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ABSTRACT 

To utilize beam flexures in constraint-based flexure 
mechanism design, it is important to develop a qualitative and 
quantitative understanding of their constraint characteristics in 
terms of stiffness and error motions. This paper provides a 
highly generalized yet accurate closed-form load-displacement 
model for two-dimensional beam flexures, taking into account 
the nonlinearities arising from load equilibrium applied in the 
deformed configuration. In particular, stiffness and error 
motions are parametrically quantified in terms of elastic, load-
stiffening, kinematic, and elastokinematic effects. The proposed 
beam constraint model incorporates any general loading 
conditions, boundary conditions, initial curvature, and beam 
shape. The accuracy and effectiveness of the proposed beam 
constraint model is verified extensively by non-linear Finite 
Elements Analysis. 
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1. INTRODUCTION AND BACKGROUND 

Flexure mechanisms depend on elastic deformations to 
provide small but smooth and precise motions, and are essential 
elements of machine design [1-8]. Constraint-based design 
methods are commonly applied to flexure mechanisms because 
flexure elements behave like constraints [6-9]. A typical flexure 
element exhibits relatively small stiffness along certain 
directions, which may identified as its Degrees of Freedom 
(DoF), and relatively high stiffness along other directions, 
which act as its Degrees of Constraint (DoC). Fig.1 provides a 
comparison between representative traditional constraint 
elements and flexures that impose a single DoC between two 
rigid bodies, 1 and 2. The single DoC and associated two DoF, 
as indicated by the arrows, are realized by: the diameter of the 

rigid ball and two point contacts in case (A), the length of the 
rigid link and two traditional hinges in case (B), the length of 
the rigid link and two lumped compliance flexure hinges in 
case (C), and the length of the distributed compliance flexure 
beam in case (D).  

 
Fig. 1 Comparison of various Constraint Elements 

An ideal constraint should provide zero error motion and 
infinite stiffness or load-bearing capacity along its DoC 
directions, and infinite motion range and zero stiffness along its 
DoF directions. While the traditional elements (A) and (B) 
come close to this idealization, the flexure elements (C) and 
(D) clearly deviate from ideal constraint behavior. The lumped-
compliance flexure element (C) provides a relatively large 
stiffness in the DoC direction, but also exhibits a finite stiffness 
in the two DoF directions, thus limiting the motion range. 
Distributed compliance flexure beam (D), on the other hand, 
offers a relatively lower stiffness in the DoF directions, and 
therefore a greater motion range, but at the expense of stiffness 
in the DoC direction. Moreover, both flexure elements (C) and 
(D) exhibit an undesired parasitic error motion along the DoC 
direction. These observations not only highlight the non-ideal 
constraint behavior of the individual flexure elements but also 
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the differences between the lumped and distributed compliance 
geometries, even though both are treated as equivalent in the 
traditional constraint-based design approaches.   

Thus, to enable the deterministic constraint-based design 
of high performance flexure mechanisms, including their 
analysis, synthesis, and optimization, it is important to 
thoroughly characterize the constraint behavior of flexure 
elements in terms of their error motions and stiffness. This 
objective has been accomplished for a simple beam via a non-
linear Beam Constraint Model, as reported in the prior 
literature [7, 10-11]. It has been shown that the deviation from 
ideal constraint behavior and associated performance tradeoffs 
arise due to the non-linearity associated with applying force 
equilibrium relations in the deformed beam configuration, 
which can be dominant even for small displacements. 

Moving on from a uniform-thickness initially-straight 
simple beam, this paper extends the Beam Constraint Model to 
a completely generalized two-dimensional beam, incorporating 
any arbitrary end-loading conditions, end- displacement and 
slope conditions, initial curvature, beam shape, and temperature 
gradient along the beam length . Section 2 primes the reader by 
providing an overview of the previously derived constraint 
model for a simple beam. Additionally, new FEA verification 
and comparison with other modeling methods are presented. 
Section 3 covers the formulation and presents the non-linear 
load-displacement results for a uniform thickness beam with an 
initial slope and curvature. Section 4 does the same for an 
initially straight beam with a randomly varying cross-section 
along its length. Section 5 adds the contribution of a 
temperature distribution along the beam length to the Beam 
Constraint Model. This paper concludes in Section 6 with a 
summary of results and plans for future work.  

 
2. BEAM CONSTRAINT MODEL (BCM) 

The final results of the BCM for a simple beam are 
summarized below. For a detailed mathematical derivation and 
a discussion of the underlying assumptions, the reader is 
referred to the prior literature [7, 10-11]. 

 
Fig. 2 Simple Beam Flexure 

Fig.2 illustrates a simple beam (length: L, thickness: T, 
depth: H) subject to generalized end-loads FXL, FYL, and MZL, 
resulting in end-displacements UXL (DoC), UYL (DoF), and ZL 
(DoF), with respect to the coordinate frame XYZ. IZZ denotes 
the second moment of area about the bending axis Y; E denotes 
the Young’s modulus for a state of plane-stress in XY, and 
plate modulus for a state of plane-strain in XY. Employing the 
Euler-Bernoulli and curvature linearization assumptions, 
applying load equilibrium in the beam’s deformed condition, 
and truncating the resulting transcendental expressions to the 

first order in FxL, yields the following load-displacement 
relations:  
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In this format, all loads, displacements, and stiffness terms 
are naturally normalized with respect to the beam parameters: 
displacements and lengths are normalized by the beam length 
L, forces by EIZZ /L2, and moments by EIZZ /L. 
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In the rest of this paper, lower case symbols are used to 
represent normalized variables and parameters, as per the above 
convention. The coefficients k’s and g’s are non-dimensional 
beam characteristic coefficients that are solely dependent on 
the beam shape and not its actual size. These coefficients take 
the following numerical values for a simple beam.  
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Table 1. Characteristic Coefficients for a Simple Beam 

The BCM helps characterize the constraint behavior of a 
simple beam flexure in terms of its stiffness and error motions. 
Error motions are the undesired motions in a flexure element or 
mechanism: any motion in a DoF direction, other than the 
intended DoF, is referred to as cross-axis coupling, and any 
motion along a DoC direction is referred to as parasitic error 
[7]. The first matrix term on the RHS of Eq.(1) provides the 
linear elastic stiffness in the DoF directions, while the second 
matrix captures load-stiffening, which results in a change in the 
effective stiffness in the DoF directions due to a DoC load. 
Eq.(2) shows that the DoC direction displacement, which is a 

parasitic error motion, is comprised of three terms. U , given 

by Eq.

 e

XL

k
XL

(3), is a purely elastic component resulting from the 

stretching of the beam in the X direction. U , given by Eq.(4), 
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represents a purely kinematic component dependent on the two 
DoF displacements, and arises from the constant beam arc-

length constraint. U , given by Eq. e k

XL


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22

 1

11

 1

12k  1

22k

 0

11

(5), represents an 

elastokinematic component, called so because of its elastic 
dependence on the DoC force FXL and its kinematic 
dependence on the two DoF displacements. The 
elastokinematic component is also a consequence of the beam 
arc-length constraint, and arises due to a change in the beam 
deformation when FxL is applied, even as UYL and ZL are held 

fixed. The kinematic component U  dominates the DoC error 

motion and increases quadratically with increasing DoF 
displacements. The elastokinematic component of the DoC 
displacement, while small with respect to the purely kinematic 
component, is comparable to the purely elastic component and 
causes the DoC direction stiffness to drop quadratically from its 
nominal linear elastic value with increasing DoF displacements. 

The BCM not only highlights the non-ideal constraint 
behavior of a beam flexure, it also reveals interdependence and 
fundamental tradeoffs between the DoF quality (large range, 
low stiffness) and DoC quality (high stiffness, low parasitic 
error). Moreover, unlike any other closed-form modeling 
approach, the BCM accommodates any generalized end-load 
and end-displacement conditions in a scale-independent, 
compact, and parametric format.  

We next proceed to provide a comparison between the 
BCM for a simple beam and the corresponding non-linear FEA 
predications. An overview of the FEA procedure and settings 
used in this paper is provided in Appendix A. Fig.3 plots the 

elastic stiffness coefficients ( , , and k ) and load-

stiffening coefficients ( k , , and ) versus the 

normalized DoF displacement uy1 or z1. Similarly, Fig.4 plots 

the kinematic ( g ,  0

12g , and  0

22g ) and elastokinematic 

(  1

11g ,  1

12g , and  1

22g ) coefficients. The BCM predictions are 

found to be within 6% of the FEA results for the DoF end-
displacements (uy1 and z1) in the range ±0.1 and the DoC end-
load (fx1) in the range ±10. Any discrepancy can be entirely 
accounted for by: A. the non-linearity associated with the beam 
curvature [4], which is not incorporated in the BCM, and B. the 
truncation of higher order terms of fx1 in Eqs. (1) and (5). In 
general, this displacement and load range covers most practical 
flexure mechanism applications. The maximum error of 6% 
incurred over this range is a fair price for a greatly simplified 
and insightful closed-form parametric constraint model. An 
experimental validation of the BCM may be found in [12]. 

A quick comparison of the BCM with existing modeling 
techniques highlights its suitability for characterizing constraint 
behavior of flexures. A closed-form linear model, while simple 
and parametric, is obviously inadequate for constraint 
characterization because it fails to capture the load-stiffening, 
kinematic, or elastokinematic effects. Specific modeling 
exercises that do capture these pertinent nonlinearities are 
either mathematically too complex for flexure mechanism 

design [13], lack a broader generalization [14], or require 
numerical solution methods [15-16]. Elliptic integrals based 
solutions [17-19] do not provide closed-form results, are 
mathematically too complex for flexure mechanism design, and 
may be used only for uniform thickness beams.  
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Fig. 3 Elastic Stiffness Coefficients and Load-Stiffening 

Coefficients for a Simple Beam: BCM vs. FEA 
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Fig. 4 Kinematic and Elastokinematic Coefficients for a Simple 
Beam: BCM vs. FEA 

Pseudo Rigid Body Modeling (PRBM) offers a powerful 
parametric approach in capturing the large displacement 
behavior of beam flexures [20-22]. However, since the PRBM 
parameters are obtained via an optimization process that 
utilizes the exact elliptic integral based solution for a beam, 
these parameters have to be recomputed for every change in the 
loading conditions, boundary conditions, or initial beam 
curvature. Furthermore, for the optimal PRBM to be generated, 
an exact solution is needed apriori, which may not always be 
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possible for a variable cross-section beam. Also, while the 
PRBM captures load-stiffening and kinematic effects very 
accurately, its inherent lumped-compliance assumption 
precludes the elastokinematic effect. Since the elastokinematic 
effect plays a critical role in determining the DoC direction 
stiffness, error motions, and performance tradeoffs in flexures, 
the PRBM proves to be inadequate in characterizing their 
constraint behavior.  

0.25

The attributes of these various modeling approaches are 
further highlighted and compared using the parallelogram 
flexure (Fig.5), comprised of two identical simple beams 
(L=250mm, T=5mm, H=50mm, W=75mm, E=210000Nmm2)  

 
Fig. 5 Parallelogram Flexure and its Pseudo Rigid Body Model 

Using the normalization convention introduced earlier, the 
linear model for this flexure module may be shown to be [2]: 
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The non-linear load-displacement results for this flexure 
module have been derived using the BCM in the past [7,10]: 
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A PRBM is also illustrated alongside the parallelogram 
flexure module in Fig.5. Assuming mz and fx to be zero, the 
model parameters are given by  = 0.8517 and k = 2.65, and 
the load-displacement results are given by [4]:   

          y xf f  (8) 

Clearly, the Y direction represents a DoF, while the X and 
Z directions represent DoC. Key constraint behavior 
predictions made by the above three models along with results 
from a non-linear FEA are plotted in Figs.6-8 over a uy range of 
± 0.15. Fig.6 plots the non-linear dependence of ux (X DoC 
parasitic error motion) on uy (Y DoF displacement) and 
illustrates that both the PRBM and BCM capture the kinematic 
effect in beams very accurately. Fig.7 plots the variation in the 
X direction (DoC) stiffness with uy (Y DoF displacement).  
While the PRBM does not recognize any compliance in this 
DoC direction whatsoever, the linear model only captures the 
purely elastic stiffness component. The BCM is the only model 
that accurately predicts the elastokinematic effects, as verified 
by the FEA. Fig.8 plots z (Z DoC parasitic error motion) with 
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Fig. 6 Dependence of ux (DoC) on uy ( DoF) 
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increasing fy (Y DoF force). The PRBM predicts zero yaw 
rotation of the rigid stage, while the linear model is valid only 
for small forces and displacements. However, the BCM 
accurately captures this parasitic error motion, also dominated 
by the elastokinematic effect, even for large values of the DoF 
force and displacement.   

Thus, of the available options, the BCM is the only closed-
form model that truly characterizes the constraint behavior of 
flexures in terms of stiffness variation and error motions, which 
demonstrates its importance in constraint-based flexure 
mechanism design. 

 
3. UNIFORM-THICKNESS BEAM WITH GENERALIZED 
BOUNDARY CONDITIONS AND INITIAL CURVATURE  

Next, we consider a uniform thickness beam with an 
arbitrary initial slope and an arbitrary but constant initial 
curvature. Note that choosing an arbitrary initial position 
simply shifts the coordinate frame of the beam by a constant 
value, and therefore is trivial. The objective is to capture these 
initial and boundary condition generalizations within the BCM, 
which so far has only dealt with a simple beam. The motivation 
for doing so is two-fold: 1. Analytically capture the 
consequence of manufacturing variations, e.g. in MEMS 
devices micro-fabricated beams can often assume an initially 
bent/curved to relieve material stresses, and 2. Use initial slope 
and curvature as additional design and optimization variables to 
achieve desired constraint characteristics.  
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Fig. 9 Initially Slanted and Curved Beam 

Fig.9 illustrates an initially slanted and curved beam with 
three generalized end-loads fx1, fy1, and mz1, and three end-
displacements ux1, uy1, and z1, along the coordinate frame 
XYZ. All lower-case quantities are normalized with respect to 
beam parameters, as described earlier. The beam is assumed to 
have an initial slope  and an initial curvature of . For small 
initial slope and curvature (~ 0.1), the Y and Z directions still 
serve as DoF, and the X direction is a DoC. The initial 
(unloaded and undeformed) beam configuration is denoted by 
yi(x), final (loaded and deformed) beam configuration is given 
by y(x), and the beam deformation in the Y direction is given 
by uy(x), where 

( ) 2
iy x x x

2

  ( ) ( ) ( )i yy x y x u x 

( ) ( )y x x

, and  (9) 

To derive the load-displacement relations for this beam 
flexure, Euler-Bernoulli and small curvature assumptions are 
made. The latter implies that the displacement, slope, and 

curvature of the beam in its deformed configuration remain of 
the order of 0.1, so that the non-linearity associated with the 
beam curvature [x] may be dropped, as earlier. Thus, the 
normalized Euler’s equation for this beam may be stated simply 
as   zm , where the bending moment, mz(x), at a given 

cross section is computed by applying load equilibrium in the 
beam’s deformed configuration: 

   ( ) ( )x1 1x 1 u x y y x     z z1 y1 x1m m f f  (10) 

Substituting this in the Euler’s equation for the beam, and 
differentiating twice yields 

( ) ( )4 2

4 2

d y x d y x

dx dx
 x1f  (11) 

For positive values of fx1, the general solution for this 
fourth order linear differential equation may be stated as: 

     sinh cosh ,  where 2
1 2 3 4y x c c x c x c x    x1r r r f  (12) 

An analogous solution in trigonometric functions, instead 
of hyperbolic functions, exists for negative values of fx1. The 
beam deflection, uy(x), therefore becomes: 
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Displacement boundary conditions at the two beam ends 
are given by: 

        ,  ,  , y y y y1 y z1u 0 0 u 0 0 u 1 u u 1        (14) 

Using Euler’s beam equation and Eqs.(9)-(10), the load 
boundary conditions at x=1 can be shown to be: 
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The above displacement and load boundary conditions 
may then be used to determine the coefficients c1, c2, c3, and c4, 
which ultimately lead to the following relations between the 
DoF direction end-loads and end-displacements. 
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  -(16) 
As is expected, setting = = 0, reduces the above 

expression to that for a simple beam [7, 10], prior to series 
expansion and truncation. As earlier, expanding the 
transcendental functions in the above matrices, and truncating 
4th order or higher terms in r (or equivalently 2nd order or 
higher terms in fx1), provides a great degree of simplification at 
less than 3% error over a comfortably large fx1 range (±5). The 
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simplified DoF direction force-displacement relations may thus 
be expressed as follows.  
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 (17) 

Clearly, the first two terms, in the above matrix equation, 
are identical to the elastic stiffness and load-stiffening terms in 
Eq.(1) for a simple beam. The last term is new and arises due to 
the initial slope and curvature. Even though this term might 
appear similar to the original load-stiffening term, it actually 
does not change the DoF stiffness values. The presence of  
and  simply shift the DoF load-displacement curves without 
affecting their slopes. This is corroborated to a high degree of 
accuracy by means of FEA for three different combinations of 
 and  (Fig.10). The FEA is carried out over a relatively large 
uy1 range (± 0.1), with fx1 set to 5 and mz1 set to 0. This constant 
shift for given beam geometry is a consequence of the fact that 
the DoC load fx1 produces additional bending moments along 
the beam length that are independent of the DoF displacements. 
The action of this load in the presence of DoF displacements 
indeed produces load-stiffing, but that is captured as usual by 
the second term in the above expression. 

We next proceed to determine the DoC direction load-
displacement expression for this flexure beam by imposing the 
following beam-arc length conservation relation. 
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Fig. 10 DoF force (fy1) vs. DoF displacement (uy1) for initially 

slanted or curved beams 
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The LHS is the total arc length, which is the sum of the 
initial length and the elastic elongation of the beam, . The 

RHS computes the total arc length after deformation, and hence 
the upper limit of integration changes to (1+ux1). This DoC 
direction constraint equation may be solved using the solution 
for uy(x) derived earlier in Eq.

( )e

x1u

(13), to yield the following 
relation between end-displacements and DoC end-load: 

22
11 12 y1

x1 y1 z1 y1 33 z1 44

21 22 z1

g g ut
u u u g g

g g12 2 2 2

    


                                 
x1f



 (19) 
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Upon setting  and  to zero, the above DoC direction 
relation reduces to the one obtained for a simple beam [7, 10], 
before series expansion and truncation. Next, as done for the 
DoF matrix equation, expanding the transcendental functions 
(g’s) and dropping higher order terms in fx1, provides a 
considerably more simple and insightful relation, at less than 
3% error over fx1 in the range of ±5.  
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 (20) 

The first (purely elastic), second (purely kinematic) and 
third (elastokinematic) terms in the above expression are 
identical to those obtained for the the simple beam (Eq.(2)). 
The effects of  and  in the DoC direction are expressed via 
the last three terms. The fourth and fifth terms contribute to an 
extra purely kinematic component. Even though these terms do 
not exhibit a quadratic dependence on the DoF displacement 
like the previous kinematic terms, they are independent of the 
DoC load. The sixth term, which only depends on the initial 
curvature and not the slant, contributes to an extra 
elastokinematic effect, which again is not quadratic in the DoF 
displacement. However, this term produces a change in the 
DoC stiffness with increasing z1 displacement. The seventh 
and final term in the above expression is a new purely elastic 
term. Both the sixth and seventh terms arise due to the 
‘uncurling’ of the beam deformation in the presence of a DoC 
load. In case of an initially slanted beam with no initial 
curvature (= 0), since this uncurling does not exist, there are 
no elastic or elastokinematic components when DoF 
displacements are zero. 

These mathematical and physical observations are further 
verified via FEA for three different combinations of  and  
(Figs.11 and 12). Fig. 11 plots the parasitic error motion along 
the X DoC, ux1, against the Y DoF displacement, uy1. The 
corresponding FEA is carried out with fx1 set to 5 and mz1 set to 
0. Fig. 12 plots the X DoC stiffness against the Y DoF 
displacement, uy1, and the FEA is carried out with fx1 set to 5 
and z1 set to 0. The FEA results are all found to be in good 
match with the generalized BCM developed in this section. 

Thus, overall a uniform thickness beam flexure with initial 
slant and curvature continues to behave like a single DoC 
constraint element. The constraint characteristics along the DoF 
direction do not change considerably, but the DoC error motion 
as well stiffness is influence by the presence of additional 
linear, kinematic, and elastokinematic terms. 
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Fig. 11 DoC Displacement(ux1) vs. DoF displacement (uy1) for 

initially slanted or curved beams 
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Fig. 12 DoC Stiffness vs. DoF displacement (uy1) for initially 

slanted or curved beams 
 
4. BEAM SHAPE GENERALIZATION 

While in the previous two sections we have considered 
uniform thickness beams that may be initially straight, initially 
slanted, and/or initially curved, in this section we present a 
systematic process for developing the BCM for an initially 
straight beam with any generalized beam cross-section 
variation along its length. Such beam shape variation allows a 
non-uniform distribution of compliance along the beam length, 
and if the consequence of distributed compliance is analytically 
understood in terms of the beam constraint characteristics, one 
can carry out beam shape optimization.  

Fig. 13 illustrates an initially straight beam with varying 
cross-section in its undeformed configuration subject to three 
generalized end-loads fx1, fy1, and mz1 along the coordinate 
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frame XYZ. The resulting three end-displacements ux1, uy1, and 
z1, are not shown but are also along the same coordinate 
frame. As earlier, all lower-case quantities are normalized with 
respect to beam parameters. It is reasonable to assume that the 
undeformed neutral axis lies along the X axis. It is also obvious 
that the Y and z directions still serve as the Degrees of 
Freedom, while the X direction is a Degree of Constraint. 

The above equation is true for all values of x and hence the 
coefficients of similar powers of x on the RHS and LHS can be 
equated. To equate the coefficients of the rth power of x on both 
sides, Eq. (25) is differentiated r times and x is set to zero.  
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Fig.13 Straight Beam with Varying Cross-Section 

 
Without any loss of generality, the second moment of area 

for the beam at given location x may be expressed as follows: 
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 (21) 

The coefficients b’s are called beam shape parameters, for 
obvious reasons. It is to be noted that the previously stated 
normalization is carried out using Izzo, which is the second 
moment of area at x=0. Euler’s equation for this beam may be 
determined by assuming small curvature and by applying load 
equilibrium in the deformed configuration 
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Upon choosing a new independent displacement variable 

given by   y1 yw x 1 x u u x    z1 y1 x1m f f , Eq. (22) 

reduces to the following homogenous form 
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This is a second order differential equation with variable 
coefficients that are analytic functions of x over the range [0 1], 
and therefore can be solved using the power series solution 
method [23]. It is noted here that the variable coefficient of 
w(x)'' is never zero because that would mean the second 
moment of area is zero. This means that the beam cross-section 
would vanish at that particular location, which is physically 
impractical. Since the coefficient of w”(x) in Eq. (23) is a 
polynomial, its solution can be assumed to be an infinite 
polynomial series as follows. 
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 (24) 

The a’s in the above expression are referred to as the 
solution coefficients. Substituting this assumed solution in the 
homogenized Euler beam equation (Eq.(23)) yields 
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The previously undefined parameter b0 is equal to 1 in the 
above equation. This equation relates the coefficient ar+2 with 
all its preceding coefficients, a0 through ar+1. The variables l, 
m, p, and i are dummy indices used for summation only. Using 
Eq.(26), the first four coefficients can be calculated as below.  
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 (27) 

From Eq.(27), it may be observed that the initial four 
coefficients can be all expressed in term of a0 and a1. By the 
method of induction, it is next shown that all a’s can be 
similarly expressed as a linear combination of a0 and a1. Let us 
assume that for some j, each of the coefficients a2 through aj is 
represented in terms of a0 and a1:  

, ,n n 0 0 n 1 1a h a h a           2 n j      (28) 

Substituting Eq. (28) into Eq.(26), with r+2 = j+1, one 
may observe that aj+1 also turns out in terms of a0 and a1.  
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. (29) 
Eq.(29) confirms that aj+1 can also be expressed in the 

form of Eq. (28). Thus, by the principle of induction, it is 
proven that all subsequent a’s are of the form of Eq. (28). In 
this equation, hn,0 represents the coefficient of a0 in an, and 
similarly hn,1 represents the coefficient of a1 in an. Using 
Eq.(26), the following recursion formula for hn,0 and  hn,1 may 
be obtained for n>2.  
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x1fIn the above formula, i and k are dummy variables used for 
summation. Also, it becomes evident that the coefficients hn,0 
and hn,1 are functions of the beam shape parameters b’s and the 
DoC load fx1. Thus, using Eqs. (24), (28), and (30), the solution 
for w(x) and uy(x) may be stated as follows. 
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  (31) 

The series-solution, given by Eq.(31), is meaningful only 
when the series is convergent. If the second moment of inertia 
I(x), in Eq.(21), is a qth order polynomial, it can be shown that 
this series-solution is convergent at x=1, provided the 
convergence criteria, given in Eq.(32), is met. The reader is 
referred to Appendix B for the derivation of this condition. 
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  (32) 

The displacement solution given in Eq.(31) has two 
arbitrary constants a0 and a1. This is expected since the Euler 
equation for the beam given by Eq. (23) is of second order. The 
two arbitrary constants are determined by applying the 
boundary conditions at the fixed end of the beam.  

z1 y1 x1 y1m f f f

   
          

        

,y1 y z1 y

y1 0 0 1 0

z1 0 y1 0 1 0

u u 1 u 1

u s 1 s 1 s 1 s 1 1  and

  (33) 

The DoF direction end-load end-displacement relations are 
obtained by setting x=1 in the Eq.(31). 

s 1 u 1 s 1 s 1 s 1





  

   

       

x1 y1 z1

x1 x1 y1 z1

f f m

f f f m

 
 

     
     

0 0 1 0y1

z10 0 1 0

s 1 0 s 1 s 1 s 1 1u

s 1 1 1 s 1 s 1 s 1

     

 (34) 

This can be further converted to a matrix format as below. 

  
                   

y1

x1

z1

f
f

m

 
      

  

 (35) 
The above equation is solved to obtain the end loads in 

terms of end-displacements and the functions so(x) and s1(x).  

  
      

where,     
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z1

x1

x1

f

m

f

f

 (36) 

 

Maxwell’s reciprocity principle, which requires the 
stiffness matrix to be symmetric, has been employed in going 
from Eq.(35) to Eq.(36). This principle requires the following 
to hold true at all times, which may be used to check the 
convergence and validity of the solution, as explained later. 

       1 0 0 11 s 1 s 1 s 1 1   (37) s   

The above relation can be easily verified to be true for the 
simple case in which the variation in cross-section is taken to 
be zero, i.e.,  b’s = 0. The expressions for hn,0 and hn,1, 
determined using Eq.(30), are given below. 

   
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h     h 0
2

h 0     h
3

h     h 0
4

h 0     h
5

   

x1 x1

x1

f f

f

 

 

 

 

 

x1

x1

x1

f

f

f

 (38) 

Substituting these values of hn,0 and hn,1 in Eq.(31), it is 
observed that the functions s0(x) and s1(x) are simply 
hyperbolic sine and cosine functions as given below. 

 

   

.. cosh
! !

.. sinh
! !

2
2 4

0

2
3 5

1

s x 1 x x x
2 4

1
x x x x x

2 2

 
    
 
 

    
 

x1 x1
x1

x1 x1
x1

x1

f f
f

f f
f

f

 (39) 

s

These values of s0(x) and s1(x) satisfy Eq.(37), thus 
verifying Maxwell’s reciprocity principle. One may also check 
that substituting these hyperbolic functions into the load-
displacement relations of Eq.(36) results in the exact 
transcendental relations for a simple beam [7, 10-11].  

As mentioned earlier, the reciprocity principle may be used 
to determine the number of solution coefficients, a’s, to be used 
in Eq.(24). This is equivalent to choosing the highest power of 
x in s0(x) and s1(x) to be retained such that resulting s0(1) and 
s1(1) satisfy Eq.(37) within an acceptable margin of error.  

Eq. (36) highlights the fact that even for a varying cross-
section beam the DoF end-loads are related to the DoF end-
displacements by a stiffness matrix that is a function of only the 
shape of the beam and the force in the DoC direction. This 
coupling of between the DoF direction stiffness matrix and the 
DoC direction force is similar to that seen in the simple beam 
(Eq.(1)). As is that case, the stiffness matrix may be expanded 
into an elastic stiffness matrix, a load-stiffening matrix, and 
higher order terms in the DoC force fx1. 
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Next, the DoC direction load-displacement relation may be 
formulated by applying the beam arc length constraint.  

   
1 2

e

x1 x1 y

0

1
u u u x dx

2
     (40) 

Differentiating the known uy(x) expression from Eq.(31), 
and rearranging it using Eq.(33), the following expression is 
obtained. 

   
       

 
y1 1 z1

y 0 1
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f
0s 1 sm

1 s x s x
x

u x
f s 1 f s 1

        
  

 (41) 

This can be put into a matrix format and the resulting 
expression for uy’(x)2 is given below. 

     

 
     
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 

where,      
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 (42) 

Substituting Eq.(36) in the above expression, and 
substituting the resulting expression in Eq.(40), the constraint 
equation reduces to the following,  

 e 11 12 11 12 11 12 y1

z1

k k d d k k u1
u u u x1 x1 y1 z1

21 22 21 22 21 22k k d d k k2 
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Eq.(43) highlights the fact that even for a varying cross-
section beam the DoC direction end-displacement is dependent 
on the DoF direction end-displacements and the DoC direction 
force fx1. This equation confirms that g11, g12, and g22 are 
functions of the beam shape and fx1 only. Setting the beam 
shape parameters b’s to zero reduces this expression to the 
exact transcendental expression for a simple beam [7,10-11]. 
As is that case, the constraint matrix may be expanded into a 
kinematic terms matrix, and elastokinematic terms matrix, and 
higher order terms in fx1. 

To recap the mathematical procedure presented above, the 
determination of the stiffness and constraint matrices is carried 
out as follows. The beam shape is quantified first by expressing 
the second moment of area of the beam as a function of x 
coordinate and beam shape parameters b’s as in Eq.(21). The 
beam shape parameters are then used to check the convergence 

criteria (Eq.(32)). Once the convergence criteria is satisfied, the 
beam shape parameters may be used to calculate the solution 
coefficients a’s in terms of the variables, hn,0 and hn,1, as per Eq. 
(30), and thus determine s0(x) and s1(x) as per Eq. (31). The 
functions s0(x) and s1(x) are then truncated in powers of x such 
that Maxwell’s reciprocity criterion, given in Eq.(37), is 
satisfied within a certain acceptable error (e.g. 1%) for the 
given range of problem parameters: DoC force fx1 and the beam 
shape parameters. Finally these truncated functions s0(x) and 
s1(x) determine the load-displacement and constraint relations 
for the beam using Eq.(36) and (43), respectively.  

 
Fig.14 Straight Beam with a Sinusoidal Varying Area 

Moment of Inertia 

The above proposed analysis procedure is illustrated by an 
example. A variable cross-section beam (Fig. 14) is described 
by Eq.(44). The resulting shape parameters b’s are given in 
Table 2. Without any loss in generality, the area moment of 
inertia, as opposed to the beam thickness, is taken to a 
sinusoidal function.  

   sinzz0x I 1 x
100

   I  
 

 (44) 

b1 ηπ/100 b5 ηπ5/(5!100) b9 ηπ9/(9!100) 
b2 0 b6 0 b10 0 
b3 - ηπ3/3! b7 - ηπ7/(7!100) b11 - ηπ11/(11!100) 
b4 0 b8 0 b12 0 

Table 2.  Shape parameters for a sinusoidally varying beam 
cross-section 

The variable η is the highest percentage increase in the 
area moment of inertia which occurs at the middle of the beam. 
Using the twelve beam shape parameters given above the 
second moment of inertia function can be estimated with 0.01% 
accuracy for all 0<x<1. Hence, the higher order b’s are 
neglected. It may be shown that the convergence criterion is 
satisfied by the shape parameters b’s for η < 10. Next the h’s 
and s’s functions are calculated as previously described in Eq. 
(30) and Eq. (31) but are not presented here for brevity. The 
expressions for the functions s0(x) and s1(x) are truncated after 
the tenth power of x, satisfying Maxwell’s reciprocity principle, 
Eq.(37), with less than 1% error for η < 10 and fx1 in the range 
±5. The resulting stiffness matrix may be further expanded in 
terms of fx1, as follows:  
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Eq. (45) shows that the stiffness coefficients are function 
of the beam shape and DoC force fx1 only. The relation can be 
verified to match exactly with that of a simple beam if η is set 
to zero. The first matrix in Eq.(45) is the elastic stiffness matrix 
while the second matrix represents the load-stiffening matrix. 
The stiffness matrix associated with fx1

2 and higher order terms 
may be neglected with respect to the load-stiffening matrix, at 
the expense of 1-2% error over an fx1 range of ±5.  

The constraint relation obtained for this particular case 
after similarly truncating matrices with second order and higher 
powers of fx1 is given below. It is interesting to note that the 
constraint relation has the same form as that for a simple beam, 
i.e., a summation of purely elastic term, a purely kinematic 
term, and an elastokinematic term. 
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The above example shows that the form of the load-
displacement and constraint relations remains invariant in the 
BCM even for varying beam cross-sections. Thus, it may be 
concluded that BCM is valid for any generalized beam whose 
shape parameters are known. The beam characteristic 
coefficients in the BCM may be determined from the beam 
shape parameters using the above-described procedure. This 
generalization of the BCM also provides a useful tool for beam 
shape optimization. Furthermore, the solution obtained for the 
specific family of variable cross-section beam is closed-form in 
nature. Any change of parameters such end-loads, end-
displacement, or beam shape (η) does not require a 
reformulation of the entire model. 
 
5. BEAM SUBJECT TO THERMAL LOADING  

Certain applications of flexure mechanisms may 
experience a considerable temperature range in their operating 
environment, e.g. compliant seals used in turbo-machinery (~ 
temperature range: 50-1200 °C). Other applications that require 
very high accuracy, such as high precision metrology 
instruments, are also very sensitive to temperature fluctuations 
in the ambient environment, which can cause undesired motion 
behavior. Flexure elements, generally comprising of thin 
section beams, have a lower thermal mass and therefore 
respond to temperature fluctuations faster than their 
surrounding rigid elements, for example. Therefore, it is of 
interest to incorporate the effect of a general temperature 
distribution along the beam length on the load-displacement 
relations, or equivalently the BCM, for any generalized beam. 
Considering the simple beam of Fig.2, the generalized 
temperature variation along its length may be given by (X).  

The extension of any element dX will therefore be 

  X
t a

dU
X   

dX
                            (47) 

where, αt is the coefficient of thermal expansion (CTE) for 
the material, and is generally of the order of 10-5 for metals [4]. 
a is the relevant ambient temperature. For most practical 
applications, (X) –a is of the order of 100 or less. Therefore, 
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the fractional change in beam length due to temperature 
fluctuations will be in the of the order of 0. 001 or less, which 
is very small compared to the normalized beam length 1. 
Therefore, only the DoC displacement (ux1), given by Eq.(2), is 
affected, while the DoF load-displacement relations given by 
Eq. (1) remain practically unchanged. The DoC direction 
displacement ux1, is now given by: 

       

 

  

 
e k e k t

xL xL xL xL xL

t L
xL

U U U U U

L L L L L

U dX



   

where, t a

0

X
L L

                                         (48)

 

Thus, in addition to the usual elastic, kinematic, and 
elastokinematic components in the parasitic error motion in the 
X DoC direction, there is a now a thermal component as well. 
While the above is shown for a simple beam, the same 
correction in beam length applies equally well to all other 
generalized beams considered here. 
 
CONCLUSION 

We have reviewed the Beam Constraint Model for a 
simple beam to highlight its advantages in capturing and 
accurately predicting the constraint characteristics of beam 
flexures. These advantages include a completely parametric, 
dimensionless, closed-form, and compact mathematical format 
that incorporates the load-stiffening, kinematic, and 
elastokinematic non-linearities. The accuracy of the BCM over 
fairly large DoC load and DoF displacement ranges is 
corroborated by non-linear FEA for a simple beam. A 
comparison with other modeling techniques is provided using 
the parallelogram flexure module as an example. Of the 
modeling techniques compared, the BCM is seen to be the only 
closed-from parametric model that captures all the pertinent 
stiffness variations and error motions, which ultimately 
characterize the constraint behavior of this module. Having 
shown these advantages, we then proceed to generalize the 
BCM to other beam geometries and shapes.  

Generalization of the model to incorporate beams with 
initial slant and curvature is relatively straightforward. There 
are additional terms in the DoF and DoC direction load-
displacement relations that show up. Effects of these 
generalizations are found to be more prominent for the DoC 
direction.  

The generalization of BCM to incorporate any random 
beam shape is analytically more challenging. We employ a 
series based solution technique that involves considerable 
mathematical manipulation. However, once developed, this 
formulation is reduced to a set of systematic steps that may be 
carried out to obtain the beam characteristic coefficients in the 
BCM for any beam shape. It is shown that such a solution is 
possible as long as the beam shape parameters satisfy certain 
conditions, which physically correspond to keeping the beam 
shape variations small. While one convergence criteria to check 
for the validity of the series solution has been suggested, 
considerable further investigation is planned in this aspect of 

the solution methodology. Ultimately, we would like to place 
explicit bounds on individual beam shape parameters, as 
opposed to the presently proposed implicit criterion.  

Finally, even though trivial, the effect of temperature 
variations along the beam length is also captured in the BCM. 

The research presented in this provides a powerful means 
for capturing all possible beam shapes and geometries under 
one formulation – the Beam Constraint Model (BCM). We 
intend to use this formulation as the basis for constraint-based 
design that recognizes and leverages the deviations of flexure 
elements from ideal constraint behavior. The ability to vary the 
beam initial slant, initially curvature, or beam shape to achieve 
desired constraint characteristics by means of geometric 
optimization is an important first step in this direction. It is 
important to point out that, in addition to the constraint 
characteristics (stiffness and error motions) described here, 
maximum stress in a geometry also has to be taken into account 
in the design and optimization process for a given application. 
Stresses are not explicitly captured as part of the BCM, and are 
only indirectly reflected in the stiffness predictions.  

Finally, while the formulation presented here is explicit, 
we are currently developing an energy-based formulation of the 
BCM so as to employ it in the modeling, analysis, and 
optimization of flexure mechanisms that may comprise 
complex arrangements of flexure beams. 
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APPENDIX A: FEA PROCEDURE  

The closed-form analytical expressions for the simple 
beam, slanted beam and the curved beam are validated by 
means of Finite Element Analysis performed in ANSYS. 
BEAM4 elements are used with consistent matrix and large 
displacement options turned on and shear coefficients set to 
zero. The material assumed is Stainless Steel, and typical 
values for Young’s Modulus (210,000 N.mm–2) and Poisson’s 
Ratio (0.3) are used. Beam length (L) = 250mm, thickness (T) = 
5mm, and height (W) = 50mm, are chosen for one of the FEA 
models. The undeformed neutral axis from the simple beam is 

taken along the x-axis. For all the beams meshing is done at 
300 elements per 250mm. The convergence criteria for all FEA 
experiments is set to tolerance limits = 0.001 on the L2 norm. 
The values of DoF force typically used for Fig. 6-12 are 0-5kN. 

Normalized beam characteristic coefficients  and in 

Fig.3 and 4 are measured one at time by setting uy1 and θz1 
alternately to 0 at zero DoC force. The corresponding load 
stiffness coefficients are measure by applying a DoC force but 
keeping the DoF displacements constants. By subtracting the 

two readings,  and  is determined. The coupling 

coefficient  of uy1 and θz1 are determined but proper 

algebraic sum of the displacement measurements from three 
cases, 1) uy1=0, θz1=known value 1, 2) uy1=known value 2, 
θz1=0 and 3) uy1=known value 2, θz1=known value 1. The load 
stiffening coupling coefficients is similarly calculated by 
comparing the three sets of displacement at zero and nonzero 
DoC force values. The geometric constraint coefficients are 
calculated using a similar approach. The elastic stiffness is 
captured by setting uy1 and θz1 to zero and applying a known 
DoC force. The kinematic geometric constraints coefficients 
are captured by the setting DoC force to zero. Finally the 
elastokinematic geometric constraint coefficients are calculated 
by setting DoF end displacements set to the same values as the 
case when purely kinematic displacement is measured. Using 
proper algebraic summation with purely kinematic and purely 
elastic case, the elastokinematic effect is isolated.  

(0)
11k

(1)
11k (1)

22k
(0)
12k

(0)
22k

For the initially slanted beam in Fig. 10, 11 and 12 the base 
inclination angle is taken as 0.01 rad from the X-axis in the YZ 
plane. For the initial curved beam in Fig. 10, 11 and 12, the 
base angle is 0, while the radius of curvature is in 5mm. The 
center of curvature is located vertically 5mm from the base of 
the beam at co-ordinates (0,5). For measuring DoC stiffness for 
Fig. 7 and 12, the DoC force is varied between 1.5kN to 2kN 
keeping DoF end displacements uy1 and θz1 fixed and 
measuring the DoC displacement ux1.  

 
APPENDIX B: CONVERGENCE CRITERION  

For the power solution series given below to be a valid 
series, it has to be tested for convergence. 

  ... ...2 n

0 1 2 nw x a a x a x a x       (49) 

At x=1 the solution w(1) in eq. (49) becomes a summation of 
all the coefficients. Thus for the solution to exist at x=1 the 
magnitude of the coefficients should be decreasing. Let us 
consider the recursion relation for the coefficients, restated here 
for the convenience of the reader. 
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f r
r 2

i 0r 1 r 2

a




 
  x1

f
 (50) 

As r tends to infinity 1/r tends to zero. In this limiting situation 
one can derive Eq.(51). Also assuming that there are q shape 
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factors inputs, meaning bi = 0  i > q the summation takes 
place from 0 to q-1 as given below. 

q 1
r i 1r 2

i 1
i 0r r

aa
b

a a


 




 
  

 
 0  (51) 

Let the ratio between two consecutive coefficients be ρ(r). The 
ratio should be less than 1 as r tends to infinity for the series to 
be convergent. Furthermore this ratio may either be decreasing 
or constant but less than 1 for the series to converge. If the ratio 
is less than 1 and decreasing then the series will converge fast. 
However, if the ratio is less than 1 but constant then the rate of 
convergence will be slower. Therefore if a series is proved to 
be convergent with a constant ratio assumption, it means that 
the series will only converge faster if the ratio was decreasing. 
Hence a constant ratio assumption solves for the worst case 
scenario and is adapted here. 

..

, ,
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The roots of equation are the possible ratios ρ(r) as r tends to 
infinity. Only in the case when magnitudes of all the roots are 
less than one can the series be considered convergent at x=1. 
This criterion can be mathematically stated as below.  

 ...q q 1 1

1 q 1 q roots b b b 0  1  
       (53) 

However for practical purposes if the highest magnitude of the 
roots is less than 0.5, the series converges fast enough to 
truncate the series solution after 7-10 terms. 
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