [v(n-i,i)], are constants dependent only 

on the shape of the beam, i.e. ξ(X), but independent of end-loads and end-displacements. Here onwards, these 

coefficients will be referred to as beam characteristic coefficients. 

The first three terms of Eq.(23) represent the energy due to elastic stretching and elastic twisting, and are 

related to first two terms of Eqs. (21) and (22). Although these energy terms should ideally be represented using 

displacement variables, in this case these are expressed in terms of loads for simplicity and compactness of 

representation. The fourth term in Eq. (23) represents the energy due to bending. Ideally this energy term should 

consist of only bending displacements 1 1 1 1,  ,   and y z y zu u   . However, due to geometric nonlinearity, the actual 

beam shape is dependent on the axial loads fx1 and mxd1. As a result, fx1 and mxd1 appear in strain energy due to bending, 

as parameters in the same manner as the beam shape parameter ξ(X) and the beam characteristic coefficients.  
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The PVW for the normalized displacement co-ordinates of 
1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u        and 

normalized loads fx1, fy1, fz1, mxd1, my1 and mz1 is given below [3]. 

 

1 1 1 1

1 1 1

x y z xd

z z y

v u u u

u u u

    

 

   

    

x1 y1 z1 xd1

y1 z1 xd1

f f f m

m m m
 (24) 

The variation of the strain energy is taken, keeping in mind that loads are kept constant while virtual 

displacements are applied. Therefore, the loads fx1 and mxd1 in the strain energy due to bending do not produce δfx1 

and δmxd1. By applying PVW, the portion of the energy due to elastic stretching, twisting and trapeze effect simply 

leads to the elastic stretching and twisting components of ux1 and θxd1. Additionally, PVW also relates [k] matrices of 

the transverse load-displacement relation to the [g], [e] and [v] matrices of the constraint relations and strain energy 

expression as follows: 

 

(0,0) (0,0)

( ,0) ( ,0) ( 1,0)

(0,1) (0,1) (0,0)

7

(0, ) (0, ) (0, 1)

( , )

2                 1,2,3,....

2

2                       2,3,....

a a a

b b b

a b

k v

k v g a

k H v e

k v e b

k





      

             

            

             

   
( , ) ( 1, ) ( , 1)2 2 , , 1,2,3,....a b a b a bv g e a b              

 (25) 

The above relations may be readily verified for the case of a simple spatial beam using known results [3]; 

however, it should be noted that these are valid for any general beam shape, as proven above. 

Next, using the conservation of energy, yet another fundamental relation between the beam characteristic 

coefficients can be found. Since a given set of end-loads fx1, fy1, fz1, mxd1, my1 and mz1 produces a unique set of end-

displacements
1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u   , the resulting strain energy stored in the deformed beam remains the same 

irrespective of the order in which the loading is carried out. Therefore, we consider a case where the loading is 

performed in three steps: (i) Some end-loads ,  ,   and 
y1 z1 y1 z1

f f m m are applied to produce the final bending end-

displacements 
1 1 1 1, , ,  and y z z yu u u u   and some end-displacements 1 1 and x xdu   along X. (ii) While holding the end-

displacements 
1 1 1 1,  ,  ,  and y z z yu u u u  fixed, the end-load fx1 is applied to change the axial displacement from 1 1 to x xu u

. Due to fx1, 1xd   changes to 1xd . The transverse end-loads change to  ,  ,   and 
y1 z1 y1 z1

f f m m  to maintain the transverse 

displacements. (iii) While holding the end-displacements 1 1 1 1,  ,  ,  and y z z yu u u u   and end-load fx1 fixed, end-load 
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mxd1 is applied to change the axial displacement from 1 1 to xd xd  . Due to end-load mxd1, end displacement 1xu changes 

to 1xu as well. Also, with fx1 and mxd1 applied end-loads ,  ,   and 
y1 z1 y1 z1

f f m m will change to ,  ,   and 
y1 z1 y1 z1

f f m m  in 

order to maintain
1 1 1 1,  ,  ,  and y z z yu u u u  . 

The sum of energy added to the beam in these three steps should be equal to the final strain energy given by 

Eq. (23). Energy stored in step 1 is simply obtained by setting fx1 and mxd1=0 in Eq.(23). 

   (0,0)

1 1 1 1 1 1 1 1 1

1

2

T

y y z z y y z zv u u u u v u u u u         (26) 

The axial displacement and rotation at the end of step 1 are given by 

   (0,0)

1 1 1 1 1 1 1 1 1

T

x y y z z y y z zu u u u u g u u u u         (27) 

   (0,0)

1 1 1 1 1 1 1 1 1

T

xd y y z z y y z zu u u u e u u u u          (28) 

Next, assuming a conservative system, the energy added to the beam in step 2 may simply be determined by 

calculating the work done on the system when force fx1 causes the beam end to move from 1 1 to x xu u in the axial 

direction. End-displacement 1xu  can be easily calculated by setting mxd1=0 in Eq.(21). 

   

1

( ,0)

1 1 1 1 1 1 1 1

0

x

x

T

n n

y y z z y y z z

n

u
k

u u u u g u u u u






       

x1

x1

f

f

 (29) 

An integral needs to be carried out since the relation between fx1 and ux1 is nonlinear. However, since inverting 

Eq.(29), which provides displacement in terms of force, is not trivial, determining the work done in this fashion is 

difficult if not impossible. Therefore, instead we choose to determine the complementary energy, which is readily 

derived using Eq.(27) and(29): 

   *

2 1 1

0

.x xv u u d 
x1f

x1 x1
f f  (30) 

This result is then used to calculate the strain energy stored in the beam during step 2 as follows: 
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ff

 The twisting angle 
1xd can be calculated by setting mxd1=0 in Eq.(22). 

1 1

1 1( ,0)
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y y

y yn n
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n z z

z z
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   
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   
        

 x1
f  (31) 

Next, the energy added to the beam in step 3 may simply be determined by calculating the sum of work done 

on the system when moment mxd1 causes the beam end to twist from 1 1 to xd xd  , denoted as  31v
xd1

m , and work 

done when the beam end moves 1 1 to x xu u against constant force fx1, denoted as  32v
xd1

m . The first term, 

 31v
xd1

m , is calculated in the same way as done in step 2. 
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2 2

*
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xd1 xd1 x1
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m m f
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 (32)

  

The second term,  32v
xd1

m , in step 3 is 

   32 1 1

1 1

1 11 ( , )

2
0 1 1 1

1 1

.x xd

T

y y
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        
   
        



x1 x1

2

xd1 x1

x1 xd1

f f

m f
f m

 (33) 

 Therefore the total strain energy in the beam due to the application of fx1, fy1, fz1, mx1, my1 and mz1 resulting 

in end-displacements, 
1 1 1 1 1 1,  ,  ,  ,   and x y z xd y zu u u u u   , calculated using step (i), (ii) and (iii) is given by 
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 (34) 

Comparing Eqs.(23) and (34), we obtain the following relations between the beam characteristic coefficients. 

( ,0) ( 1,0)

(0, ) (0, 1)

( , ) ( 1, ) ( , 1)

1 1
         1,2,3,..  

2

1 1
         b 1,2,3,..  
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1 1
          , 1,2,3,..   
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a a

b b

a b a b a b

a
v g a

a

b
v e

b

b
v g e a b

b





 


        


        


             

 (35) 

Alternatively, the conservation of energy could have also been applied while interchanging steps (ii) and (iii). 

In that case the relations between the beam characteristic coefficients would have been as follows: 

( ,0) ( 1,0)

(0, ) (0, 1)

( , ) ( , 1) ( 1, )

1 1
         1,2,3,..  

2

1 1
         b 1,2,3,..  
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1 1
          , 1,2,3,..   
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a a

b b

a b a b a b

a
v g a

a

b
v e

b

a
v e g a b

a





 


        


        


             

 (36) 

Equations (35) and (36) have to be identical. This implies the following relation must exist between the [e] 

and [g] matrices. 

1 1( , 1) ( 1, )           , 1,2,3,..   a b a be g a b
b a

      
      

 (37) 

Equation (37) physically means that when fx1 and mxd1 are applied together on the spatial beam, the work 

done by fx1 due to the ux displacement produced by mxd1 is equal to the work done by mxd1 due to the θxd1 displacement 

produced by fx1. This is simply a manifestation of Maxwell’s reciprocity theorem. For a uniform thickness spatial 

beam, Eq. (37) is easily verified using reference [3]. 

Using Eqs.(25), (35) and (37), matrices [g(a,b)],  [e(a,b)] and [v(a,b)] can all be expressed in terms of [k(a,b)]. 
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 (38) 

Equation (38) forms the fundamental relations between the beam characteristic coefficients and shows that 

all the beam characteristic coefficients can be easily obtained from the solution of the bending load-displacement 

equation (20) only. Therefore, for any beam shape, as long as it is slender and its cross-section is bisymmetric, one 

only needs to solve the differential equation related to bending, Eq.(17) either analytically or numerically to obtain 

the [H] matrices. Explicit solving of the nonlinear equations in Eq.(18) is no longer required to complete the SBCM. 

The formulation of an initially tilted spatial beam flexure and variable cross-section spatial beam flexure can 

be combined, by noticing that the effect of the initial tilt is purely geometric in nature. As a result, the tilt angles β and 

γ, do not appear in the strain energy expression, Eq.(15). Therefore the load displacement and constraint relation for 

a tilt spatial beam with variable but bisymmetric cross-section can be written as: 
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 (41) 

The corresponding strain energy is: 
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m f m f
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 (42) 

The SBCM given in Eqs. (39) to (42) represent the model of a beam that has arbitrarily varying shape as well 

as small but otherwise arbitrary initial tilts. As will be shown in section 4, this generalized form of SBCM allows a 

closed-form performance characterization of the stiffness and error motion characteristics of flexure mechanisms that 

use bisymmetric spatial beam flexure elements of varying cross-section as a building block. Furthermore, the effect 

of misalignment of the flexure elements can be also be studied in closed-form without transformations from local to 

global co-ordinate frame.  

4. CASE-STUDY: MULTI-LEGGED TABLE FLEXURE MECHANISM  

In this section, using the strain energy of the initially-tilted, slender and bisymmetric but otherwise arbitrarily 

shaped, spatial beam flexure derived in the previous section, the principle of virtual work will be used to formulate 

the parametric closed-form nonlinear load-displacement relations of a multi-legged table flexure mechanism, shown 

in Figure 2. Let the legs be identical in shape and be numbered 1 through n. Also let us assume that the motion stage 

is initially horizontal and at a height L. The location of the ith beam is given by the normalized (with respect to L) co-

ordinates (yi, zi) in the global co-ordinate system X-Y-Z as shown in Figure 2. Also let each leg be tilted with respect 

to X-Y-Z by tilt angles βi and γi in the same sense as shown in section 2. The tilt angles βi and γi are assumed to be 

within -0.1 and 0.1 radians. For simplicity, it is assumed that each of the principle axes of moment of area of the cross-

sections of all the spatial beam flexures align with the global coordinate axis i.e αi =0 . If this was not the case, the 

beam characteristic [H] matrices will need to be modified as per Eq. (16). Although, such a case does not increase the 

overall mathematical complexity, it is not considered here. Finally let the normalized displacement of the motion stage 

be described by ,  ,  ,  ,   and xs ys zs xs ys zsu u u    . 

In the displacement range of interest, the individual translational end-displacements of each beam can be 

approximately expressed in terms of the stage displacement as given in Eq.(43). These relations use second order 

approximations which are based on preliminary FEA experiments of table flexure mechanism with 3 or more legs that 
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show, for normalized planar translation and rotation (uys, uzs, θxs) of 0.1 and 0.1 radians, respectively, the out of plane 

translation uxs and rotations, θys and θzs, are of the order of 0.01. Furthermore the rigidity of the motion stage constrains 

the rotation of all the beams to be equal as shown in Eq.(44). 

   ,

2 2

, ,

;  

1 1
;   

2 2

x i xs i zs xs ys i ys xs zs

y i ys i xs i xs z i zs i xs i xs

u u y z

u u y z u u z y

     

   

    

     
 (43) 

, , ,,  ,  x i xs y i ys z i zs         (44)

  

The truncated strain energy and constraint equations of the tilted, general, spatial beam model, used in this 

case, are given in Eq.(45)-(47). The trapeze effect is dropped here assuming that axial load |fx| for any beam is limited 

to approximately 5 in order to keep a sufficient safety margin from buckling which occurs at fx = π2. Furthermore, 

since the terms containing products of fx1 and mxd1 have small coefficients in comparison to the linear, kinematic and 

elastokinematic terms, they are dropped in this analysis. Finally, the elastokinematic effect in torsion is dropped 

because the torsional stiffness of the stage is dominated by the elastic torsional stiffness and spacing of the beams. 

Overall this model captures the load-displacement relations of the table flexure mechanism by considering the linear 

elastic effect, the nonlinear kinematic in torsional and axial stretching direction and elastokinematic effects in the axial 

stretching directions for the bisymmetric spatial beam flexures with tilts and varying cross-section that are its building 

blocks. 
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 (47) 

The values of fx,i and mxd,i are solved from Eq.(46) and (47), and substituted in the strain energy expression 

given in Eq.(45). The total strain energy, obtained by summing the strain energy for all the beams, is given below in 

terms of the displacements of the rigid motion stage. 
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  (48) 

The principle of Virtual Work given in Eq.(24) is applied to the multi-beam table flexure mechanism next. 

By is a  substituting  and ys zs zs ysu u      the modified expression of PVW becomes  

 
xs ys zs xds

ys ys zs

v u u u    

  

   

  

xs ys zs xds

ys zs xds

f f f m

m m m
 (49) 

where  zs ys  
xds xs ys zs

m m m m  

We recognize that the virtual displacements ,  ,  ,  ,  ,  xs ys zs xds ys zsu u u       are arbitrary quantities and 

their respective coefficients from both sides of Eq.(49) should be identical. Using Eqs.(43), (44) and (48),  the load-

displacement relations can be derived as follows:  
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Equations (50)-(52) express the externally applied loads completely in terms of the displacements of the 

motion stage. This analytical model is valid for any number of beams, any beam spacing, and small (~0.1 radians) but 

arbitrary tilts at each beam, for a displacement range of uys, uzs, θxds within ± 0.1 and uxs, θys, θzs within ±0.01. 

Furthermore, these equations are also valid if instead of using a prismatic spatial beam flexure as legs, some other 

bisymmetric spatial beam flexure with varying cross-section is used. For validation using FEA, a specific case of the 

n-legged table is considered with all the beam flexures perfectly vertical and placed symmetrically about the center 

axis on a circle of radius p×L. This implies the following summations are zero. 

0i i i i

i i i

y z y z      (53) 

Using this relation, the in-plane load displacement relations can be simplified to  

218 66
12

5 25 5

xs xs

ysn u
  

    
 

ys xs zs ys
f f m m  (54) 

218 66
12

5 25 5

xs xs

zsn u
  

    
 

zs xs ys zs
f f m m  (55) 

 2 2

44

6 3
12

5 25

6 6

5 5

zs ys xs

ys zs

nk np p u u

u u


 

     
 

 

xs xs ys zs

ys zs

m f m m

m m
 (56) 



Shiladitya Sen                                            Paper # MD-12-1499                                                  28 

 

Here the summation terms are eliminated using the out-of plane load-displacement relations in Eq.(50) and 

(51) associated with uxs, θys and θzs.  

The in-plane displacement directions and in-plane rotation experience nonlinear stiffening or softening as 

shown in equations (54)-(56). The out-of-plane force fxs produces a load stiffening effect in linearly changes the 

stiffness of in-plane translations, uys and uzs. Although this effect is mathematically linear, it is called a nonlinear effect 

here because it arises from considering nonlinear geometric nature of the problem. This effect is verified for a three 

legged table flexure with p = 2 3 against FEA in Figure 5(i) using BEAM188 element in ANSYS with geometric 

nonlinearities turned on (Command: NLGEOM, ON). The discrepancy between FEA and the SBCM model is less 

than 3% for the given range of displacements. It should be noted that these relations for 3 legged table mechanism is 

consistent with the results provided in reference [14]. 

The in-plane translations, uys and uzs are also effected by out-of-plane moments mys and mzs in the presence 

in in-plane rotation θxs. These error motions are verified against FEA for the same table flexure in Figure 5(ii) and 

(iii). The discrepancy between FEA and the SBCM model in Figure 5(ii) is less than 5% while in Figure 5(iii) the 

discrepancy is 30% for extreme values of the end-displacements. This is because the small effect shown in Figure 

5(iii) is a second order effect and suffers from the second order approximations.  

  

(i) (ii) 
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Figure 5:(i) Load stiffening during in-plane translation along y, (ii) In-plane translation along y due to in-plane 

rotation in the presence of mys, (iii) In-plane translation along y due to in-plane rotation in the presence of mzs, (iv) 

Load stiffening during in-plane rotation due to x 

 

Similar to the in-plane translations, the in-plane rotation θxs also experiences the load-stiffening effect due to 

fxs which is verified in Figure 5(iv) as well as error motions due to in-plane translations and out-of-plane moments as 

verified in Figure 5(iv). In either case the discrepancy between FEA and the SBCM model is less than 5% for the 

given displacement ranges. 

The load-displacement relations for the out-of-plane displacements uxs, θys and θzs, which are typically the 

stiff directions of this mechanism, can also be solved from Eqs. (50)-(51). After using Eq.(53) for simplification, these 

three equations appear as three linearly coupled equations which can be solved using linear algebra. 
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(iv) (iii) 
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Although the out-of-plane motions in Eq. (57) are related to any general loading and general in-plane 

displacement in a highly complicated manner, in the cases when either in-plane rotation is zero ( 0xs  ) or in-plane 

translation is zero ( 0ys zsu u  ), Eq. (57) may be considerably simplified because the denominator a0,i becomes 

constant while a2, a3, and a4 all become zero.  
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Figure 6: Parasitic Error motion in uxs due to uys and θxs 

Validation of error-motions in uxs due to in-plane translation uys and in-plane rotation θxs in the absence of 

out-of-plane loads fxs, mys and mzs for a 3 legged table mechanism is shown in Figure 6. The discrepancy between the 

FEA and the SBCM is less than 4% for the given displacement range. As can be seen in this figure, uxs has a quadratic 

dependence on both in-plane translation uys and uzs as well as on in-plane rotation θxs. The stiffness in uxs, θys and θzs 

is captured in the [kstiff] matrix. This matrix shows that the out-of-plane stiffness drops with uys, uzs and θxs in a quadratic 

manner due to the elastokinematic effect reducing the axial stiffness of each leg of the table flexure.This example 

shows that once a consistent SBCM energy formulation has been derived, the use of energy methods considerably 

reduces the mathematical complexity in the analysis of increasingly sophisticated flexure mechanisms. The above 

procedure is relatively independent of the number of beams chosen or the shapes of the individual beams or the 

parallelism between the beams as long as the strain energy associated with each beam is accounted for correctly. Given 

the closed-form nature of the final expression design insights in terms of how many legs to use, type of legs to use 

and spacing between the legs can be determined in a relative simple manner. 

The limitation of this approach mainly arises from the second order approximations done to derive Eq. (2)-

(5). Since this assumption is suitable when the Euler angles of the deformed beam from the undeformed and untilted 

co-ordinate axes X-Y-Z are within 0.1 radians, the accuracy drops when the tilt angles become large. It is found that 

when tilt angles βi and γi are close to 0.1 radians, the errors in the SBCM load-displacement relations are approximately 

doubled for a translational and angular displacement range of 0.1L and 0.1 radians. 
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5. CONCLUSION 

This paper provides a generalized, closed-form and parametric mathematical model of any spatial beam with 

bisymmetric cross-section that accurately captures the non-linear load-displacement relations of the spatial beam for 

intermediate range of end-displacements. The model, referred to as the spatial beam constraint model (SBCM) not 

only accommodates small initial tilts with respect to a predefined axial direction, but also cross-sectional variations 

of the beam along its length.  

The key contribution of the SBCM is its highly generalized non-linear strain energy and constraint equations 

which enable the use of energy methods, such as the principle of virtual work, in analyzing flexure mechanisms 

subjected to spatial end-loads. In parallel configuration of flexure elements, the SBCM shows its versatility in 

capturing the stiffness and error-motion characteristics in a closed-form for an arbitrary number of flexure elements 

with arbitrary spacing, which makes handling multiple flexure elements relatively easy. With these results, design 

decisions regarding the number of flexure elements to use or the spacing between the flexure elements in the flexure 

mechanism can be taken in an informed and deterministic manner. 
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1. Figure 1: Spatial Beam Flexure, Undeformed and Deformed Configurations 

2. Figure 2: A 3-DoF Spatial Flexure Mechanism 

3. Figure 3: (a) Tilted Spatial Beam deformation (b) Relating the orientation of the XT-YT-ZT co-ordinate frame and 

Xd-Yd-Zd co-ordinate frame 

4. Figure 4: (i) Normalized force fy1 vs normalized displacement uy1 for varying tilt angle β and γ (ii) Normalized 

(mz1-4θz1)/mxd1 vs normalized moment mx1 at θy1=0 and θz1=0.02 radians for varying tilt angle β (iii) Normalized 

displacement ux1 vs normalized displacement uy1 for varying β and γ (iv) Rotational displacement θxd1 vs 

Rotational displacement θy1 for varying γ 

5. Figure 5: (i) Load stiffening during in-plane translation along y, (ii) In-plane translation along y due to in-plane 

rotation in the presence of mys, (iii) In-plane translation along y due to in-plane rotation in the presence of mzs, 

(iv) Load stiffening during in-plane rotation due to x 

6. Figure 6: Parasitic Error motion in uxs due to uys and θxs 

 

 

 

 

 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  35 

 

 

Figure1.eps 

  

X
Z

Y L

Rigid Body 1
Lateral

Surface Rigid

Body 2

FXL

FYL

MZL

MYL

MXL

FZL



Shiladitya Sen                                            Paper # MD-12-1499                                                  36 

 

 

Figure2.eps 

  

Ground

Beam

Flexure

Y

Z

X

Top View

L

Motion

Stage

uys

uzs
•xs

X

Z
Y



Shiladitya Sen                                            Paper # MD-12-1499                                                  37 

 

Pd

-φ-β

ψ+γ 

ΘXd

dRn

Warping of 

the plane is 

not shown

P

P’

-β
γ 

XU

YU

ZU

X

Z

Y

XT

ZT

YT

After 

deformation 

Undeformed 

tilted beam 

Xd

Zd

Yd

Xd

Zd

Yd

X

Z

Y

(a)

(b)

dUY + γdX 

dUZ - βdX 

dUX + dX 

 

figure3.eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  38 

 

 

Figure4(i).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  39 

 

 

figure4(ii).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  40 

 

 

figure4(iii).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  41 

 

 

figure4(iv).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  42 

 

 

figure5(i).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  43 

 

 

figure5(ii).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  44 

 

 

figure5(iii).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  45 

 

 

figure5(iv).eps 

  



Shiladitya Sen                                            Paper # MD-12-1499                                                  46 

 

 

figure6.tiff 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


