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A Closed-Form Nonlinear Model
for the Constraint Characteristics
of Symmetric Spatial Beams
The constraint-based design of flexure mechanisms requires a qualitative and quantita-
tive understanding of the constraint characteristics of flexure elements that serve as con-
straints. This paper presents the constraint characterization of a uniform and symmetric
cross-section, slender, spatial beam—a basic flexure element commonly used in three-
dimensional flexure mechanisms. The constraint characteristics of interest, namely stiff-
ness and error motions, are determined from the nonlinear load–displacement relations
at the beam end. Appropriate assumptions are made while formulating the strain and
strain energy expressions for the spatial beam to retain relevant geometric nonlinearities.
Using the principle of virtual work, nonlinear beam governing equations are derived and
subsequently solved for general end loads. The resulting nonlinear load–displacement
relations capture the constraint characteristics of the spatial beam in a compact, closed-
form, and parametric manner. This constraint model is shown to be accurate using non-
linear finite element analysis, within a load and displacement range of practical interest.
The utility of this model lies in the physical and analytical insight that it offers into the
constraint behavior of a spatial beam flexure, its use in design and optimization of 3D
flexure mechanism geometries, and its elucidation of fundamental performance tradeoffs
in flexure mechanism design. [DOI: 10.1115/1.4023157]
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1 Introduction and Background

Flexure mechanisms provide guided motion via elastic deforma-
tion and are used in a variety of applications that demand high preci-
sion, minimal assembly, long operating life, and/or design simplicity
[1–4]. One of the many approaches employed in the synthesis of
flexure mechanisms is constraint-based design [3]. In this approach,
a flexure element or module is treated as a constraint, and flexure
mechanism synthesis is addressed as an exercise in creating an
appropriate geometric arrangement of rigid bodies interconnected by
constraints to satisfy desired mobility requirements. This geometric
arrangement may be created via geometric [3–5] or analytical [6]
techniques. The advantages of constraint-based design include its
ability to handle spatial geometries and the physical insight that it
offers into the synthesis process. However, while this approach is
effective in generating conceptual designs, a more comprehensive
assessment of performance and associated tradeoffs in the resulting
flexure mechanisms requires greater qualitative and quantitative
understanding of the constraint characteristics of the flexure elements
that serve as constraints in the design.

One of the most basic flexure elements used in constraint-based
design is the spatial beam flexure (Fig. 1) [6–8]. Due to its slen-
derness in the Y and Z directions, the stiffness values associated
with bending in the XY and XZ planes and torsion about the X
axis are relatively low. On the other hand, the translational stiff-
ness along the X axis is relatively high. Given this contrast in
stiffness, this beam serves as a constraint in terms of its end-
displacements with respect to a reference ground—it constrains
motion along the UXL translation (degree of constraint (DoC)),
and allows motion along the UYL and UZL translations and HXL,
HYL, and HZL rotations (degrees of freedom(DoF)).

While the benefits of flexure elements as constraints include
their lack of friction and backlash, their reliance on elastic defor-
mation to produce motion also results in several deviations from
ideal constraint behavior [4,8]. For example, in case of the beam
flexure, transverse displacements in the UYL, UZL, HXL, and HYL

DoF directions produce an error motion in the UXL DoC direction.
A tensile force in this DoC direction, produces stiffening in the
DoF directions. Furthermore, stiffness in this DoC direction
reduces with increasing displacements in the DoF directions.

These deviations of a beam flexure from ideal constraint behavior
have a direct influence on the motion performance of any flexure
mechanism that employs beam flexures as constraints. Figure 2 illus-
trates a simple 3D flexure mechanism that comprises a rigid Motion
Stage connected to ground via three beam flexures. These beam flex-
ures are geometrically arranged such that the three out-of-plane
motions of the Motion Stage are constrained, while in-plane motions
are allowed. Given the inherent nature of beam flexures, it may be
qualitatively observed that the in-plane motions of the stage lead to
undesired error motions in the out-of-plane directions due to the arc-
length conservation of each beam flexure. Furthermore, the out-of-
plane stiffness and load bearing capacity reduces with increasing in-
plane motions. Also, the presence of large out-of-plane loads alters
the in-plane stiffness and therefore range of motion.

In order to mathematically quantify these performance metrics
of the flexure mechanism (motion range, load bearing capacity,
stiffness, and error motions), it is essential to have a mathematical
model of the constraint behavior of the constituent beam flexures.
Previous analytical and experimental results have shown that geo-
metric nonlinearities strongly influence the constraint behavior of
beam flexures, especially when the DoF displacements are of the
order of 10% of the beam-length [4,8–11]. These nonlinearities
make the analytical modeling of the spatial beam flexure as well
as the resulting flexure mechanism nontrivial. Although numerical
methods such as nonlinear finite element analysis (FEA) may be
used to obtain accurate results, they offer little parametric design
insight.
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To address this need, this paper presents a closed-form, para-
metric, analytical model that captures the relevant nonlinearities
in the end load–displacement relations for a uniform and symmet-
ric cross-section2, slender3, spatial beam flexure. The resulting
beam constraint model, in turn, enables deterministic analysis and
optimization of more complex flexure mechanisms, helps identify
their performance limits and tradeoffs, and better informs
constraint-based synthesis of flexure mechanisms.

The spatial beam flexure has been analyzed and studied exten-
sively in the structural mechanics literature, as discussed in
Sec. 2. This paper does not develop any new theories or formula-
tions for beam mechanics; instead, the goal is to start with an
existing beam mechanics formulation, carefully review every
assumption and approximation that is made, and determine
which ones to include so that relevant nonlinearities are captured
(Sec. 3); and based on this, derive a new closed-form constraint
model that is accurate over a practical range of loads and displace-
ments (Secs. 4 and 5). The term “closed-form” here implies math-
ematical expressions that are free of infinite series, continued
fractions, integrals, and limits. The accuracy of this model is vali-
dated using extensive finite elements analysis in Sec. 6. Contribu-
tions and on-going work are summarized in Sec. 7.

2 Background and Prior Art

Several mechanics formulations have been developed in the past
to model slender, spatial beams with generalized loading. Each
formulation captures certain physical components of the beam’s
deformation while ignoring others, depending on the desired model-
ing accuracy. Starting from this assumed deformation, additional
approximations are made in the subsequent derivation of strain, strain
energy, and governing differential equations. The extent of all these

assumptions and approximations ultimately determines what physical
effects and nonlinearities are captured in a particular spatial beam
model.

The well-known analytical formulation by Euler [14] assumes that
“plane cross-sections remain plane and perpendicular to the neutral
axis after deformation” as a slender beam bends in a plane. Shear de-
formation, out-of-plane warping, and in-plane distortions of the
beam cross-section are neglected. With these deformation assump-
tions, several planar beam models have been developed with varying
levels of approximations and accuracy [15]. This deformation
assumption has been shown to be fairly accurate for spatial beams as
well and may be used as the basis for developing strain and strain
energy expressions [16]. In addition to dropping higher order terms
in strain, if curvature expression is completely linearized and load-
equilibrium is applied in the undeformed state, this leads to linear
and completely decoupled governing differential equations that can
be solved analytically. The resulting simplistic relations between
end-loads and end-displacements fail to capture key nonlinear cou-
pling effects between the bending, torsional, and axial directions
[17]. These include load-stiffening in the transverse bending direc-
tions in the presence of axial loads, kinematic and elastokinematic
components in the axial displacement due to transverse bending dis-
placements, coupling between the bending directions in the presence
of a torsional moment, kinematic, and elastokinematic components
of the twisting angle in the presence of bending displacements, elas-
tic coupling between axial and torsional directions, and elastokine-
matic coupling between the axial and torsional directions in the
presence of bending displacements. As a consequence, the linear
model for the spatial beam is accurate only for small bending dis-
placements of the order of the thickness of the beam, or in the ab-
sence of torsional and axial loads.

However, if second order terms are retained in the strain expres-
sion, beam curvature is not linearized, and load-equilibrium is
applied in the deformed state of the beam, one obtains nonlinear
and coupled governing differential equations that capture all the
above effects over large ranges of deformations and loads [16].
Solving the nonlinear governing equations for a planar beam
requires the use of elliptic integrals [18] and for a spatial beam, sub-
jected to pure bending loads, involves an infinite series of elliptic
integrals [16]. Solutions based on elliptic integrals, in turn, require
a numerical look-up table to obtain end-displacements for a set of
given spatial end-loads. Alternatively, numerical integration can be
employed to solve these nonlinear equations. Such approaches offer
little design insight and are equivalent to the use of FEA in their
suitability for design, evaluation, and optimization. A possible ad-
aptation of Frisch-Fay’s beam formulation is the 3D pseudo-rigid
body model (PRBM) [19] that has been recently reported. This
PRBM attempts to model a spatial beam as two rigid beams con-
nected by a global torsional spring that offers torsional stiffness
along three orthogonal directions. The lengths of the rigid links as
well as the three stiffness values are constant and chosen to mini-
mize the position error at the free end of the beam model with
respect to a numerical solution of Frisch-Fay’s beam formulation.
While this PRBM is accurate in capturing the displacement of the

Fig. 1 Spatial beam flexure—undeformed and deformed

Fig. 2 A 3 DOF patial flexure mechanism

2Uniform implies a non-varying cross- section along the beam length. Symmetric
implies equal moments of area of the beam cross-section about the Y and Z axes.

3Slender generally implies a length to thickness ratio greater than 20 [12,13].
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beam over a large range of deformation, it is valid only for a spe-
cific loading condition and not for generalized end-loads in the six
independent directions. It also does not capture fundamental elasto-
kinematic effects that lead to a nonlinear stiffness variation in the
axial and torsional directions with increasing transverse bending
displacements. Furthermore, from the perspective of constraint-
based design, it reduces a flexure element with 5 DoF to a rigid-
link arrangement with only three rotational DoF.

All the formulations discussed so far neglect the deformation
associated with shearing of cross-sections due to transverse forces,
the in-plane distortion of cross-section, and the out-of-plane warp-
ing of cross-sections. Shearing of cross-sections due to transverse
forces in short beams is captured by Timoshenko’s beam theory,
which also analytically shows the insignificance of this deforma-
tion component in slender beams [12]. However, out-of-plane
warping has been analytically shown to exist in the presence
of torsional loads [12,20]. Slender beam formulations that con-
sider cross-sectional distortion and warping in the presence of
combined bending, torsional, axial loads were developed by
DaSilva [10] and Hodges and Dowell [11] for applications in
helicopter rotor blade dynamics. Although these formulations
were approximated to the second and third order, respectively,
their mathematical complexity and nonlinearity prevented closed
form load–displacement relations at the beam end.

A large body of work on beam mechanics has also been
developed using the Cosserat rod theory [21], which is capable of
considering the various geometric nonlinearities for bending, tor-
sional, and axial loads. Using this theory, the helical solution of
spatial beams under certain torsional and bending loads was ana-
lyzed [22]. Recent development has further generalized this
theory by using nonlinear constitutive relations as well as shear
and extensional effects [23–25]. However, like the Euler formula-
tion previously, Cosserat theory does not consider in-plane distor-
tion or out-of-plane warping of cross-sections. Moreover, given
the mathematical complexity of this formulation, solutions have
to be obtained via numerical techniques.

Thus, existing beam formulations and models present a tradeoff
between accuracy and mathematical complexity. For the case of
planar beams, there exist models that provide a compromise
between these two choices. For example, the beam column theory
[26] is based on the Euler’s deformation assumption, retains
second order terms in strain, applies load-equilibrium in the
deformed configuration, but linearizes the curvature. This yields
closed-form, parametric results and is valid for an intermediate
range of transverse bending displacements (�10% of beam
length). This formulation has been used as the basis for further
approximations and generalization in the beam constraint model
(BCM), which captures load-stiffening, kinematic, and elastokine-
matic nonlinearities in planar beams [15]. However, a similar
model for end load–displacement relations of a spatial beam that

accurately captures relevant nonlinear effects but at the same time
is closed-form, parametric, and generalized is not found in the
existing literature, thus providing the motivation for this work. A
recent attempt with a similar motivation modeled the spatial beam
via two decoupled planar BCMs for the two bending planes [27].
However, this model fails to capture several critical nonlinearities
such as the coupling between the two bending directions in the
presence of a torsional load and the kinematic and elastokinematic
components of twisting angle in the presence of bending displace-
ments. This highlights the need for a systematic derivation that
builds up from first principles and recognizes all approximations
and assumptions made in arriving at a final model.

3 Nonlinear Strain Formulation

In order to determine the nonlinear strain in a slender spatial beam
with any general cross-section and general end-loading, the first step
is to mathematically characterize its spatial deformation. The beam
deformation may be completely defined in terms of five deformation
components associated with each cross-sectional plane of the beam
that is perpendicular to the beam centroidal axis prior to deforma-
tion: (i) translation and rotation of this cross-section to remain plane
and perpendicular to deformed centroidal axis, (ii) additional rota-
tion of the deformed cross-sections from the previous state with
respect to the centroidal axis, (iii) in-plane distortion of the cross-
section, (iv) in-plane dilation/contraction of the cross-section, and
(v) out-of-plane warping of the cross-section.

A sub-set of these deformations is assumed here, along the lines
of previous analyses. Deformation (i) corresponds to the previ-
ously stated Euler’s assumption and is central to beam bending.
Deformation (ii) is associated with shear deformation in the plane
of bending and was captured by Timoshenko and Goodier [12] in
his exact solution of cantilever beams subjected to a transverse
end force. In this analysis, the angle about the Z axis between the
deformed centroidal axis and the cross-sectional plane normal was
shown to be approximately (TY/L)2 times the slope of the neutral
axis, where TY is the thickness of the beam along Y axis. Since
(TY/L)2 is of the order of 10�3 or smaller for slender beams, this
component of deformation is negligible and can be safely ignored.
The in-plane distortion (iii) is associated with torsion of the beam.
St. Venant formulated the exact solution for slender beams with
any general cross-section in pure torsion and demonstrated that
the in-plane distortion is exactly zero for a compatible torsional
load distribution at the end surface [12,20]. For slender beams
under combined end-loads, this deformation can be nonzero but is
still negligible [10,11]. In the absence of any loads on the
lateral surfaces of the beam, the dilation or contraction (iv) of the
cross-section arises solely due to Poisson’s effect in the Y and Z
directions. Although this component is included in the analysis, it
ultimately proves to be inconsequential, as shown later. Finally,

Fig. 3 Spatial kinematics of beam deformation
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even though out-of-plane cross-sectional warping (v) has been
shown to be exactly zero for a circular cross-section beam under
pure torsion, it does exist in a general cross-section beam and
affects the torsional constant [10–12,20], and is therefore included
in this analysis.

Figure 3 illustrates a slender beam with a general cross-section
that is uniform along its length subjected to general end-loading.
Only the deformation component (i) is shown; in-plane dilation/
contraction (iv) and out-plane warping (v), while included in the
analysis, are not shown for simplicity of illustration.

Consider the X–Y–Z coordinate frame and a cross-section
plane at distance X from the beam-root and normal to the centroi-
dal axis of the beam before deformation, as shown in Fig. 3. Point
P (X, 0, 0) denotes the centroid of this cross-section plane. The
first step in deformation is when this entire cross-section translates
and rotates as a rigid plane. Point P translates to P0 (XþUX, UY,
UZ) by undergoing three mutually perpendicular translations and
P0 lies on the deformed centroidal axis of the beam. A new Xd

axis is defined along the tangent to this deformed centroidal axis
at location P0 and is therefore normal to the deformed cross-
section plane. The rotation of the cross-section as it translates
from P to P0 can be captured using three Euler angles a, b, and
HXd. The last of these angles will be referred to as the twisting
angle in this paper, but it should be noted that, in general, the
choice of Euler angles is not unique.

Thus, the six general displacements UX, UY, UZ, a, b, and
HXd completely define a deformed coordinate frame Xd–Yd–Zd

that varies with the coordinate X. Yd and Zd are simply the
local coordinate axes of a cross-section plane in the deformed
frame. Next, the out-of-plane warping is estimated to be k � jXd ,
where k is a warping function dependent on only the local
cross-sectional coordinates Yd and Zd and independent of coor-
dinate X. jXd is the rate of twisting along the deformed centroi-
dal axis and will be defined in terms of the derivative of the six
general displacements in the following paragraphs. It should be
noted that since warping would disappear if the beam was
reduced to a line, k can be set to zero along the centroidal axis
without any loss of generality.

With the beam deformation thus completely defined, we next
proceed to determine the Green’s strain measure, eij, [20] at
any general point with coordinate position (X, Y, Z) before
deformation.

d~Rd � d~Rd � d~R0 � d~R0

¼ 2 dX dY dZf g

eXX eXY eXZ

eYX eYY eYZ

eZX eZY eZZ

2
6664

3
7775

dX

dY

dZ

8>>><
>>>:

9>>>=
>>>;

(1)

Here ~R0 and ~Rd are the position vectors of this point before and
after deformation. In the special case when the deformed point is
on the neutral axis of the beam, its position vector is denoted by
~Rn, the derivative of which is shown in Fig. 3. Using this, the final
expression for nonlinear strain based on the above assumed defor-
mation, without any further approximations, may be derived to be

eXX ¼
1

2

�
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;
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djXd

dRn

� �
þ kjXdjZd � ZdjXdð Þ
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dZd
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djXd

dRn

� �
þ �kjXdjYd þ YdjXdð Þ (2)

where,
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HþxdDYZDY � UþþZ UþY DY � UþþY UþZ UþYð Þ2

DYZD2
Y

;
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where; the superscriptþ refers to derivative with respect to Rn; and
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D
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Y þ dU2
Z

q
; c Hxdð Þ ¼D cos Hxdð Þ; s Hxdð Þ ¼D sin Hxdð Þ

(3)

Next, this nonlinear strain can be simplified without much loss
of accuracy when the transverse displacements and rotations are
limited to 0.1 L and 0.1, respectively. In this range, terms that are
more than two orders of magnitude smaller than the primary term

in a given expression become insignificant and are dropped. This
is referred to as the second order approximation in the rest of this
paper, and leads to less than 1% cumulative approximation error
in any given expression over the displacement range of interest.

031003-4 / Vol. 135, MARCH 2013 Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 04/09/2013 Terms of Use: http://asme.org/terms



Furthermore, dRn, dYd, and dZd may be equated to dX, dY, and
dZ, respectively, within this second order approximation. Based
on these approximations, three of the above strain components
may be simplified as follows:

eXX � U0X þ
1

2
U
02
Y þ

1

2
U
02
Z � YjZd þ ZjYd þ

1

2
j2

Xd Y2 þ Z2
� �

(4)

cXY � jXd Y � YW½ � where YW ¼D
dk
dZ

(5)

cXZ � jXd Z � ZW½ � where ZW ¼D
dk
dY

(6)

jXd, jYd, and jZd that are defined in expression (3) may be fur-
ther simplified using the second order approximation, as follows:

jXd � H0Xd � U00ZU0Y ; jYd � sin HXdð ÞU00Y � cos HXdð ÞU00Z;

jZd � cos HXdð ÞU00Y þ sin HXdð ÞU00Z (7)

It is evident that jXd captures the rate of change of twist angle
H0Xd along the beam length, while correcting for a kinematic con-
tribution from transverse displacements. The asymmetry between
the Y and Z displacements in this expression is simply a result of
the specific choice of Euler angles employed in defining the beam
deformation. Since U00Y and U00Z are the linearized curvature of
the beam in the XY and XZ planes, respectively, the latter two rela-
tions in Eq. (7) imply that, jYd and jZd are representative of curva-
tures of the beam in the XdYd and XdZd planes, respectively, which
agrees with the physical understanding of the deformed geometry.
The significance of Eq. (7) is that while it partially linearizes the
three curvature expressions, which is critical to reducing mathe-
matical complexity and ultimately enabling closed-form results, it
still captures the coupling between the torsional and bending
directions. Full linearization of curvatures at this stage would lead
to complete decoupling between the torsional and two bending
directions, which is an over-simplification as discussed earlier.

The first three terms in the axial strain, given by Eq. (4), collec-
tively represent the elastic extension in the axial direction, cor-
rected for the kinematic effect of rotation due to bending. This
captures the nonlinearity associated with beam arc-length conser-
vation. The remaining terms depend on jXd, jYd, and jZd, which
arise from the combined effect of bending and torsion and depend
only on X, as discussed above. Although the last of these three
terms is significantly smaller than the others, it is retained because
it is the only remaining term in the absence of bending and axial
loads. Under this condition, it captures the trapeze effect of elastic
coupling between the axial and torsional directions. It is notewor-
thy that the contribution of cross-sectional warping in the eXX

strain is negligible in the displacement range of interest, therefore
does not appear in the simplified eXX expression (4). The shear
strains given in Eqs. (5) and (6) depend on the torsion rate jXd and
warping function k.

The simplified nonlinear strain expressions given by
Eqs. (4)–(6) are in agreement with Hodges and Dowell [11] and
DaSilva [10]. Strain components eYY and eZZ are associated with
in-plane contraction and arise due to Poisson’s effect in the
absence of any direct Y and Z direction forces on the beam’s
lateral surfaces. While non-negligible, they prove to be inconse-
quential as seen in the next section and are therefore not simplified
further. The strain component cYZ is associated with in-plane dis-
tortion and can be shown to be four orders of magnitude smaller
than cXY and cXZ. This component can therefore be neglected,
which is consistent with the original assumption of ignoring the
in-plane distortion.

Thus, a careful choice of deformation components, use of
Green’s strain measure, partial linearization of curvatures, and the
second order approximation in the strain components, all help
capture the relevant physical effects and nonlinearities in a slender

beam over an intermediate displacement range, while limiting the
mathematical complexity of the strain formulation.

4 Nonlinear Strain Energy and Beam Governing

Differential Equations

As the first step in deriving the beam governing equation using
energy methods, the strain energy for the spatial beam flexure is
expressed below by assuming linear material properties.

V ¼ E

2

ð
vol

e2
xxdAdX þ G

2

ð
vol

c2
xy þ c2

xz

	 

dAdX (8)

Here E and G are the elastic modulus and shear modulus,
respectively, while A is the cross-sectional area. Due to the slen-
derness of the beam, the variation of stresses rYY and rZZ is close
to zero. However, since there are no externally applied stresses on
the lateral surfaces of the beam, rYY and rZZ remain zero through-
out the beam. Therefore, the eYY and eZZ strain components do not
contribute to the strain energy.

There are two components of the strain energy: the first integral
above is the strain energy due to axial strain that arises from trans-
verse bending and axial extension, and the second term represents
the energy due to the shear strains that arise due to torsion. This
strain energy expression may be expanded using the strain expres-
sions from Eqs. (4)–(6).
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� �
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8

ð
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j2
Xd Y2 þ Z2
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dAdX

þ G

2

ð
vol

j2
Xd Y � YWð Þ2þ Z � ZWð Þ2
n o

dAdX

¼D I1 þ I2 þ I3 þ I4 þ I5 þ I6 þ I7 (9)

The seven individual integrals in V are denoted by I1–I7, in the
order that they are listed. Of these, the integrals I2 and I3 are iden-
tically zero by the definition of the centroidal axis. For a slender
beam with twisting angle HXd limited to 60.1, it may be shown
that integral I6 is at least four orders of magnitude smaller than in-
tegral I1, and is therefore dropped. Next, the strain energy expres-
sion is simplified by recognizing that the beam curvatures, given
in Eq. (7), are only dependent on the axial coordinate X. Thus,
each volume integral can be decomposed into a double integral
over the cross-section and a single integral over X.

V ¼ EA

2

ðL

0

�U0X
� �2

dX þ EI

2

ðL

0

U002Y þ U002Z

� �
dX

þ EI

ðL

0

�U0X
� �

j2
XddX þ GJ

2

ðL

0

j2
XddX

where �U0X ¼
D

U0X þ
1

2
U02Y þ

1

2
U02Z

� �
(10)

The first integral I1 above describes energy associated with
axial extension. Through U0Y and U0Z , it also captures the geomet-
ric coupling between the bending and axial directions. The second

Journal of Mechanical Design MARCH 2013, Vol. 135 / 031003-5

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 04/09/2013 Terms of Use: http://asme.org/terms



term, I4, captures the strain energy associated with bending. The
third term, I5, captures the coupling between the torsion and axial
extension directions. Finally, the last term I7 captures the energy
solely from torsion. In the last step of deriving Eq. (10), a sym-
metric beam cross-section is assumed, which implies that the two
principal bending moments of area (IYY and IZZ) are identical and
equal to I. Due to this symmetry, the polar moment of area is
equal to 2I. The torsion constant J is, in general, different from
the polar moment of area due to warping [12,13], as shown below.ð

A

Y2dA ¼
ð

A

Z2dA ¼D I;

ð
A

YZdA ¼ 0ð
A

Y2 þ Z2
� �

dA ¼ 2I;

ð
A

Y � YWð Þ2þ Z � ZWð Þ2
n o

dA ¼D J

(11)

Once the total strain energy for the spatial beam has been
obtained, the principle of virtual work (PVW) [20] may be applied
to generate the beam differential equations and boundary condi-
tions. According to the PVW, the virtual work done by external
forces over a set of geometrically compatible but otherwise arbi-
trary “virtual” displacements is equal to the change in the strain
energy due to these “virtual” displacements

dW ¼ dV (12)

UX;UY ;UZ;HXd;U
0
Y ; and U0Z may be chosen as the six general-

ized coordinates which, along with their boundary conditions,
completely define the deformation and strain energy of the beam.
The variation of the beam strain energy expression (10) with
respect to these generalized coordinates is given by

dV ¼ dI1 þ dI4 þ dI5 þ dI7 (13)

where

dI1 ¼ EA �U0X dUX þ U0YdUY þ U0ZdUZ

� �� ���L
0
�EA

ðL

0

�U00XdUXdX

� EA

ðL

0

�U0XU0Y
� �0

dUYdX � EA

ðL

0

�U0XU0Z
� �0

dUZdX

dI4 ¼ EI U00YdU0Y þ U00ZdU0Z � U000Y dUY � U000Z dUZ

� ���L
0

þ EI

ðL

0

Uiv
Y dUY þ Uiv

Z dUZ

� �
dX

dI5 ¼ EI j2
Xd dUX þ U0YdUY þ U0ZdUZ

� �� ���L
0
�EI

ðL

0

j2
Xd

� �0
dUXdX

� EI

ðL

0

j2
XdU0Y

� �0
dUYdX � EI

ðL

0

j2
XdU0Z

� �0
dUZdX

þ 2EI
h

�U0XjXddHXd � �U0XjXd U0YdU0Z þ U00ZdUY

� �
þ �U0XjXdU0Y
� �0

dUZ

i���L
0
� 2EI

� ðL

0

n
�U0XjXdU0Y
� �00

dUZ

� �U0XjXdU00Z
� �0

dUY

o
dX

�
� 2EI

ðL

0

jXd
�U0X

� �0
dHXddX

dI7 ¼ GJ jXddHXd � jXd U0YdU0Z þ U00ZdUY

� �
þ jXdU0Y
� �0

dUZ

n oh i���L
0

� GJ

ðL

0

jXdU0Y
� �00

dUZ � jXdU00Z
� �0

dUY

n o
dX

� �

� GJ

ðL

0

j0XddHXddX

This variation of the strain energy is expressed in terms of the
six generalized virtual displacements dUX; dUY ; dUZ; dHXd; dU0Y ;
and dU0Z (all of which are variables in the X coordinate), and their

boundary values at the fixed end, which are all identically equal to
zero, and the free end, which are defined to be dUXL; dUYL;
dUZL; dHXdL; dU0YL, and dU0ZL.

Next, the virtual work done by external loads FXL, FYL, FZL,
MXL, MYL, and MZL may be conveniently expressed as

dW ¼ FXLdUXL þ FYLdUYL þ FZLdUZL þMXLdHXL

þMYLdHYL þMZLdHZL (14)

where dUXL; dUYL; dUZL; dHXL; dHYL; and dHZL represent a
slightly different set of six independent virtual displacements at
the beam end in the respective directions of the six external loads.

Applying PVW, the variation of strain energy is equated to vir-
tual work. Next, to derive the load–displacement relations, the six
virtual end-displacements in Eq. (14) have to be expressed in
terms of the previous set of six virtual end-displacements that are
used in the variation of the strain energy in Eq. (13). This would
allow coefficients of the same virtual end-displacements on
both sides of Eq. (12) to be equated. Specifically, this requires
expressing virtual rotations dHXL; dHYL; and dHZL as functions
of dUXL; dUYL; dUZL; dHXdL; dU0YL, and dU0ZL. Since virtual rota-
tions can be chosen to be arbitrarily small, they can be represented
as vectors. Therefore, the virtual rotations at the beam end may be
expressed as variations of the corresponding Euler angles (Fig. 2)

dHXLîþ dHYLĵþ dHZLk̂

¼ � daĵ
��
L
þ cos að Þk̂ � sin að Þî
� �

db
��
L

þ 1þ U0X
1þ �U0X

îþ U0Y
1þ �U0X

ĵþ U0Z
1þ �U0X

k̂

� �
dHXd

����
L

(15)

where da ¼ � dU0Z
1þ U0X

þ U0ZdU0X
1þ U0Xð Þ2

and

db ¼ dU0Y

1þ U0X þ
1

2
U02Z

�
U0Y dU0X þ U0ZdU0Z
� �

1þ U0X þ
1

2
U02Z

� �2

For the range of end displacements considered, �U0XL;U
0
XL;U

0
YL;

and U0ZL are of the order of 10�3, 10�2, 10�1, and 10�1, respec-
tively. Therefore, second order approximations are made to sim-
plify Eq. (15) to yield

dHXL � dHXdL � U0ZLdU0YL þ U0ZLU0YL dU0XL þ U0ZLdU0ZL

� �
dHYL � �dU0ZL þ U0ZLdU0XL þ U0YLdHXdL

dHZL � dU0YL � U0YL dU0XL þ U0ZLdU0ZL

� �
þ U0ZLdHXdL (16)

Using Eq. (16), the left hand side of PVW in Eq. (12) can be
expressed in terms of dUXL; dUYL; dUZL; dHXdL; dU0XL; dU0YL;
and dU0ZL. The only remaining dependent displacement variable
now is dU0XL. Although its dependence on the other virtual
displacements is not known at this stage, we know that it is mathe-
matically independent of dUXL. Therefore, the coefficients of
dUXL and dUX on both sides of Eq. (12) can be respectively com-
pared and equated.

EA �U0X þ EIj2
Xd

� ���
L
¼ FXL; and EA �U0X þ EIj2

Xd

� �0¼ 0

These two relations imply that

EA �U0X þ EIj2
Xd ¼ constant ¼ FXL (17)

This relation may now be used to derive the geometric depend-
ence of U0XL on the other displacement variables. Since @rYY=@Y
and @rYZ=@Z are approximately zero due to the absence of lateral
forces and in-plane distortion, respectively, @sXY=@X turns out to
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be zero from the elemental equilibrium condition in the Y
direction

@sYX

@X
þ @rYY

@Y
þ @rYZ

@Z
¼ 0) @sYX

@X
¼ 0 (18)

This result, along with Eq. (5), implies that jXd remains con-
stant with X. This, along with Eq. (17), implies that �U0X remains
constant with X. This knowledge, along with the definition of �U0X
in Eq. (10), yields the following relation:

dU0X ¼ �U0YdU0Y � U0ZdU0Z (19)

The value of dU0XL is now substituted back in Eq. (16), which
reduces to

dHXL ¼ dHXdL � U0ZLdU0YL

dHYL ¼ �dU0ZL � U0YLU0ZLdU0YL þ U0YLdHXdL

dHZL ¼ dU0YL þ U0ZLdHXdL (20)

This allows one to express all the terms on the right and left
hand sides of Eq. (12) using the same set of six virtual end-
displacements. Now, the respective coefficients of all the virtual
displacements on both sides of this equation are compared and
equated.

Comparing the coefficients of dHXdL and dHXd , we get

GJ 1þ 2EI

GJ
�U0X

� �
jXd

� �����
L

¼ MXdL and

1þ 2EI

GJ
�U0X

� �
jXd

� �0
¼ 0

where MXdL ¼D MXL þ U0YLMYL þ U0ZLMZL

) jXd ¼ H0Xd � U00ZU0Y
� �

¼ constant ¼ MXdL

GJ
1þ 2EI

GJ
�U0X

� ��1

(21)

Moment MXdL is simply the equivalent torsional moment
expressed along the deformed centroidal axis at the free end of the
beam. Equations (17) and (21) can now be solved simultaneously
for �U0X and HXd. Since these two quantities are of the order of
10�2 and 10�1, respectively, second order approximations are
made in arriving at the following two simplified relations.

U0XL þ
1

2
U02YL þ

1

2
U02ZL �

FXL

EA
� I

A
�M

2
XdL

G2J2
(22)

H0Xd � U00ZU0Y �
MXdL

GJ
� 2IMXdLFXL

G2J2A
(23)

The above two equations are the governing differential
equations associated with extension and torsion, respectively.
Equation (22) clearly captures beam arc-length conservation,
which leads geometric coupling between the axial and two bend-
ing directions. Additionally, it also captures the weak coupling
between axial and torsional directions, also known as the trapeze
effect [28]. This coupling is also evident in the torsion Eq. (23),
which additionally captures the geometric dependence of twisting
angle on the two bending displacements.

Equating the coefficients of the remaining virtual displace-
ments, dUYL; dUY ; dUZL; dUZ; dU0YL; and dU0ZL, two more govern-
ing differential equations associated with bending in the XY and
XZ planes are obtained, along with four natural boundary condi-
tions at the beam end.

EIUiv
Y � FXLU00Y þMXdLU000Z ¼ 0;

EIUiv
Z � FXLU00Z �MXdLU000Y ¼ 0 (24)

FYL ¼ FXLU0YL � EIU000YL �MXdLU00ZL

FZL ¼ FXLU0ZL � EIU000ZL þMXdLU00YL

MYL ¼ �EIU00ZL þMXdLU0YL

1þ U02ZL

� �
MZL ¼ EIU00YL þMXdLU0ZL ) MZL � EIU00YL

þMXdLU0ZL (25)

Equation (24) captures the stiffening effect of axial force on the
bending displacements and the coupling between the two bending
directions due to the axial moment. The final approximation in the
natural boundary condition, although not necessary, is made to
maintain consistency with previous second order approximations.
The beam governing differential Eqs. (22)–(24) derived here are
in agreement with previously derived nonlinear beam models
[10,11] that contain more terms and are therefore mathematically
more complex. When subjected to the same assumptions and
second order approximations that have been made here, these pre-
vious models reduce to the results presented here. However, we
have taken a more basic approach of deriving the governing equa-
tions from first principles, recognizing every assumption and
approximation made in the process, and highlighting the physical
implications of these mathematical steps to avoid accidental elim-
ination of relevant nonlinear effects.

Although capturing the various nonlinear coupling effects ren-
ders the governing equations of extension and torsion to be non-
linear, the bending equations are still linear and coupled in UY and
UZ. This allows Eq. (24), along with associated boundary condi-
tions (25), to be solved using linear algebra [29] and then the
results can be substituted in Eqs. (22) and (23) to solve for UX and
hXd, which provide the two geometric constraint conditions.
The results may also be substituted in the strain energy term.
This procedure is employed in Sec. 5 to obtain closed-form load–
displacement relations, geometric constraint conditions, and strain
energy expression for the slender, symmetric, spatial beam in
terms of it end-displacements and end-loads.

5 End Load–Displacement Relations for Symmetric

Spatial Beam

At this point in the analysis, all the loads and displacements are
normalized per the following scheme to make the equations and
results compact

mz1 ¼D
MZLL

EI
; my1 ¼D

MYLL

EI
; mxd1 ¼D

MXdLL

EI
;

f z1 ¼
D FZLL2

EI
; f y1 ¼

D FYLL2

EI
; f x1 ¼

D FXLL2

EI
;

v ¼D VL

EI
; uy ¼

D UY

L
; uz ¼

D UZ

L
; uy1 ¼

D UYL

L
;

uz1 ¼
D UZL

L
; x ¼D X

L
; hxd ¼

D
HXd; hxd1 ¼

D
HXdL

Based on this, the beam governing differential Eqs. (22)–(24),
can be normalized as follows:

uiv
y � f x1u00y þmxd1u000z ¼ 0; uiv

z � f x1u00z �mxd1u000y ¼ 0 (26)

u0x1 þ
1

2
u02y1 þ

1

2
u02z1 �

f x1

k33

� 2m2
xd1

k33k2
44

(27)
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h0xd � u00z u0y

n o
� mxd1

k44

� 2mxd1f x1

k33k2
44

(28)

where,

k33 ¼D
12L2

T2
Y

; k44 ¼D
GJ

EI
; mxd1 ¼D mx1 þ u0y1my1 þ u0z1mz1

The solution of Eq. (26) leads to relations between the end-
loads and end-displacements by employing the following normal-
ized geometric and natural boundary conditions obtained from
Eq. (25)

f y1 ¼ f x1u0y1 � u000y1 �mxd1u00z1; f z1 ¼ f x1u0z1 � u000z1 þmxd1u00y1

my1 ¼ �u00z1 þmxd1u0y1; mz1 ¼ u00y1 þmxd1u0z1

uy 0ð Þ ¼ 0; uz 0ð Þ ¼ 0; u0y 0ð Þ ¼ 0; u0z 0ð Þ ¼ 0

uy1 ¼D uy 1ð Þ; uz1 ¼D uz 1ð Þ; u0y1 ¼
D

u0y 1ð Þ; u0z1 ¼
D

u0z 1ð Þ
(29)

The end load–displacement relations are of the following form,
where each element in the 4� 4 stiffness matrix is a transcenden-
tal function of the end loads fx1 and mxd1.

f y1 mz1 f z1 my1

� �T¼ K f x1;mxd1ð Þ½ � uy1 u0y1 uz1 �u0z1

� �T

(30)

To express this result in a form that is mathematically concise
and provides insight into the geometric effects and nonlinearities
that are relevant to constraint characterization, we carry out a
Taylor series expansion of each stiffness element in terms of the
axial and torsional loads, fx1 and mxd1 and drop third and higher
power terms.

f y1 mz1 f z1 my1

� �T ¼ H1½ � uy1 u0y1 uz1 �u0z1

� �T

� 2f x1H2 þmxd1 2H3 þ H7ð Þ½ �

� uy1 u0y1 uz1 �u0z1

� �T

� f 2
x1H4 þmxd1f x1H5 þm2

xd1H6


 �
� uy1 u0y1 uz1 �u0z1

� �Tþ � � �
(31)

where

H1 ¼D

12 �6 0 0

�6 4 0 0

0 0 12 6

0 0 6 4

2
666664

3
777775; H2 ¼D

� 3

5

1

20
0 0

1

20
� 1

15
0 0

0 0 � 3

5
� 1

20

0 0 � 1

20
� 1

15

2
6666666666664

3
7777777777775
;

H3 ¼D
1

4

0 0 0 �2

0 0 �2 �1

0 �2 0 0

�2 �1 0 0

2
666664

3
777775

H4 ¼D

1

700
� 1

1400
0 0

� 1

1400

11

6300
0 0

0 0
1

700

1

1400

0 0
1

1400

11

6300

2
6666666666664

3
7777777777775
;

H5 ¼
D 1

60

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

2
666664

3
777775; H6 ¼

D 1

20

4 �2 0 0

�2 1 0 0

0 0 4 2

0 0 2 1

2
666664

3
777775

H7 ¼D
0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

2
664

3
775

Next, the uy(x) and uz(x) solutions to the bending Eq. (26) are
substituted into Eqs. (27) and (28), which upon integration pro-
vide the solution for the axial extension and twisting, respectively.
Once again, these solutions contain 4� 4 matrices, each nonzero
element of which is a transcendental function of the end loads fx1

and mxd1. A Taylor series expansion of each element, followed by
truncation of higher order terms produces the following two con-
straint relations, expressed in terms of the end displacements and
loads of the beam.

ux1 ¼
f x1

k33

� m2
xd1

k2
44k33

þ uy1 u0y1 uz1 �u0z1

� �
H2½ �

� uy1 u0y1 uz1 �u0z1

� �Tþ uy1 u0y1 uz1 �u0z1

� �
� f x1H4 þ

1

2
mxd1H5

� �
uy1 u0y1 uz1 �u0z1

� �Tþ � � �

(32)

hxd1 ¼
mxd1

k44

� 2mxd1f x1

k33k2
44

þ uy1 u0y1 uz1 �u0z1

� �
H3½ �

� uy1 u0y1 uz1 �u0z1

� �Tþ uy1 u0y1 uz1 �u0z1

� �
� mxd1H6 þ

1

2
f x1H5

� �
uy1 u0y1 uz1 �u0z1

� �Tþ � � �

(33)

The series truncations produce less than 1% loss of accuracy in
each respective relation over an fx1 range of 65 and an mxd1 range
of 60.1, while providing considerable mathematical simplicity
and physical insight. The former represents a typical DoC direc-
tion bearing force, while the latter represents the normalized
moment associated with a rotation of 0.1 along the hx DoF. The
[H1] matrix in relation (31) represents the linear elastic stiffness
associated with the four transverse bending displacements. The
[H2] matrix captures load stiffening in these directions in the
presence of axial load fx1 (Eq. (31)) and a corresponding purely
kinematic contribution of bending displacements to the axial dis-
placement (Eq. (32)). The [H3] and [H7] matrices captures load
stiffening in the bending directions in the presence of torsional
moment mxd1 (Eq. (31)) and reveals a coupling between the two
bending planes in the presence of this moment. Corresponding to
this, the [H3] matrix also captures the purely kinematic contribu-
tion of bending displacements to the twisting angle (Eq. (33)).
Although the [H4], [H5], and [H6] matrices make a negligible con-
tribution in Eq. (31), they capture the important elastokinematic
effects in Eqs. (32) and (33). In the axial direction, [H4] provides
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an additional compliance with respect to axial load fx1 and [H5]
provides an additional compliance with respect to axial moment
mxd1, in the presence of transverse bending displacements. Simi-
larly, in the twisting direction, [H5] provides an additional compli-
ance with respect to axial load fx1 and [H6] provides an additional
compliance with respect to axial moment mxd1, in the presence of
transverse bending displacements. These relations also highlight
the unique status of the twisting rotation hdx1. Based on physical
intuition, this twisting direction appears to be a DoF, like the
transverse displacements uy1; u

0
y1; uz1; and u0z1, because of its low

stiffness. However, mathematically, it behaves more like the ux1

DoC and is dictated by the constraint relation (33), which is analo-
gous to constraint relation (32). The [H1]–[H7] matrices are
dimensionless and valid for any beam size and shape, as long as
the beam is uniform, symmetric, and slender. Therefore, elements
of these matrices are subsequently referred to as the beam charac-
teristic coefficients.

Next, the strain energy expression (10) may be further simpli-
fied using Eqs. (27) and (28), and can be stated as follows after
normalization

v ¼ 1

2

ð1

0

u002y þ u002z

	 

dxþm2

xd1

2k44

þ f 2
x1

2k33

� 2m2
xd1 f x1

k33k2
44

(34)

The uy(x) and uz(x) solutions to the bending Eq. (26) obtained
previously can be substituted above to produce the total strain
energy in terms of end-displacements uy1; u

0
y1; uz1; and u0z1 and

loads mxd1 and fx1 as follows:

v ¼ 1

2
uy1 u0y1 uz1 �u0z1

� �
� H1 þ

f 2
x1

2
H4 þ

mxd1f x1

2
H5 þ

m2
xd1

2
H6

� �

� uy1 u0y1 uz1 �u0z1

� �Tþm2
xd1

2k44

þ f 2
x1

2k33

� 2m2
xd1f x1

k33k2
44

(35)

This strain energy expression allows a designer to treat the
spatial beam as a single lumped entity, with all the relevant nonli-
nearities captured, when analyzing a flexure mechanism consist-
ing of multiple spatial beam flexures using energy methods.
Overall, the transverse load–displacement relations (31), the geo-
metric constraint relations in axial extension (32) and torsion (33),
and the strain energy expression (35), collectively represent a
closed-form, parametric, nonlinear model that captures constraint
characteristics of a slender, symmetric, spatial beam; this model is
subsequently referred to as the spatial-beam constraint model
(spatial-BCM).

6 Validation

The results of the previous section are validated via nonlinear
FEA using ANSYS

TM

. For these simulations, the beam dimensions
were taken to be L¼ 0.1 m and TY¼TZ¼ 0.0025 m, and Young’s
modulus and Poisson’s ratio were assumed to be 210 GPa and 0.3,
respectively. For each beam, 400 BEAM188 elements were used,
with the restrained warping, torsional shear, and large deforma-
tion options turned on. To verify individual elements of [H1],
three of the four displacements among uy1; u

0
y1; uz1; and u0z1 are set

to zero, while the fourth displacement is varied from �0.1 to 0.1.
When axial and torsional loads fx1 and mxd1 are set to zero, the
reaction loads fy1, mz1, fz1, and my1 provide the elements of [H1].
In Fig. 4, each nonzero (i, j) element of [H1] is plotted with
respect to the respective transverse displacement that was varied,
while keeping others zero, for its determination.

The [H2] matrix is obtained by measuring the ux1 displacement
for different values of uy1; u

0
y1; uz1; and u0z1 while setting mxd1

and fx1 to zero, as per Eq. (32). Similarly, the [H3] matrix is

obtained by measuring the hxd1 rotation for different values of
uy1; u

0
y1; uz1; andu0z1 while setting mxd1 and fx1 to zero, as per

Eq. (33). Finally, as per Eq. (31), the [H7] matrix is verified by set-
ting mxd1 and u0z1 to nonzero values and uy1; u

0
y1; uz1, and fx1 to

zero, and measuring mz1. It should be noted that this will also
capture the effect of [H1], which is separated out to obtain [H7].
Nonzero elements of the [H2], [H3], and [H7] matrices are plotted
in Fig. 5. These results show that the elastic bending stiffness cap-
tured by the [H1] matrix, and load-stiffening and kinematic effects
captured by the [H2], [H3], and [H7] in the BCM are accurate to
within 1% with respect to FEA.

Matrices [H4] and [H5] capture the nonlinear elastokinematic
effects in the X direction and are obtained by measuring the ux1

for different values of uy1; u
0
y1; uz1; and u0z1 while setting mxd1¼ 0

or fx1¼ 0, one at a time. This calculation requires subtraction of
the kinematic displacement component associated with [H2],
which has already been validated above. The nonzero elements of
[H4] are plotted in Fig. 6. Because the ux1 displacement is domi-
nated by the kinematic effect given by [H2], the estimate of [H4]
through FEA is affected relatively more by the numerical errors in
FEA, which cause the discrepancy seen in Fig. 6. Nevertheless,
the maximum discrepancy between FEA and BCM results for the
[H4] matrix, which contributes an elastokinematic component to
ux1, is still within 6%.

Next, the nonzero elements of [H5] are plotted in Fig. 7. This
represents a weaker elastokinematic contribution to ux1 compared

Fig. 4 Elastic matrix [H1]

Fig. 5 Kinematic matrices [H2], [H3], and [H7]
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to [H4], and therefore the discrepancy between FEA and BCM is
much greater. Even though the orders of magnitude are compara-
ble, the trends no longer agree. At this point, the second order
assumptions made in the BCM derivation start to become weak,
leading to the observed discrepancy.

The elastokinematic effects captured by the [H5] and [H6]
matrices in Eq. (33) contribute additional compliance in the hx

direction in the presence of transverse bending displacements.
However, these effects are even smaller than those along the X
direction, over the load and displacement range of interest. As a
result, the [H6] matrix is difficult to estimate and validate via
FEA. In physical terms, these effects do not play a significant role
in the constraint characteristics of the spatial beam. Since hx is
a DoF direction, it nominally exhibits a high linear compliance
(1/k44); the small additional compliance due to these elastokine-
matic effects does not make much difference.

Separately, the model was also verified to be accurate when
all six loads are applied simultaneously. For a particular case,
with FXL ¼ 300N; FYL ¼ 40N; FZL ¼ 80N; MXL ¼ 0:1Nm; MYL

¼ 4Nm; MZL ¼ �0:5Nm; chosen such that the resulting dis-
placements are within the relevant range, the discrepancy between
FEA and BCM in predicting the bending displacements
uy1; u

0
y1; uz1; and u0z1 was to found to be less than 2.1% while the

error in predicting ux1 and hx1 was 1.8% and 3.4%, respectively.

7 Conclusion

While several spatial beam models exist, they are either too
trivial to capture the nonlinear effects that influence the constraint
characteristics of spatial beams, or mathematically too complex to
serve the goals of constraint-based flexure design, analysis, and
optimization. In this paper, we employ an existing beam mechan-
ics formulation for a slender, spatial beam, but identify the simpli-
fications possible when the two principal moments of area are
equal (IYY¼ IZZ). Starting from first principles, we carefully make
specific assumptions and approximations that are valid for an in-
termediate range of bending displacements and twisting angle
(normalized values of 60.1), and for normalized axial loads
within 610. This not only allows reduction of the mathematical
complexity to a manageable level but also captures all the relevant
nonlinear effects in a compact, closed-form, parametric manner.
The final model is based on the Euler’s deformation assumption
along with small out-of-plane cross-sectional warping, Green’s
strain measure, second order approximation of strain terms, partial
linearization of curvature expressions, and truncation of higher
power terms in axial and torsional loads.

This results in a new spatial-beam constraint model that com-
prises load–displacement relations in bending directions, geomet-
ric constraint relations in axial and torsional directions, and a
strain energy expression – all in terms of the six end-loads and six
end-displacements. These relations capture all the geometric non-
linearities that affect the constraint characteristics of the beam:
load-stiffening in the bending directions in the presence of an
axial load, coupling between the bending directions in the pres-
ence of a torsional moment, kinematic and elastokinematic com-
ponents in the axial displacement and twisting angle due to
transverse bending displacements, and the trapeze effect coupling
between axial and torsional directions. These are all validated to
be accurate within a few percent using nonlinear FEA over the
above-mentioned displacement and load range of interest, which
is justified by typical material failure limits in flexure mecha-
nisms. The model also reveals an interesting mathematical simi-
larity between the twisting angle and axial displacement, even
though the former is generally recognized as a DoF and the latter
as DoC.

Since no assumption, other than symmetry (i.e., IYY¼ IZZ), is
made for the beam cross-section, this model is applicable to
beams with circular, square, and other regular polygon shaped
cross-sections. When the symmetry of the cross-section is broken
(i.e., IYY= IZZ), the above simplification and resulting closed-
form model is no longer possible. However, certain observations
can be made based on the beam mechanics. It can be shown that
the twist would not only be kinematically dependent on the bend-
ing displacements but also elastically dependent on the bending
loads. This implies the existence of nonzero twists for zero tor-
sional moment, which in turn means that the bending directions
would be coupled even in the absence of a torsional moment. This
would make the beam governing equations in the bending direc-
tion nonlinear and very difficult to solve in a closed-form manner.
However, the primary nonlinear effects (load-stiffening, kine-
matic, and elastokinematic) arising due to the axial force fx1 and
beam arc-length conservation are largely independent of the twist
and therefore would remain the same.

We envision that the qualitative and quantitative understanding
of the constraint characteristics of the spatial beam gained via this
model will facilitate deterministic analysis and optimization of
more complex flexure mechanisms that employ spatial beams,
help identify their performance limits and tradeoffs, and better
inform constraint-based synthesis of flexure mechanisms. To
facilitate this goal, we are currently developing a nonlinear strain
energy formulation that is consistent with the spatial beam model
presented here. This strain energy formulation, when employed
with energy methods, will lead to mathematically efficient deriva-
tion of analytical load–displacement results for flexure mecha-
nisms comprising multiple spatial beam flexures.

Fig. 6 Elastokinematic matrix [H4]

Fig.7 Elastokinematic matrix [H5]
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