
  

LARGE DYNAMIC RANGE NANOPOSITIONING USING ITERATIVE LEARNING CONTROL 
 

 

G. PARMAR
1
, D.B. HIEMSTRA, AND S. AWTAR 

Precision Systems Design Laboratory 
Mechanical Engineering, University of Michigan 

Ann Arbor, MI 48109 
 

 

                                                           
1 Corresponding Author (parmar@umich.edu, 734-239-2928) 

ABSTRACT 
This paper presents the control system design and tracking 

performance of a large range single-axis nanopositioning system 

that is based on a moving magnet actuator and flexure bearing. 

While the physical system is designed to be free of friction and 

backlash, the nonlinearities in the electromagnetic actuator as 

well as the harmonic distortion in the drive amplifier restrict the 

achievable tracking performance for dynamic command 

following. It is shown that linear feedback proves to be 

inadequate due to limitations arising from the low open-loop 

bandwidth of the physical system. For periodic commands, like 

those used in scanning applications, the component of the 

tracking error due to the nonlinearities is deterministic and 

repeats every period. Therefore, an iterative learning controller 

(ILC) is designed and implemented in conjunction with linear 

feedback to reduce this periodic tracking error by more than three 

orders of magnitude. Experimental results demonstrate the 

effectiveness of this ILC in achieving 18nm RMS tracking error 

over 6mm range in response to a 2Hz band-limited triangular 

command. This corresponds to a dynamic range of 10
5
. 

INTRODUCTION 
Nanopositioning is one of the key enabling technologies for 

measurement and manipulation of matter at the molecular scale 

[1]. Because of their nanometric (< 10nm) motion quality 

(accuracy, precision, and resolution), nanopositioning systems are 

employed in various sensitive applications that require relative 

scanning motion between a probe and a substrate. However, one 

of the main drawbacks of currently available nanopositioning 

systems is their small motion range of a few hundred microns per 

axis [2, 3]. Increasing this range to several millimeters will enable 

large-size substrates in several applications such as scanning probe 

microscopy [4], scanning probe lithography [5], and 

nanometrology [6]. 

The ongoing research efforts in the area of large range 

translational nanopositioning systems can be broadly classified 

into three categories. The first category is of positioning systems 

that have friction and backlash in one or more of their physical 

components, such as the bearing or transmission. The motion stage 

in these cases is supported by rolling [7-9] or sliding [10-12] 

guideways. Either direct-drive linear motors [8, 11, 12] or rotary 

motors coupled with lead-screw drives [7, 9, 10, 13] are used for 

actuation. For these systems, linear feedback controllers do not 

offer adequate positioning performance due to the nonlinear and 

parameter-varying characteristics of friction, especially in the 

micro-dynamic regime [14]. Implementation of advanced 

controllers [7, 9, 12] has shown some performance improvements 

over linear feedback.  

To overcome the performance limitations associated with 

friction, another approach has been to mount a small range, high 

motion quality positioning system (fine stage) on top of a large 

range, friction-based traditional motion system (coarse stage) [8, 

10, 11, 13]. The idea is to use the fine stage to compensate for the 

positioning errors of the coarse stage, thereby improving the 

overall positioning performance. The major challenge here lies in 

the control system design to ensure coordination between the 

coarse and fine motion systems [13]. 

Separately, there has been a considerable effort focused on 

positioning systems that are based on non-contact and frictionless 

operation. These systems rely on magnetic [15-17], aerostatic [18-

20], or flexure bearings [2, 21, 22] for motion guidance, and 

generally employ direct-drive electromagnetic actuators. Each of 

these presents unique control design challenges to achieve 

nanometric motion quality. For example, electromagnetic bearings 

and well as actuators suffer from force-stroke nonlinearities [16]. 

Also, the noise and distortion in the actuator driver degrades the 

positioning performance [22]. Air bearings exhibit sustained 

vibrations in both load-bearing as well as motion direction [23, 
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24]. In flexure bearings, poorly damped high frequency poles and 

zeros limits the closed-loop performance [2]. Additionally, they 

require higher actuation effort to overcome the spring stiffness. 

The motion quality of nanopositioning systems is dictated by 

the tracking error, which is the difference between the commanded 

and the measured position. Tracking error may be evaluated for 

either point-to-point positioning commands or for path-following 

commands. Point-to-point positioning is concerned with moving 

the motion stage from one point to another and staying there for 

some finite period of time. Only the final position is relevant and 

the path taken to reach that position is not. On the other hand, in 

the more general case of path-following such as raster scanning, 

the motion stage is moved along a pre-defined trajectory in time 

and space, and position at each point along this trajectory is 

important. Obtaining nanometric tracking performance for such 

dynamic commands is relatively challenging because a linear 

controller may not provide adequate command following and 

disturbance rejection over a desired finite frequency range. While 

many of the above-mentioned references [2, 7-9, 15-17, 19-22] 

have reported large range (> 1mm) and high resolution (< 10nm 

Root Mean Square or RMS) for point-to-point positioning 

commands, only a few have shown nanometric positioning 

performance for dynamic commands over a large motion range 

(Table 1). It should be noted that due to differences in the range, 

frequency content, and type of command trajectory used, it is not 

possible to compare the tracking performances of these systems in 

a consistent manner. 

 In recent work [25], the design, fabrication, and testing of a 

single-axis nanopositioning system employing a flexure bearing 

and moving magnet actuator was presented. Point-to-point 

positioning performance was shown with a lead-lag controller to 

be within 4nm (RMS) over the motion range of 10mm. However, 

nonlinearities associated with the actuator as well as the driver 

resulted in inadequate tracking performance in response to 

dynamic commands. In this paper, advanced controls design and 

implementation is presented to overcome these nonlinearities in 

order to achieve nanometric tracking performance for dynamic 

commands over a large motion range. First, the physical system is 

described along with its open-loop characterization. Next, it is 

shown that a linear feedback controller by itself offers inadequate 

performance. This is because of the limited sensitivity reduction 

that is possible by employing a feedback loop, given actuator 

saturation and low open-loop bandwidth of the system. For 

scanning-type applications, in which the command is a periodic 

signal, the deterministic part of the error, arising due to 

nonlinearities, also repeats every period. This provides the 

motivation to employ iterative learning control (ILC) to reduce the 

repeating portion of the tracking error. Since its inception in early 

eighties, ILC has seen tremendous applications in the fields of 

robotics [26] and motion systems [27, 28]. Some of the 

advantages of ILC include its linear formulation, minimal 

knowledge of plant dynamics, simple design and implementation, 

and that fact that it can be applied to any existing feedback control 

system [26]. A brief introduction to ILC is presented followed by 

the design and implementation of a P-type iterative learning 

controller in conjunction with the existing feedback controller. 

Experimental results are reported that demonstrate more than three 

orders of magnitude reduction in the tracking error while 

following dynamic commands, when compared to the performance 

obtained with a linear feedback controller only.  

TABLE 1. DYNAMIC TRACKING PERFORMANCE IN LARGE RANGE NANOPOSITIONING SYSTEMS 

Reference 
Motion 

Range (mm) 
Bearing 

Actuator / 

Transmission 
Reference Command 

Tracking 

Error (nm) 

Buice et al. [10] 50 Linear guide 

(coarse), flexure 

(fine) 

DC motor with 

leadscrew (coarse), 

PZT (fine) 

2.5mm sine @ 0.01Hz 45 

Choi et al. [11] – Linear guide 

(coarse), air 

bearing (fine) 

Linear motor 

(coarse), voice coil 

(fine) 

20mm/s constant velocity, 

300mm motion range 

±150 

Michellod et al. [13] 70 Flexure (coarse 

and fine) 

Stepper motor with 

leadscrew (coarse), 

PZT (fine) 

10µm, 200Hz Kolmogorov 

signal 

8 (RMS) 

Maeda et al. [20] 10 Air bearing Voice coil ±3mm band-limited 

triangular profile @ 5Hz 

±5 

Zschaeck et al. [12] 200 Linear guide Linear motor 1mm/s constant velocity, 

10mm motion range 

15 (RMS) 

Fukada et al. [22] 1 Flexure Moving magnet 

actuator 

0.125mm/s constant velocity, 

0.5mm motion range 

±50 

Kim et al. [16] 5 Electromagnetic Electromagnetic 2.5mm/s constant velocity, 

5mm motion range 

25 

This Paper 10 Flexure Moving magnet 

actuator 

±3mm band-limited 

triangular profile @ 2Hz 

18 (RMS) 

 



  

PHYSICAL SYSTEM 
The single-axis nanopositioning system used in this work is 

shown in Figure 1. This setup consists of a symmetric double 

parallelogram flexure bearing and a moving magnet actuator 

(MMA). A linear optical encoder (RELM scale, Si-HN-4000 

Read-head, and SIGNUM Interface from Renishaw) with 4nm 

(RMS) resolution is used for position measurement and feedback. 

The physical construction of the system provides frictionless and 

backlash-free motion over a motion range of 10mm. The detailed 

design and fabrication of the experimental setup can be found in 

previous work [25]. A custom-made voltage amplifier (based on 

the MP111 power-OpAmp from Cirrus Logic) with a gain of 5V/V 

and a bandwidth of over 10kHz is used to drive the MMA. The 

control system is implemented on a real-time hardware (DS1103 

from DSpace) equipped with 16-bit DAC. The sampling frequency 

and the loop rate are fixed at 10kHz. 

The open-loop frequency response of this nanopositioning 

system was found experimentally via a broadband FFT-based 

system identification technique. The Matlab function invfreqs was 

used to fit a fifth-order transfer function, P(s), to the open-loop 

frequency response. P(s) is given by 
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 Figure 2 shows the experimentally obtained frequency 

response along with the frequency response of the estimated 

transfer function from the amplifier command to the measured 

position. The open-loop bandwidth (-3dB) is approximately 35Hz. 

The low open-loop bandwidth of the motion system is a 

consequence of the fundamental limitations in the physical design 

of MMA and flexure based motion systems [25]. The damping 

seen in the rigid body mode arises due to eddy currents in the 

MMA back-iron as well as due to the back-electromotive force 

dynamics. 

LINEAR FEEDBACK DESIGN AND LIMITATIONS 
Although the physical system described above is free of 

friction and backlash, the achievable positioning performance is 

still limited by various factors as described below: 

1. Several sources of noise and disturbance that exist in the system 

limit the positioning resolution. This includes position sensor 

noise, actuator driver noise, electronic noise and quantization in 

the real-time control hardware, and mechanical floor vibrations. 

2. The force constant of the MMA is dependent on the moving 

magnet position with respect to the stator (coils and back-iron). 

This force-stroke non-uniformity [25] degrades the tracking 

performance. 

3. The non-linearity in the actuator driver also contributes to the 

tracking error. This nonlinearity shows up as the harmonic 

distortion at multiples of the fundamental excitation frequency in 

the command signal. Figure 3 shows one such measurement of the 

power spectral density of the driver, when the desired output is a 

15V, 2Hz sinusoid. The signal-to-noise ratio, which is a measure 

of the broadband noise, is approximately 120dB. However, the 

total harmonic distortion, defined as the ratio of power in the 

harmonics with respect to the power at the fundamental signal 

frequency, is about -90dB. Since the nonlinearity is less than 

0.01%, it is generally very difficult to model it accurately or 

further reduce it via circuit design. 

The estimated open-loop transfer function, P(s) in Eq. (1), is 

used to design a linear feedback controller C(s) using loop shaping 

techniques. The controller includes an integrator to ensure zero 

steady-state error. After considerable iterations and tuning, the 

following compensator was implemented. 

Linear Optical

Encoder

Moving Magnet

Actuator

Flexure 

Bearing

 

FIGURE 1. SINGLE-AXIS NANOPOSITIONING SYSTEM 

 

FIGURE 2. OPEN-LOOP FREQUENCY RESPONSE 



  

  
  

  

2 4

2 6

3234 147 6 156 4 4 47 10

3000 4595 9 05 10

   


   

s . s . s .
C s

s s s s .
 (2) 

The resulting closed-loop transfer function is given by 
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The frequency response of the closed-loop transfer function in 

Eq.(3), along with the experimentally obtained closed-loop 

frequency response, is shown in Figure 4. The phase margin and 

gain margin for the loop transfer function are 60
o
 and 12dB 

respectively. The closed-loop bandwidth (-3dB) of the system is 

approximately 200Hz. 

In order to evaluate the tracking performance of the linear 

feedback controller, a 3mm, 2Hz sinusoidal signal is applied as the 

command. The resulting tracking error (Figure 5A) is within 

±60µm, which is quite high for nanopositioning. From the power 

spectrum plot of the tracking error, shown in Figure 5C, it is 

evident that the tracking error consists of broadband noise along 

with a component at the command signal frequency, as well as the 

harmonics of the command signal. While the component at 2Hz 

can be attributed to lack of command following, the higher 

frequency harmonics are a consequence of the nonlinearities in the 

actuator and the driver, as mentioned earlier. The feedback 

controller does provide some reduction in the harmonic content as 

compared to tracking in an open-loop setting (see Figure 5D). 

This reduction in the magnitude of the harmonics is a result of 

sensitivity reduction achieved due to feedback, and can be 

predicted by plotting the sensitivity transfer function, S(s), which 

is given by 
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Figure 5B shows the Bode magnitude plot of the sensitivity 

transfer function of the feedback loop. The harmonic component 

at 10Hz, for example, is suppressed by 20dB, corresponding to the 

-20dB magnitude of the sensitivity transfer function. 

To achieve greater reduction of the harmonics, the sensitivity 

transfer function, S(s), would have to be reduced further in the low 

frequency range. However, this can be done only at the cost of 

decreasing the stability robustness. This is a direct consequence of 

the analytic design tradeoff associated with the feedback loop, 

known as the Bode waterbed effect [29]. To further explain this, 

consider the following bounds on the sensitivity and the 

complementary sensitivity transfer functions: 
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where  < 1/2 and k > 0. Then, it can be shown that [29] 
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The closed-loop bandwidth constraint in Eq.(6) results from 

actuator saturation, given the low open-loop plant bandwidth. 

Also, such constraints are necessary to increase robustness against 

unmodeled high frequency plant dynamics. Therefore, from Eq.(7)

, sensitivity reduction at low frequencies can only be achieved by 

increasing the lower bound of the peak of sensitivity function at 

intermediate frequencies, which results in loss of stability 

robustness. This implies that there is a limit to improving the 

tracking performance of the system by employing a feedback loop 

because of the low open-loop bandwidth. 

From Figure 5C, it can be seen that the deterministic part of 

the tracking error (due to the nonlinearities as well as due to lack 
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of command tracking) is relative large compared to the stochastic 

part (due to various sources of noise and disturbance mentioned 

earlier). Moreover, if the command signal is periodic, then the 

deterministic part of the error also repeats every period. Therefore, 

in such cases, iterative learning control could be applied in 

conjunction with feedback in order to reduce the deterministic or 

the repeating portion of the tracking error [26, 30]. This is done by 

modifying the control signal based on learning from the error 

histories obtained during previous iterations. 

ITERATIVE LEARNING CONTROL (ILC) 
The ILC block diagram incorporated with the feedback loop 

in shown in Figure 6. Here, P and C denote the plant and the 

feedback compensator, respectively, of a stable feedback loop. 

yd(t) is a periodic command signal and y(t) is the measured 

response. The objective of ILC is to generate a feedfoward 

command u(t) in order to reduce the tracking error e(t) = yd(t) – 

y(t). The tracking error ej(t) and the ILC input uj(t) are stored in a 

memory for every iteration j. The ILC algorithm then evaluates the 

new input signal, uj+1(t), in an offline manner, to be applied during 

the next iteration. The iteration period can be chosen as the 

command period or any multiple of the command period. This 

arrangement is also known as the serial ILC architecture because 

the ILC input is added to the command before the feedback loop. 

 

FIGURE 5. TRACKING PEFORMANCE WITH FEEDBACK CONTROL (A). POSITION COMMAND AND TRACKING ERROR (B). 
SENSITIVITY TRANSFER FUNCTION OF THE FEEDBACK LOOP (C). POWER SPECTRUM OF THE TRACKING ERROR             

(D). POWER SPECTRUM OF POSITION RESPONSE 
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FIGURE 6.  ITERATIVE LEARNING CONTROL ARCHITECTURE 



  

A first-order classical ILC update law is given as follows [26] 

      1j j ju t Q u t Le t
     (8) 

where L and Q are called the learning filter and robustness filter, 

respectively. The design of these filters determines the 

performance and the robustness of the ILC algorithm as described 

next [30, 31]. 

With the assumption that the feedback loop is stable and 

linear time-invariant, a sufficient condition guaranteeing stability 

and monotonic convergence of the tracking error in successive 

iterations is given by the following standard frequency-domain 

result: 

      1 1Q j L j T j ,             (9) 

where T(s) is the closed-loop transfer function of the feedback 

loop. The error dynamics is given by the following relation 
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Additionally, it can be shown that, given the initial tracking 

error, e0(t), the tracking error finally converges to  
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From Eq.(10), it can be deduced that the learning filter determines 

the rate of convergence of error in successive iterations. 

Specifically, the magnitude of (1 – LT) should be small for fast 

convergence. Since the closed-loop transfer function T is designed 

to have approximately unity magnitude up to a frequency range of 

200Hz (see Figure 4), L is simply chosen as a constant gain  ≤ 1, 

resulting in a P-type learning controller. While higher values of  

leads to aggressive learning, smaller gains makes the learning 

process less sensitive to noise and leads to lower final errors [26]. 

Also, because L is a constant gain, it can be easily tuned online 

while performing experiments. 

 The robustness filter Q is usually chosen to be a low pass 

filter with the bandwidth (ωn) of Q presenting a trade-off between 

performance and robustness.  As seen from Eq.(11), choosing Q as 

unity ensures convergence to zero tracking error. The Nyquist plot 

of Q(1 – LT) for   = 0.3 and Q = 1 is shown in Figure 7. The plot 

goes outside the unit circle at the frequency of about 280Hz, 

thereby violating the monotonic convergence criterion given in 

Eq.(9). Hence, the bandwidth of the Q filter is chosen 

conservatively to be 200Hz. Also plotted in Figure 7 is the 

Nyquist plot of Q(1 – LT) for   = 0.3 and ωn = 200Hz. The curve 

remains within unit circle over the entire frequency range. The Q 

filter is designed as a fifth order Butterworth filter. Moreover, 

since the filtering is done in an offline manner, Q is designed to be 

non-causal, using the filtfilt function in Matlab, to avoid any phase 

lag. 

Figure 8 shows the scheme adopted for the implementation of 

the ILC. The error signal ej-1(t) and the ILC input signal uj-1(t) are 

stored in a memory buffer during the (j-1)
th

 iteration. The buffers 

already contain signal values from previous two iterations as 

shown. During iteration j, these buffers are then used to compute 

the ILC control for (j+1)
th

 iteration according to the following 

modified ILC law: 

      1 2 2j j ju t Q u t Le t  
     (12) 

The resultant ILC control input uj+1(t) is then unbuffered and 

applied to the feedback loop during the (j+1)
th

 iteration. The 

memory buffers contain signal values for 3 iterations in order to 

facilitate non-causal filtering by taking into account the filter 

initial conditions. It should be noted that while the feedback 

computations are done at the sampling rate, the ILC calculation is 

carried out only once during an iteration. 

EXPERIMENTAL RESULTS 
The combined feedback and ILC controller described above 

was applied to the single-axis nanopositioning system. Figure 9 

shows the resulting tracking performance for a 3mm, 2Hz 

sinusoidal command. The learning gain () and robustness filter 

bandwidth (ωn) were set to 0.3 and 150Hz, respectively. Figure 9A 
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FIGURE 9. TRACKING PERFORMANCE WITH COMBINED FEEDBACK AND ILC (A). TRACKING ERROR CONVERGENCE (B). 
POSITION COMMAND AND TRACKING ERROR AFTER 60 ITERATIONS (C). POWER SPECTRUM OF POSITION RESPONSE    
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shows the decrease in the tracking error as a function of the 

iteration number. The RMS of the tracking error is reduced from 

28µm to 15nm in approximately 60 iterations. This corresponds to 

a reduction by a factor of about 1800 in 30 seconds. The tracking 

error at the end of the 60
th

 iteration is plotted in Figure 9B. The 

performance improvement, compared to feedback alone, comes 

from a reduction in the repeating portion of the tracking error at 

the command frequency and its harmonics (Figure 9D). The power 

spectrum of the converged position response, shown in Figure 9C, 

reflects the true dynamic range of the nanopositioning system. 

In a separate experiment, a 3mm, 2Hz band-limited triangular 

waveform was applied as the command. The signal was optimized 

to have a perfectly linear (constant velocity) region within 

±1.5mm while minimizing the power content beyond the first 

three harmonics [32]. The motion speed in the linear region is 

24mm/s. As compared to sinusoids, multi-tone command signals 

are more challenging since they give rise to the intermodulation 

products in addition to the harmonics. In this case, the tracking 

error after 60 iterations (Figure 10A) is reduced to 18nm (RMS). 

The power spectrum of the measured response and the tracking 

error are shown in Figure 10B. 

CONCLUSION 
In this paper, an iterative learning controller is applied to 

improve the tracking performance of a large range single-axis 

nanopositioning system. In case of periodic commands, the 

nonlinearities in the moving magnet actuator as well as in the 

actuator driver produce deterministic and repeating error. While 

linear feedback alone proves to be inadequate, a P-type serial-

architecture learning controller in conjunction with this linear 

feedback is shown to reduce the tracking error by more than three 

orders of magnitude. However, the tracking error is still 4 to 5 

times larger than the sensor resolution. In future, other choices of 

learning filter [30] will be investigated to further improve the 

tracking performance as well as to improve the rate of 

convergence. 
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