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ABSTRACT 
The constraint-based design of flexure mechanisms 

requires a qualitative and quantitative understanding of the 

constraint characteristics of flexure elements that serve as 

constraints. This paper presents the constraint characterization 

of a slender, uniform and symmetric cross-section, spatial 

beam, which is one of the most basic flexure elements used in 

three-dimensional flexure mechanisms. The constraint 

characteristics of interest, namely stiffness and error motions, 

are determined from the non-linear load-displacement relations 

of the beam. Appropriate simplifying assumptions are made in 

deriving these relations so that relevant non-linear effects (load-

stiffening, kinematic, and elastokinematic) are captured in a 

compact, closed-form, and parametric manner. The resulting 

spatial beam constraint model is shown to be accurate, using 

non-linear finite element analysis, within a load and 

displacement range of practical interest. The utility of this 

model lies in the physical and analytical insight that it offers 

into the constraint behavior of a spatial beam flexure, its use in 

3D flexure mechanism geometries, and fundamental 

performance tradeoffs in flexure mechanism design.  

 

1. INTRODUCTION AND BACKGROUND 
Flexure mechanisms are elastically deformable structures 

that are commonly used in machines and instruments to provide 

motion guidance and load bearing [1-3]. One of the many 

approaches employed in the synthesis of flexure mechanisms is 

constraint-based design [4]. In this approach, flexure 

mechanism synthesis is addressed as an exercise in creating the 

appropriate geometric arrangement of rigid bodies 

interconnected by constraints to satisfy certain desired mobility 

requirements on the rigid bodies. One of the strengths of 

constraint-based design is that it is conducive not only to planar 

(2D) geometries but also to spatial (3D) ones. However, while 

this approach is effective in generating conceptual designs, a 

more comprehensive assessment of performance and tradeoffs 

in the resulting flexure mechanism requires a qualitative and 

quantitative understanding of the constraint characteristics of 

the flexure elements that serve as constraints in the design.  
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Fig.1 A 3-DoF Spatial Flexure Mechanism 

It has been previously established that while flexure 

elements are highly desirable as constraints given of their lack 

of friction and backlash, their reliance on elastic deformation to 

produce motion results in several deviations from ideal 

constraint behavior [5, 6]. This is highlighted qualitatively via 

the example of Fig.1, which illustrates a simple 3-D flexure 

mechanism comprising a rigid Motion Stage supported by three 

beam flexures.  

It is evident that that the three beam flexures are arranged 

such that the out-of-plane motions of the Motion Stage are 

constrained, while in-plane motions are allowed. Since the 

nominal stiffness in the three in-plane directions (X, Y, ΘZ) is 

much lower than that of the three out-of-plane directions (ΘX, 

ΘY, Z), it is rational to recognize the former as Degrees of 

Freedom (DoF) and the latter as Degrees of Constraint (DoC). 

While ideally, one would expect zero stiffness and infinite 

motion range in the DoF directions, and infinite stiffness and 
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zero motions in the DoC directions, that is clearly not the case 

here. Given the inherent nature of flexure beams, the following 

observations may be made about the performance of this 

flexure mechanism:  

1. The in-plane motions (DoF) of the stage lead to undesired 

error motions in the out-of-plane (DoC) directions due to the 

arc-length conservation of each beam flexure.  

2. The out-of-plane load bearing capacity (DoC stiffness) 

reduces with increasing in-plane motions (DoF).  

3. The presence of large out-of-plane loads (DoC) alters the in-

plane (DoF) stiffness and therefore range of motion.  

In order to quantify the above performance metrics (motion 

range, load bearing capacity, stiffness, and error motions) and 

associated tradeoffs, it is essential to have a mathematical 

model of the constraint behavior of the individual beams 

employed in this mechanism. Additionally, this model should 

be closed-form and parametric to enable design optimization, 

and simple enough to be used in more complex flexure 

mechanism geometries where performance limitations and 

tradeoffs may not be physically obvious as above.  

While a linear elastic load-displacement model is simple, 

closed-form and parametric, it fails to capture the above 

observations, all of which are consequences of certain non-

linearities in spatial beam mechanics. Several sources of non-

linearities in spatial beam mechanics have been modeled and 

studied in the literature. These include beam arc length 

conservation [5], beam curvature [5, 7], the application of load-

equilibrium in the deformed beam configuration [5, 8, 9], and 

out-of-plane and in-plane distortion of plane cross-sections [8]. 

For long and slender beams with a uniform cross-section, it 

may be rationalized that plane sections remain plane [10, 11], 

normal to the neutral axis, and undistorted within plane even 

after deformation. However, the remaining three sources of 

non-linearities may not be ignored for displacements of the 

order of the beam length. However, retaining all these non-

linearities leads to a mathematically complicated formulation 

that can be only be solved by numerical methods such as Finite 

Element Analysis (FEA). While FEA is highly versatile, 

powerful, and accurate, its main limitation from a design stand-

point is the lack of closed-form parametric results.  

Since most flexure mechanisms operate within a DoF 

motion range such that the constituent beam deformation is less 

than 10% of the beam length, the inclusion of all the above 

non-linearities is not necessary. It may be shown that the beam 

curvature non-linearity is of limited consequence in this motion 

range [5, 6, 8]. However, non-linearities associated with arc-

length conservation and application of load equilibrium in 

deformed configuration certainly play an important role in 

stiffness and error motions for displacements as small as the 

beam thickness and therefore have to be included. Therefore, 

for this 'intermediate' displacement range, relevant to flexure 

mechanism design, the desired goal is to capture only these 

pertinent non-linearities in spatial beam mechanics and ignore 

the rest to allow for a compact, closed-form, and parametric 

model.  

This objective has been accomplished in the past for planar 

(2D) beams via the Beam Constraint Model (BCM) [5]. The 

BCM accurately captures the constraint characteristics of a 

planar beam flexure with generalized end-loads, initial and 

boundary conditions, and beam shape. However, such 

characterization does not exist for spatial beams as yet, which 

provides the motivation for this paper.  

Although spatial beam mechanics has been modeled 

extensively in the past literature [8, 10, 11], we start from the 

first principles, for the sake of clarity and completeness, in 

Section 2 to analytically define the beam deformation. A 

transformation that relates undeformed and deformed 

configurations of the beam via Euler angles is stated. 

Differentiation of this transformation matrix along the 

deformed beam's neutral axis leads to the quantification of 

beam curvature in the two bending planes. This beam 

deformation is employed to derive a non-linear strain 

formulation. All approximations made throughout this process 

to retain or drop any given source of non-linearity are 

highlighted.  

 In Section 3, the strain expression and stress-strain 

constitutive relations are used to apply load equilibrium at an 

arbitrary cross-section along the deformed beam's neutral axis, 

which leads to three governing equations of the spatial beam –  

two for bending and one for twisting.  

To analytically solve these beam governing equations 

simultaneously, a sub-class of uniform cross-section spatial 

beams defined by (Iyy=Izz and Iyz=0)
†
 and referred to as 

symmetric cross-section beams, is considered this point 

onwards. This assumption tends to simplify the beam governing 

differential equations, without a significant loss in the utility of 

the final results. These equations are solved in Section 4 to 

derive relations between the six end-loads and six end-

displacements of the beam. Transcendental expressions in these 

relations are expanded and truncated to retain the most 

significant terms and yield a compact closed-form beam model. 

The design insights allowed by this model in terms of 

constraint characteristics of the spatial beam are discussed. This 

closed-form spatial BCM is verified via non-linear FEA in 

Section 5, and is shown to be within 5% agreement. 

Concluding remarks and plans for future work are presented in 

Section 6.  

 
2. SPATIAL BEAM DEFORMATION AND NON-LINEAR 
STRAIN FORMULATION 

Fig.2 illustrates an initially-straight uniform cross-section 

beam fixed to ground at one end, and subjected to three forces 

FXL, FYL and FZL and three moments MXL, MYL and MZL acting 

at its free end. UXL, UYL and UZL represent the displacements of 

the beam's free end in its deformed configuration. These loads 

and displacements are expressed in the fixed XYZ coordinate 

frame. The beam geometry is specified by its length L, which is 

assumed to be much larger than its thickness, TY and TZ in the Y 

                                                           
† See Section 2 for coordinate axis nomenclature 
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and Z directions respectively. In terms of constraint behavior, it 

is qualitatively evident that this spatial beam flexure imposes 

one DoC along the X axis (axial direction), and allows five 

DoF – translations and rotations along the Y and Z axes 

(transverse directions), and rotation along the X axis (twisting 

direction).  

Fig.2 Spatial Beam Flexure: Undeformed and Deformed 

For a long slender beam subjected to pure bending and 

torsion, symmetry arguments justify the Bernoulli assumption 

that plane sections prior to deformation will remain plane and 

perpendicular to the neutral axis after deformation [12]. Even 

though these symmetry arguments do not apply to cross-

sections close to the beam ends, or in the presence of transverse 

forces, previous studies [12] confirm that the Bernoulli 

assumption is closely maintained as long as transverse 

displacements are within 10% of the beam length.  

A direct consequence of the Bernoulli assumption is that 

shear strain components parallel to the beam axis (γxy and γzx) 

are close to zero. Consequently, stress-strain constitutive 

relations imply that the corresponding shear stress components 

(τyx and τzx) are also small. Further, since the beam side walls 

are free of any loading and since the beam thickness along the 

Y and Z directions is much smaller compared to its length, it 

may be argued that that stress components σσσσyy and σσσσzz also 

remain close to zero over the beam cross-section. Next, we 

recall the Y direction elemental load equilibrium condition 

expressed in terms of stresses:  

0
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
yx yy yz

τ σ τ
   

Since σσσσyy and τyx ≈ 0, the above equation implies that 

0z∂ ∂ ≈
yz

τ . A similar argument made with the Z direction 

stresses leads to 0y∂ ∂ ≈
zy

τ . This implies that the variation of 

τyz along the Y or Z axis of the cross-section is insignificant, 

which in turn implies that the corresponding shear strain γyz 

remains constant within the cross-section plane. Now since γyz 

is zero at the cross-section's centroid, through which the neutral 

axis passes, γyz should remain close to zero throughout the 

cross-section. The final conclusion drawn here is that the in-

plane distortion of a plane cross-section, after deformation, can 

also be ignored for a long slender beam
1
.  

Next, to define the deformed configuration of the beam, a 

second coordinate frame XdYdZd is introduced. While shown 

only at the beam end in Fig.2, such a deformed frame may be 

constructed for any given axial cross-section location of the 

deformed beam. The Xd axis is tangent to the deformed neutral 

axis at the axial location of interest. The Yd and Zd axes define 

the un-distorted cross-sectional plane normal to the neutral axis 

of the deformed beam, and correspond to the Y and Z axes, 

respectively, of the same cross-sectional plane in the 

undeformed beam.  
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Fig.3: Axial Element of a Spatial Beam: Undeformed and 

Deformed 

To obtain a suitable expression for the axial strain, it is 

important to be able to relate the deformed configuration of the 

beam to its undeformed configuration. Also since load 

equilibrium shall be considered in the deformed beam 

configuration while end loads are expressed in the undeformed 

coordinates, a coordinate transformation between the two 

above-defined frames is necessary. Therefore, we introduce a 

coordinate transformation matrix [T] that relates the unit 

vectors ˆˆ ˆ,   and 
d d d
i j k along the deformed coordinate frame 

XdYdZd to the unit vectors ˆˆ ˆ,   and i j k  along the undeformed 

coordinate frame XYZ. Since we would like to state the final 

load-displacement results for the spatial beam in the 

undeformed coordinate frame, it is essential that matrix [T] is 

expressed in term of variables defined in the undeformed 

coordinate frame XYZ.  

In Fig. 3. UX, UY, and UZ – all functions of X – represent 

the displacements along the XYZ frame, of a certain point on 

the neutral axis of the deformed beam that was located at (X, 0, 

                                                           
1 Since there are small but finite strains εyy and εzz resulting from σσσσxx due to the 
Poisson effect, there is indeed some in-plane distortion of the cross-section. In 

thicker beams, this distortion is non-negligible and leads the anti-clastic beam 

curvature [12]. 
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0) on the beam before deformation. To determine [T], let us 

consider a differential beam element, originally at this location, 

in its undeformed (dX) and deformed (dRn) configurations. The 

subscript ‘n’ in dRn denotes the neutral axis. 

The transformation matrix may then be expressed in terms 

of the three Euler angles -α, β and θxd shown in Fig. 3. α is a 

CW rotation about the original Y axis; β is a CCW rotation 

about an intermediate Z axis created after the first rotation; and 

θxd is a CCW rotation about the final Xd axis. Using sine and 

cosine relations, angles α and β are substituted by dUX, dUY, 

dUZ, and dRn, to yield the following expression for [T]:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

c s c s
c

s c s c
s

YZ Y Z

xd Y YZ xd Z xd Y Z xd YZ

xd Y

Y Y Y Y

xd Y YZ xd Z xd Y Z xd YZ

xd Y

Y Y Y Y

U U

U U U U

U U U U

+ +

+ + + +

+ + + +

 
 ∆ 
 Θ ∆ Θ Θ Θ ∆
 − − Θ ∆ − +

∆ ∆ ∆ ∆ 
 Θ ∆ Θ Θ Θ ∆ − − Θ ∆ +
 ∆ ∆ ∆ ∆ 

 

( )

2 2 2

2 2 2

where,  the superscript  refers to derivative with respect to ,

1   ,   1    , 

and       

n

Y Z Y

YZ Y

n n n

n X Y Z

R

dU dU dU

dR dR dR

dR dX dU dU dU

+

     
∆ − − ∆ −     

     

= + + +

≜ ≜  

( ) ( ) ( ) ( )c cos     ;   s sin
xd xd xd xd

Θ Θ Θ Θ≜ ≜  (2) 

Recalling that the transformation matrix [T] varies with the 

location along the neutral axis, its rate of change with Rn gives 

another useful relation. The derivative of [T] with respect to Rn 

may be expressed in the following form:  

[ ] [ ] [ ][ ]
0

0

0

zd yd

zd xd

n

yd xd

d T
T T

dR

κ κ
κ κ κ

κ κ

 −
 = − = 
 − 

 (3) 
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2

where,

xd YZ Y Z Y Y Y Z Y
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2

2

2

2
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sin
        

xd Y YZ xd Z xd Y Z Y

Yd

YZ Y

xd Z Y

YZ Y

xd Y YZ xd Z xd Y Z Y

Zd

YZ Y

xd Z Y

YZ Y

U U U U U

U U

U U U U U

U U

κ

κ

++ ++ + + ++

++ +

++ ++ + + ++

++ +

Θ ∆ − Θ − Θ
=

∆ ∆

Θ
+

∆ ∆

Θ ∆ + Θ + Θ
=

∆ ∆

Θ
−

∆ ∆

 

It may be noted that the skew-symmetric matrix [κ] is 

analogous to the angular velocity matrix [ω] associated with the 

rigid-body rotation transformation [13]. Upon further 

simplification in Section 3, it will become obvious that κYd and 

κZd are related to the beam curvature in the XdYd and XdZd 

planes. 

Next, we move on to determining an expression for the 

axial strain εxx [12]. As argued above, all other components of 

strain are small and of little consequence in a long slender 

beam.   

XX

dR dX

dX
ε

−
=  (4) 

Here dX and dR represent an undeformed and deformed 

differential length fiber, parallel to the beam neutral axis but not 

necessarily on the neutral axis. This undeformed fiber dX is 

taken to be parallel to the undeformed neutral axis at a generic 

location (X, Y, Z), and becomes dR upon deformation. Thus, dR 

is slightly different from the dRn shown in Fig.3. 

The post-deformation location of a point, which was 

located at (X, Y, Z) w.r.t. XYZ frame before deformation, is 

simply obtained by considering the neutral axis displacements 

UX, UY and UZ and the Euler angle rotations of the relevant 

cross-sectional plane. Since in-plane and out-of-plane distortion 

of cross-sectional planes has been ignored, the Yd and Zd 

coordinates of a certain point on a cross-section plane after 

deformation will be the same as the Y and Z coordinates of this 

point before deformation. This knowledge, in conjunction with 

transformation matrix [T], helps express the post-deformation 

coordinates of the point of interest in the XYZ frame. Taking a 

differential of these coordinates helps provide the deformed 

length dR of an initially undeformed fiber dX. Substituting this 

value of dR in Eq.(4) yields: 
2 2

1 1

2 2

X Y Z
XX Zd Yd Zd Yd

dU dU dU
Y Z YZ

dX dX dX
ε κ κ κ κ   = + + − + −   

   
  

( )2 2 2 2 2 2 21 1 1
        

2 2 2
Xd Zd YdY Z Y Zκ κ κ+ + + +  (5) 

The above procedure is standard and a step-by-step 

detailed derivation may be found in previous work [8, 14]. At 

this stage, the slender beam geometry and small transverse 

displacements (~ 0.1L), allow us to make some further 

simplifications. Over this displacement range, κ's, which 

approximately represent the beam curvature, are also be of the 

order of 0.1L. Furthermore, 
Y

U ′ and 
Z

U ′ are of the order of 0.1 

and 
X

U ′ is ~ 0.01. The coordinate variables Y and Z, describing 

the location on the cross-sectional plane, are less than or equal 

to TY and TZ, both of which are at least one order smaller than 

L. Based on these observations,  it may be seen that the last four 

terms in Eq.(5) are at least two orders smaller than the 

remaining terms, and are therefore dropped this point onwards.   

 
3. SPATIAL BEAM GOVERNING EQUATIONS 

The moments at any cross-section along the beam's neutral 

axis is obtained by integrating the force acting on a differential 

area of the cross-section multiplied by its perpendicular 

distance from the axis about which the moment is to be 

considered. The moments about the deformed co-ordinate axes 

Yd and Zd are given below. Since stresses σyy and σzz are 

negligible, the axial stress σxx is simply obtained by multiplying 

the axial strain εxx by elastic modulus E. These integrations are 
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carried out in the displaced configuration of each cross-section. 

However, since it is assumed that the cross-sections do not 

distort either in-plane or out-of-plane, the integrand can be 

considered simply in terms of Y and Z coordinates, with respect 

to the cross-section itself.  

2

0 0

2 2

0

2

0 0

2 2

0

1 1

2 2

1 1

2 2

A A

XX Zd

A

X Y Z

Yd

A A

XX Yd

A

X Y Z

Zd

YE dA E Y dA

dU dU dU
E Z YdA

dX dX dX

ZE dA E Z dA

dU dU dU
E Y ZdA

dX dX dX

ε κ

κ

ε κ

κ

= − =

    
− + + +    

     

= =

    
+ + + −    

     

∫ ∫

∫

∫ ∫

∫

ZD

YD

M

    

M

    

 (6) 

By the definition of neutral axis and the symmetric beam 

cross-section assumption, 

0 0 0

0

A A A

YdA ZdA YZdA= = =∫ ∫ ∫  (7) 

Furthermore since κXd, κYd, and κZd are independent of the 

cross-sectional variables, they can be extracted out of the 

integrals in Eq.(6) to yield the following:. 

2 2

0 0

,       

where,    and   

YY Yd ZZ Zd

A A

YY ZZ

EI EI

I Z dA I Y dA

κ κ= =

= =∫ ∫

YD ZD
M M

 (8) 

It should be noted here that due to the assumption that 

plane sections do not distort and remain perpendicular to the 

neutral axis, the moments of area Iyy and Izz are unaffected by 

the beam deformation. Furthermore, for a symmetric cross-

section beam Iyy = Izz = I. 

Next, the twist in the beam, which occurs in the plane 

perpendicular to the deformed neutral axis,  is dictated by the 

following governing equation [12]: 

( )2 2

0

 

where, 2

XX Xd

A

XX

GI

I Y Z dA I

κ=

= + =∫

XD
M

 (9) 

Eqs.(8) and (9) may be expressed in a matrix equation, true 

for any location along the beam's deformed arc-length:  

1
0 0

1
0 0

1
0 0

xx

Xd

Yd

yy

Zd

zz

GI

EI

EI

κ
κ
κ

 
 
        

=     
    

    
 
  

XD

YD

ZD

M

M

M

 (10) 

This expression highlights the fact that small transverse 

deformations (~ 0.1L), the beam governing equations (two 

bending and one twisting) are essentially decoupled in relating 

moments to curvatures in the XdYdZd co-ordinate frame, at least 

to a second order approximation. However, since the deformed 

directions Xd, Yd and Zd continuously vary along the arc-length 

of the beam's deformed neutral axis, solving these equations is 

non-trivial. Instead, it is prudent to express the κ's and moments 

in the XYZ co-ordinate frame. 

For small transverse displacements, UY and UZ (~ 0.1L), 

their derivatives, UY
+
 and UZ

+
, are of the order 0.1L while as UX 

is of the order 0.01L, its derivative UX
+
 is of the order of 0.01L. 

This implies that the following approximations may be made 

with less than 1% error. 

   ;       ;    X X Y Y Z Z

n n n

dU dU dU dU dU dU

dR dX dR dX dR dX
≈ ≈ ≈  

Using these approximations, matrices [T] and κ's in Eq.(3) 

may be simplified as follows:  

[ ]T ≈  (11) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

c s c c s

s c s s c

Y Z

xd Y xd Z xd xd Y Z xd

xd Y xd Z xd xd Y Z xd

U U

U U U U

U U U Uθ

′ ′ 
 ′ ′ ′ ′− Θ − Θ Θ − Θ + Θ 
 ′ ′ ′ ′Θ − − Θ Θ + Θ   

( ) ( )
( ) ( )

sin cos

cos sin

Xd Xd Z Y

Yd Xd Y Xd Z

Zd Xd Y Xd Z

U U

U U

U U

κ

κ

κ

′ ′′ ′≈ Θ −

′′ ′≈ Θ − Θ

′′ ′′≈ Θ + Θ

 (12) 

The first equation in Eq.(12) shows that the total rate of 

change of twist angle Θ'Xd is not only dependent on the twisting 

moment MZD (via κZd), but also depends on transverse 

displacements. Being dependent on displacements alone rather 

than any loads, the –UY'UZ" is a result of a geometric constraint, 

and should ultimately contribute to a kinematic portion in the 

total twist angle.  

Since UY" and UZ" are the linearized curvature of the beam 

in the XY and XZ planes respectively, the latter two equations in 

Eq.(12) imply that, κXd and κYd are the literalized curvatures of 

the beam in XdYd and XdZd planes, respectively, which agrees 

with the physical understanding of the deformed geometry. 

The moments in the deformed configuration can be related 

to those in the undeformed orientation using the transformation 

matrix [T]. This transformation along with Eq.(12) may be used 

to simplify Eq.(10), to produce the following relation between 

displacements and moments, expressed in the XYZ frame. 

1

2 2 2
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Y Z
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U
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Z

U U
U U

GI GI GI

U
U

EI EI

U U U
U

EI EI EI

′ ′′ ′′ ′Θ = + +

′
′′⇒ = − +

′ ′ ′
′′ = − +

X Y Z

X Z

X Y Z

M M M

M M

M M M

 (13) 

Taking a closer look at the three equations we first observe 

that the second and third equation is independent of ΘXd, and 
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therefore can be solve independent of the first equation. This 

independence from ΘXd occurs even without making the small 

angle approximations, cos(ΘXd) ≈1 and sin(ΘXd) ≈ ΘXd, in the 

expression for  [T] given by Eq.(11). In fact, trigonometric 

identities all ΘXd terms simply drop out on their own. Secondly, 

we see that the second and third equations for bending in the Y 

and Z directions, respectively, are non-symmetrical. This is 

simply because in calculating the transformation matrix [T] 

using Euler angles, the order in which the first two rotations are 

carried out breaks the symmetry between the Y and Z axes. In 

fact, if the first Euler angle rotation is carried out about the Z 

axis then Eq.(13)(ii) has the extra term instead of Eq.(13)(iii). 

But in any case, it can be shown that this nonlinear term in 

Eq.(13)(iii) is two orders of magnitude smaller than the 

remaining terms, for UY, UZ ~ 0.1L and ΘXd ~ 0.1. Therefore, 

this term can be dropped, resulting in:  

Z

Y

Y

Z

U
U

EI EI

U
U

EI EI

′
′′ = − +

′
′′ = −

X Z

X Y

M M

M M
 (14) 

It is noted that all the variables in the above equation are in 

the undeformed coordinate frame even though the load 

equilibrium was carried out in the deformed frame. Taking a 

closer look at these equations, it may be recognized that  

(– UZ'MX + MZ) and (UY'MX – MY) are simply the effective 

bending moments, approximated to the second order, in the Z 

and Y directions, respectively.  

It is noteworthy that with the approximations made so far, 

we have neither dropped all possible coupling and non-linear 

effects as in the case of a linear formulation; nor have we 

included every possible non-linearity such that a closed-form 

solution would be impossible. We have taken a middle path and 

have justified all approximations while doing so, to obtain a 

pair of symmetric, coupled bending equations independent of 

the twisting angle but dependent on the twisting moment. 

Additionally, we have a twisting equation with a strong 

dependence on bending moments as well as displacements.  

 

4. END LOAD – DISPLACEMENT RELATIONS 
MX, MY and MZ at any X location may be determined by 

applying load equilibrium in the deformed beam configuration:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ZL Z YL Y

YL Y

ZL Z

X U U U U

X L X U U

X L X U U

= − − + −

= + − − −

= − − + −

X XL YL ZL

Z ZL YL XL

Y YL ZL XL

M M F F

M M F F

M M F F

 (15) 

The end loads MZL, MYL, FYL, FZL and FXL and the end 

displacements UZL and UYL are shown in Fig.1. At this point in 

the analysis, we proceed to normalize all the loads and 

displacements per the following scheme: 
2

2 2

,    ,    ,    ,

 ,    ,    ,    ,    Y Z

y z

L L L L

EI EI EI EI

L L U U
u u

EI EI L L

≜ ≜ ≜ ≜

≜ ≜ ≜ ≜

ZL YL XL ZL

z1 y1 x1 z1

YL XL

y1 x1

M M M F
m m m f

F F
f f

 

1 1 1 1
,    ,    ,    ,     YL ZL

y z xd Xd xd Xd

U U X
u u x

L L L
θ θΘ Θ≜ ≜ ≜ ≜ ≜  (16) 

It should be noted here that from linear analysis for ΘXd ~ 

0.1, which is the range of twist considered in this paper,  mx1 is 

also of the order of 0.1. Eq.(14) can now be rewritten using 

Eq.(15) and Eq.(16) as: 

( ){ } ( ){ }
( ) ( )

( ){ } ( ){ }
( ) ( )

1 1

1

1 1

1

      1

      1

y z z z z z y y

y y

z y y z z y y y

z z

u u u u u u u u

x u u

u u u u u u u u

x u u

′′ ′ ′ ′= − + − − −

+ + − − −

′′ ′ ′ ′= + − − −

− + − − −

x1 y1 z1

z1 y1 x1

x1 y1 z1

y1 z1 x1

m f f

m f f

m f f

m f f

 (17) 

It can be easily observed that the non-linear terms in 

Eq.(17) are three orders smaller than the dominating bending 

moments since mx1, θxd, uy1, uz1, uy, uz, u'y and u'z are all of order 

0.1 while my1, mz1, fx1, fy1 and fz1 are all of the order 1. 

Dropping these terms results in the following simplification: 

( ) ( )
( ) ( )

1

1

1

1

y z y y

z y z z

u u x u u

u u x u u

′′ ′= − + + − − −

′′ ′= − + − − −

x1 z1 y1 x1

x1 y1 z1 x1

m m f f

m m f f
 (18) 

While other formulations for spatial beams include non-

linear coupling of the bending direction equations [8, 10], our 

assumptions from the previous section lead to a pair of coupled 

but linear differential equations. This coupling arises from the 

twisting moment mx1, which contributes an additional load in 

both bending directions. In the absence of this twisting 

moment, the coupling vanishes, and bi-directional bending of 

the spatial beam becomes equivalent to the bending of two 

independent planar beams.  

Upon double differentiation, Eq.(18) may be expressed as a 

first order ordinary differential matrix equation:  

0 0

1 0 0 0

0 0

0 0 1 0

y y

y y

z z

z z

u u

u u

u u

u u

′′′′ ′′′−    
    ′′ ′′    =    ′′′ ′′′       ′′ ′′    

x1 x1

x1 x1

f m

m f
 (19) 

The four scalar equations represented above can be solved 

by first decoupling them. This may be done via the eigen-

values and eigen-vectors of the square matrix in the above 

equation.  

2 2

E-values:    ,    ,    ,    

1
where,   4 2 2 4

2

λ
= = − = = −

− + −

x1 x1

1 2 3 4

x1 x1 x1 x1 x1

f f
λ λ λ λ λ λ

λ

λ f m m m f≜

  

[ ]E-vector matrix:   

1 1 1 1

Q

 − − − − 
 
 − − − −=  
 
 
  

x1 x1

x1 x1

1 2 3 4

1 2 3 4

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

 21
where,        4

2
 − − ≜

x1 x1 x1
r m m f  
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The eigen-values λ1, λ2, λ3 and λ4 are distinct for non-zero 

fx1 values implying that the equations can be decoupled for fx1 

non-zero [15]
†
. The eigen-vectors are constitute the columns of 

the matrix [Q]. Using these eigen-values and eigen-vectors, the 

solution to Eq.(19) is simply given by:  

[ ]

1 1

2 2

3 3

4 4

1 1 1 1

x x

y

x x

y

x x

z

x x

z

u c e c e

u c e c e
Q

u c e c e

u c e c e

 − − − − ′′′     
     ′′      − − − −= =      ′′′      

     ′′       
  

x1 x1

λ λ1 1

λ λ2 2
x1 x1

λ λ3 3
1 2 3 4

λ λ4 4
1 2 3 4

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

 (20) 

Here c1, c2, c3 and c4 are the constants of integration. From 

these four scalar equation, the general solution for the 

normalized transverse displacements uy and uz are given by:  

1 2 3 4 5 63 3 3 3

1 2 3 4

31 2 4

7 82 2 2 2

1 2 3 4

xx x x

y

xx x x

z

u c e c e c e c e c x c

c ec e c e c e
u c x c

= − − − − + +

= + + + + +

λλ λ λx1 x131 2 4

λλ λ λ31 2 4

f fr r

λ λ λ r λ r

λ λ λ λ

 (21) 

The constants are solved in two steps. First the constants 

c5, c6, c7 and c8 are expressed in terms of c1, c2, c3 and c4 using 

the geometric boundary conditions arising from the spatial 

beam being rigidly fixed at one end:  

( ) ( ) ( ) ( )0 0 0 0 0     
y y z z

u u u u′ ′= = = = ⇒

2 2 2 2

1 2 3 4

5 1

3 3 3 3

1 2 3 46 2

7 3

1 2 3 48 4

2 2 2 2

1 2 3 4

1 1 1 1

1 1 1 1

c c

c c

c c

c c

 
 
 

    
    
    =       − − − −        

 
− − − − 

 

x1 x1

x1 x1

f fr r

λ λ rλ rλ

f fr r

λ λ rλ rλ

λ λ λ λ

λ λ λ λ

 (22) 

The remaining four constants are solved using the free-end 

displacement boundary conditions: 

( ) ( ) ( ) ( )1 1 1 1
1 ,    1 ,    1 ,    1     

y y y z z z z y
u u u u u uθ θ′ ′= = = = − ⇒   

{ } [ ]{ }1 2 3 4 1 1 1 1

TT

y z z y
c c c c C u uθ θ= , where 

[ ]

1

1 1 1 1

1 1 1 1

C

−
 
 
 
 
 
 
 
− − − − 

 
 
 
 

≜

x1 x1

11 12 13 143 3 3 3

1 2 3 4

x1 x1

21 22 23 242 2 2 2

1 2 3 4

31 32 33 342 2 2 2

1 2 3 4

41 42 43 44

1 2 3 4

f fr r
t t t t

λ λ rλ rλ

f fr r
t t t t

λ λ rλ rλ

t t t t
λ λ λ λ

t t t t
λ λ λ λ

                                                            
† The case when fx1 is zero is trivial and is solved separately; however, details 

are not presented here since the final results are found to be consistent with the 

general solution for non-zero fx1. 

( ) ( )1 ,        1e e= + − = −≜ ≜
λ λ1 1

1i 3i 1 2i 3i
t t λ  t t   

We next make use of the natural boundary conditions at the 

free end of the beam. Natural boundary conditions involve 

relations between loads and displacements that occur naturally 

because of the beam governing equation. For the current case, 

these can be determined from the beam governing equations 

(18) applied at the free end of the beam i.e. at x =1. 

( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )

1 1

1 1 1

1 1

1 1 1

y z

y z y

z y

z y z

u u

u u u

u u

u u u

′′ ′= − +

′′′ ′′ ′= − − +

′′ ′= −

′′′ ′′ ′= − +

x1 z1

x1 y1 x1

x1 y1

x1 z1 x1

m m

m f f

m m

m f f

 (23) 

The general solution for uy and uz are given by (21) is 

plugged into the above natural boundary conditions to relate the 

transverse loads fy1, fz1, my1 and mz1 to the transverse 

displacements uy1, uz1, θy1 and θz1 by a stiffness matrix:  

[ ] [ ] [ ][ ][ ] [ ]{ }

1

1

1

1

,    where    

y

z

z

y

u

k k A B C D
u

θ

θ

   
   
   

= +   
   
      

y1

z1

z1

y1

f

m

f

m

≜  (24) 

[ ]

1 1 1 1

A

 
− − − − 

 
 − − 
 

        − + + − + +               
 

− − − −  

≜

x1 x1

x1 x1 x1 x1

x1 x1 x1 x1 x1 x1

f f
r m r m m m

r r

r r λ λ

λ λ r r

rm rm f λm f λm
λ λ

λ λ λ r λ r

 

 

[ ]

0 0 0
0 0 0

0 0 0
0 0 0

   ,      [ ]
0 0 00 0 0

0 0 0
0 0 0

e

e

B D
e

e
−

 
  
   −  
 − 
      

λ

x1λ

x1
fx1

λ
x1

fx1
x1λ

f

m

f

m

≜ ≜   

The above relations show that the transverse end-loads and 

transverse end-displacements are linearly related by a stiffness 

matrix. This is expected because the bending direction beam 

governing equations (18) were also linear in these loads and 

displacements. However, the transverse stiffness matrix does 

include the axial force fx1 and twisting moment mx1. The 

individual stiffness terms, when stated in an explicit form, turn 

out to be very complicated transcendental expressions in fx1 and 

mx1, making it impossible to gauge the influence of these loads 

on the transverse stiffness. Therefore, to gain better insight, we 

carry out the Taylor series expansion of these transcendental 

expressions in terms of fx1 and mx1, as follows:  

[ ]

11 12 15 16

21 22 25 26

51 52 55 56

61 62 65 66

k k k k

k k k k
k

k k k k

k k k k

 
 
 =
 
 
 

 (25) 
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2

2

11 55

2

2

12 21 56 65

2

2

2

2

21 6
12   1

5 5 315

311
               1

700 34

41 1
            6   1

10 10 105

51
            1

1400 3

k k

k k k k

  = = − + + + +   
   

 
− + + + 

 
= = − = − =

  − + + − + +   
   

+ +

x1

x1 x1

x1

x1

x1

x1 x1

x1

x1

m
m f

m
f

m
m f

m
f

⋯ ⋯

⋯ ⋯

⋯ ⋯

2

2

22 66

2

2

6

1 2
4   1

20 15 70

11
                   1

6300 44

k k

 
+ + 

 

  = = − + + + +   
   

 
− + + + 

 

x1

x1 x1

x1

x1

m
m f

m
f

⋯ ⋯

⋯ ⋯

⋯ ⋯

 

15 51 26 62

16 61 25 52

1
0,      

2

1

60

k k k k

k k k k

= = = − = −

= = = = − +

x1

x1 x1 x1

m

m f m ⋯

  

In the stiffness matrix above, the subscripts 1 and 2 are 

related to the two end-displacements, uy1 and θz1, in the XY 

bending plane. Subscripts 5 and 6 are related to the two end-

displacements, uz1 and θy1, in the XZ bending plane. Subscripts 

3 and 4 are reserved for the X direction displacements, ux1 and 

θx1, respectively.  

The above series expansions the transverse direction 

stiffness terms indeed shed more light on the effects of the axial 

load and twisting moment. First , it may be verified that in the 

absence of fx1 and mx1, the stiffness matrix coefficients relating 

uy1 and θz1 to loads fz1 and my1 and those relating uz1 and θy1 to 

loads fy1 and mz1 become zero, showing that the two bending 

directions are uncoupled, and the resulting stiffness matrix is 

same as one obtained from a purely linear analysis [6, 12]. Next 

we find that if mx1 is set to zero the two bending directions are 

still decoupled. Also, in each bending direction, the influence of  

the axial fx1 on transverse stiffness is identical to that seen in 

planar beams [5, 6], i.e. there is a prominent load-stiffening 

component associated with the first power of fx1.  

Thus, it is clear that any coupling between the two bending 

directions arises solely from the twisting moment mx1. The 

displacement range of interest (uy, uz and θXd ~ 0.1) implies that 

the normalized twisting moment mx1 is also of the order of 0.1 

(based on nominal linear twisting stiffness). In comparison, the 

normalized axial force fx1 can be of the order of 1 or greater 

since it is along a DoC (or load bearing) direction.  

Given this magnitude of mx1, it may be seen that its 

contribution in the k11, k12, k22, k55, k56, and k66 terms is less than 

0.5%, and therefore mx1 terms may be dropped altogether in 

these cases. Similarly, the second power and higher terms in 

mx1 may be dropped in k16 and k25 terms as well. However, the 

first power of mx1 that shows up only in the k26, k62, k25, and k52 

terms cannot be ignored, being the sole or most important 

contributor in each of these stiffness terms. In fact, it is these 

latter stiffness terms that give rise to cross-axis coupling 

between the two bending directions. Even though the coupling 

is weak, it captures a behavior that is not identified in a purely 

linear analysis.  

Next, it may be seen that given the larger magnitude of fx1, 

its contribution to the transverse stiffness is stronger. In the 

stiffness terms k11, k12, k22, k55, k56, and k66, the first power in fx1 

represents the load-stiffening effect, identical to that seen in 

planar beams [5, 6]. The second and higher power fx1 terms 

have a negligible contribution over the load and displacement 

range of interest, and can be dropped. However, as shown via 

energy arguments [16], the second power term should be 

retained to maintain consistency with the X direction constraint 

relation. Based on the above rationale for truncating higher 

order terms in the series expansions of expression (25), the final 

simplified form of transverse direction stiffness terms are 

summarized below: 

2

11 55

6 1
12

5 700
k k= ≈ + −

x1 x1
f f  

2

12 21 56 65

2

22 66

1 1
6

10 1400

2 11
4

15 6300

k k k k

k k

= = − = − ≈ − − +

= ≈ + −

x1 x1

x1 x1

f f

f f

 (26)

15 51 26 62

16 61 25 52

1
0,      

2

1

60

k k k k

k k k k

= = = − = −

= = = ≈ −

x1

x1 x1 x1

m

m f m

 

This engineering approximation (truncation error) of the 

transcendental terms in the stiffness matrix produces less that 

1% error, while making the transverse direction load-

displacement relation more insightful and simpler to work with 

for a designer.  

Next, we proceed to determine the X direction load-

displacement relation. The displacement in this direction can be 

split into two parts. The first part is a purely elastic component, 

which is given by the stretching of the beam arc-length due to 

fx1. The second part arises from the geometric constraint of 

beam-arc length conservation, and is captured by the 

integration below:  

( )
1

2 2

0

1

2
y z

u u dx′ ′− +∫  (27) 

Using the solution of uy and uz given by Eq. (21), the above 

integral is carried out. The resulting expression comprises 

highly complicated transcendental functions of fx1 and mx1, 

which are not presented here for the sake of brevity. To allow 

greater design insight, these transcendental expressions are 

expanded in terms of fx1 and mx1. Using engineering 

approximations similar to above, the second and higher powers 

of fx1 and mx1 are truncated, while incurring an error of less 

than 1% over the displacement and load ranges of interest. The 

resulting simplified expression for total axial displacement of 

the beam's end can be stated in the following compact form:  
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1 11 1

1

1 11 133

11 1

11 1

3 1 3 1

5 20 5 20

1 1 1 1

20 15 20 15

1 1 1 1

700 1400 700 1

1 11

1400 6300

TT

z zy y

x

y yz z

TT

zy y

yz z

u uu u
u

k

uu u

θ θθ θ

θθ θ

   − − −         
= + +          

          − − −
      

 −      
+ +      

      −
  

x1

x1 x1

f

f f
1

1

400

1 11

1400 6300

z

y

u

θ

 
   
   

  
  

 

1 111 12 15 16

1 121 22 25 26

1 151 52 55 5633

1 161 62 65 66

11 55 22 66

    ,     where   

3 1 1 11
,         

5 700 15 6300

T

y y

z z

z z

y y

u ug g g g

g g g g

u ug g g gk

g g g g

g g g g

θ θ

θ θ

    
    
    = +                

= ≈ − + = ≈ − +

x1

x1 x1

f

f f

 (28) 

12 21 56 65

15 16 26 26 51 52 61 62

2

33 2

1 1
,

20 1400

0

12

Y

g g g g

g g g g g g g g

L
k

T

= = − = − ≈ −
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The first term in Eq.(28) is a purely elastic term, 

independent of any other displacements. This term represents 

the elastic stretching of the beam's arc-length, with k33 being the 

normalized elastic stiffness. The subsequent matrix in this 

equation is the consequence of beam arc-length conservation 

condition. The first term in the series expansion of the g terms 

is independent of the loads fx1 and mx1. This implies that a 

certain component of the axial displacement is solely dependent 

on the transverse direction DoF displacements, and therefore 

represents a purely kinematic component. Next, the first power 

of fx1 shows in some of the series expansions. This term 

depends both on the X DoC load as well as the transverse DoF 

displacement, and is therefore referred to as the elastokinematic 

term. It is important to include this term in the final simplified 

expressions of g, because it is comparable to the purely elastic 

term for the transverse DoF displacement range of interest. 

Higher power fx1 terms may be dropped given their 

insignificant contribution.  

It is interesting to note that in the series expansion of the g 

terms, no linear dependence on the twisting moment mx1  is 

found. The second and higher powers of mx1 that do show up 

have a negligible impact on the total X displacement, and are, 

therefore, dropped at the truncation step.  

Ultimately, it may be seen that the kinematic and 

elastokinematic terms that are retained in final form of the axial 

displacement, are simply the sum of the respective kinematic 

and elastokinematic terms arising from each bending direction 

(Y and Z). The kinematic component generally dominates the 

axial displacement in terms of magnitude, and dictates the 

parasitic error motion in this DoC direction. But being purely 

kinematic in nature, it does not contribute to the stiffness in this 

DoC direction. On the other hand, the elastokinematic 

component, while small in magnitude, makes an important 

contribution to the axial compliance, and therefore plays an 

important role in DoC characterization.  

Finally, we move on to the twisting of the beam. As a first 

step, the relation between θX and θXd can be determined to be as 

follows [17]:  

1 1 1 1 1 1 1

1 1

2 2
x xd y z xd y z

u uθ θ θ θ θ′ ′≈ − = +  (29) 

The first order differential equation of the twist angle θxd in 

the deformed co-ordinate axis XdYdZd is given in Eq.(13)(i). 

Using the normalization scheme presented earlier, substituting 

the solutions for uy and uz from Eq.(21), and employing the 

relation of Eq.(29), the twist angle at the end of the beam, θx1, 

may be determined in terms of end-loads and remaining end-

displacements. As expected, the result comprises transcendental 

functions of fx1 and mx1. To allow greater design insight and 

mathematical simplicity, these transcendental expressions are 

expanded in terms of fx1 and mx1. Using engineering 

approximations justified over the load and displacement ranges 

of interest, only the first powers of fx1 and mx1 are found to be 

relevant; the rest are truncated, while incurring an error of less 

than 1%. The resulting simplified expression for beam end twist 

angle can be stated in the following compact form: 
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Foremost, it is important to note that unlike the transverse 

DoF directions, where loads were expressed in terms of 

stiffness and displacements, it is mathematically more 

convenient to express the twisting DoF rotation in terms of the 

twisting moment and the transverse DoF displacements. This is 

somewhat similar in format to the axial DoC displacement 

expression (28).  

The first term in Eq.(30) is independent of any other 

displacements and arises simply from the elastic twisting of the 

beam. It is therefore the purely elastic component of θx1. The 
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second term in Eq. (30), is free of any loads, and entirely 

dependent on the transverse DoF displacements, thus 

representing a purely kinematic component of the twist angle, 

similar to the kinematic component seen in the axial DoC 

displacement. However, unlike that case, the magnitude of the 

kinematic component here is relatively smaller than the purely 

elastic component for nominal twisting moment and transverse 

displacements; it becomes the most important contributor in the 

absence of a twisting moment. The third term in Eq. (30) has a 

dependence on the twisting moment mx1 as well as the 

transverse DoF displacements. This is also similar to the 

elastokinematic component seen in the axial DoC displacement. 

An important difference in this case is that, since 1/k44 is of 

order 1 and the elastokinematic coefficients are each multiplied 

by two DoF displacements, each of order 0.1, the net 

contribution of the whole elastokinematic term to the overall θx1 

and stiffness in the twisting direction is less than 1% of their 

actual values. Hence the elastokinematic term for θx1 is dropped 

this point onwards. The last term above represents a component 

that depends on the axial DoC load fx1 and the transverse DoF 

displacements – a new kind of elastokinematic term not see 

earlier – because load dependence is not on mx1 but instead on 

fx1. This is a new kind of effect that is not ignorable. Overall, 

the twisting direction DoF exhibits a peculiar constraint 

behavior by borrowing certain attributes that have been 

associated with the DoC directions in the past [5, 6, 16].  

   

5. MODEL VALIDATION VIA FINITE ELEMENT 
ANALYSIS (FEA) 

The load displacement relationship, given by Eq.(25), 

shows that in the absence of twisting moment mx1, the 

displacements in the two bending plane XY and XZ are 

decoupled. In this case, the beam bends in each plane exactly 

like a planar beam whose stiffness coefficients k11, k12, k21, k22, 

k55, k56, k65 and k66 have been verified in our previous research 

[5, 6]. The remaining stiffness terms being non-zero in the 

presence of mx1 give rise to new coupling terms. Owing to the 

partial symmetry of the stiffness matrix [k] 

( ) ( ) ( ){ }( )i.e. ,       , 2,6 , 6,2
ij ji

k k i j= ∀ − , verifying only k15, 

k16, k26, k62 should fully verify the stiffness terms associated 

with this coupling. New notation is introduced at this point to 

identify the coefficients within a stiffness term kij with the 

powers of  fx1 and mx1 that it shows up with. These coefficient 

have two superscripts in parenthesis ‒ the first signifying the 

power of fx1 and the second signifying the power of mx1. For 

example, the coefficient of the load-free term in k11 is denoted 

by (0) (0)

11
k

− , signifying zero powers of fx1 and mx1. This notation 

is also used to represent the coefficients of different powers of 

fx1 and mx1 for eij and gij.  
For the FEA simulations, the beam dimensions were taken 

to be: L = 0.5m, TY=TZ=0.02m and the elastic modulus E and 

Poisson ratio ν was taken as 210 GPa and 0.3 respectively. 

Fig.4 plots the coefficient of mx1 for the total range of 

normalized transverse DoF displacements from ˗0.1 to 0.1 in 

the stiffness terms k15, k16, k26, k62. The FEA points are plotted 

in blue circles and crosses while the theoretical coefficients are 

shown by black line. Based on these results, the theoretical 

stiffness coefficients are found to be within 1% of the 

corresponding FEA values for two values of twisting moment 

MXL at 200Nm and 400 Nm, corresponding to normalized 

values of 0.0357 and 0.0714, respectively.  
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 Fig.4: Cross-axis coupling stiffness coefficients 

The geometric constraint term (the ‘g’ matrix in Eq.(28)) 

associated with the axial DoC are verified against FEA next. 

The kinematic and elastokinematic components of the axial 

displacement in Eq.(28) represent a sum of the individual 

kinematic and elastokinematic components arising from the two 

bending planes. The analytical results predict no significant 

effect of the twisting moment mx1 in this direction. This is 

corroborated by the FEA but not show here because the results 

are exactly the same as those reported for planar beams 

previously [5]. 
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Fig. 5: Elastokinematic coefficients in DoC x-Displacement 

○   mx1 = 0.0357 

×   mx1 = 0.0714 

○   mx1 = 0.0357 

×   mx1 = 0.0714 
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Fig. 6: Kinematic and elastokinematic coefficients in θx1 

displacement 

The elastokinematic terms, a property of beam shape, is 

given in terms the elastokinematic coefficients  
(1) (0) (1) (0) (1) (0) (1) (0)

11 12 21 22
,  ,  ,  ,  g g g g

− − − − (1) (0) (1) (0) (1) (0) (1) (0)

55 56 65 66
,  ,  and g g g g

− − − − . 

Using the symmetry of the ‘g’ matrix it is sufficient to verify 

only three coefficients (1) (0) (1) (0) (1) (0)
 

55 56 66
,  and g g g

− − − . Figure 5 verifies 

these coefficients for two values of mx1. The errors, 

encountered comparing these geometric coefficients for spatial 

beam, are similar to that for planar beam implying negligible 

effect of mx1. The theoretical geometric coefficients were found 

to be with 3% error of those predicted by FEA. 

The FEA validation of the twisting DoF rotation, θx1, is 

given in Fig.6. To verify the kinematic matrix in Eq.(30), we 

set mx1 and fx1 to zero. One of the non-zero coefficients (0) (0)

16
e

−  

is verified in Fig.6. This matrix also shows a interesting 

property that a combination of similar displacements (both 

translational or both rotational) in the two bending plane does 

not produces any kinematic axial rotation. This is verified by 
(0) (0)

25
e

−  in Fig.6.  

Next we verify elastokinematic matrix with respect to fx1 of 

the twisting angle in Eq. (30). For this FEA simulation, fx1 is set 

to one and (1) (0)

16
e

− , which is analytically predicted to be 

( )11
120 20

ν++ , is verified.  

 

5. CONCLUSION AND SUMMARY 
In this paper, we have presented a compact, parametric, 

and closed-form model for the load-displacement relations of a 

uniform-thickness symmetric cross-section spatial beam, to 

help characterize its constraint behavior. The latter is strongly 

influenced by non-linear effects (loading-stiffening, kinematic, 

and elastokinematic) that are not captured in a purely linear 

elastic formulation. On the other hand, FEA, which captures all 

sources of non-linearities, does not offer much physical or 

analytical insight towards constraint-based flexure mechanism 

design.  

Therefore, in developing a new model for the spatial beam, 

we choose to retain non-linearities associated with geometric 

arc-length conservation and application of load equilibrium in 

deformed configuration, which are relevant to the beam's 

constraint behavior and are not ignorable in the load and 

displacement range of interest. However, the non-linearity 

associated with beam curvature is dropped because it does not 

have any serious implications in terms of constraint behavior, 

and yet makes a closed-form analysis impossible.  Furthermore, 

in the process of deriving a final set of end-load / end-

displacement relations for the spatial beam while incorporating 

the above relevant non-linearities, several engineering 

approximations are made and appropriately justified, so that the 

resulting model is compact, parametric, and closed-form. The 

final result, which may be referred to as the spatial Beam 

Constraint Model, offers several insights into the DoF (Y, Z, 

ΘY, ΘZ, and ΘX) and DoC (X) behavior of the beam flexure.  

It becomes clear that the four transverse bending DoF 

exhibit load-stiffening in the presence of axial DoC load fx1. 

This is expected based on planar beam results. However, an 

additional phenomenon noticed in the spatial beam is that the 

twisting DoF moment mx1 tends to provide coupling between 

the two beam bending directions. In the absence of this 

moment, the spatial beam behaves like two independent and 

orthogonal planar beams. However, in the presence of this 

twisting moment, bending force and moment from one bending 

plane results in a bending displacement and rotation in the other 

bending plane.  

The spatial BCM also shows that there are no new effects 

seen in the X DoC direction. In addition to a purely elastic 

component in this axial direction, the kinematic and 

elastokinematic components are simply the sum of individual 

kinematic and elastokinematic components arising from the two 

bending planes. The presence of a twisting angle or moment 

plays no noticeable role here.  

Finally, the most important new observation made via this 

model is with respect to the axial twisting DoF. In addition to a 

purely elastic dependence on the twisting moment mx1, θx1 also 

comprises a purely kinematic component dependent on the 

transverse DoF displacements, as well as an elastokinematic 

term dependent on fx1 and the transverse DoF displacements. 

This is unique for a DoF, because kinematic and 

elastokinematic effects have generally been associated with 

DoC displacements in the past.  

We envision that the above qualitative and quantitative 

understanding of the constraint characteristics of the spatial 

beam will facilitate the constraint-based design and 

optimization of 3D flexure mechanisms that employ such beam 

flexures. To further improve the utility of the proposed model, 

we plan to generalize it to incorporate variable cross-section, 

non-symmetric beams with initial curvature. Also a strain 

energy formulation, consistent with the proposed model, is 

being developed to facilitate the closed-form analysis of more 

complex 3D flexure mechanism geometries.  
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