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Abstract – This paper investigates the distribution of zeros 
with respect to the poles on the imaginary and real axes of the 
s-plane in the transfer function of a multi-DoF undamped 
flexible LTI system. The transfer function of a multi-DoF 
undamped flexible LTI system can be modally decomposed 
i.e. expressed as the sum of second order modes where each 
mode is characterized by two system parameters – modal 
residue and modal frequency. It is well known that when all 
the modal residue signs are the same, all the zeros of the 
multi-DoF undamped flexible LTI system are minimum phase 
(MP). However, the same sign for all modal residues is a 
sufficient condition for the elimination of non-minimum 
phase (NMP) zeros and not a necessary one. In order to find 
sufficient conditions for the elimination of NMP zeros when 
all modal residue signs are not the same, specific results are 
needed that explain the distribution of zeros with respect to 
the poles in the s-plane. Therefore, in this paper results are 
provided that elucidate the distribution of zeros with respect 
to the poles on the real and imaginary axes of the s-plane for 
any combination of modal residue signs. The real and 
imaginary axes are divided into four segments based on the 
location of the poles and the parity of the number of zeros (i.e. 
even or odd) in each segment is derived as a function of the 
system parameters. The results in this paper provide the 
necessary and sufficient condition for the occurrence of pole-
zero flipping on the imaginary axis which is known to be 
detrimental to the closed-loop dynamic performance of 
undamped flexible LTI systems. The results from this paper 
will also enable the derivation of a sufficient condition for the 
elimination of NMP zeros in multi-DoF undamped flexible 
LTI systems.  

I. INTRODUCTION AND MOTIVATION 

Flexible systems are widely used in motion and 
vibration control applications such as space structures [1, 
2], rotorcraft blades [3, 4], hard-disk drives [5, 6], flexure 
mechanisms [7-9], and motion systems with transmission 
compliance [10, 11], among others. They often require the 
use of feedforward and feedback control in order to 
achieve desirable dynamic performance which is 
characterized by high speed, low settling time, strong 
disturbance rejection, stability robustness, etc. The 
distribution of the zeros with respect to the poles of the 
transfer function in the s-plane plays a critical role in 
determining the achievable dynamic performance of multi-
DoF undamped flexible LTI systems. 

  

There are different ways in which distribution of the zeros 
with respect to the poles can change as a function of the 
parameters of the multi-DoF undamped flexible LTI system. 
The marginally minimum phase (MMP) zero pair i.e. a 
complex conjugate zero pair that lies purely on the imaginary 
axis can transition into non-minimum phase (NMP) zeros as 
illustrated in Fig.1a and Fig.1b. The presence of non-
minimum phase zeros limits the dynamic performance that 
can be achieved through feedback and feedforward control 
strategies [12-14]. The MMP zero pair can remain on the 
imaginary axis but its position with respect to the pole pairs 
can flip as illustrated in Fig.1c which can lead to a 180° phase 
loss near the frequency range where the pole-zero flip occurs. 
This phenomenon is called pole-zero flipping [15]. The pole-
zero flipping has no effect on the open loop stability of the 
plant i.e. multi-DoF undamped flexible LTI system but can 
destabilize a given combination of controller and plant in 
closed loop [16]. 

  

(a) One 
MMP pair 
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RMP-

RNMP pair

(b) Two MMP 
pairs →  One 

quartet of 
CMP-CNMP 
→ Two RMP-
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Figure 1. Different distributions of zeros with respect to the poles 
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The transfer function of a multi-DoF undamped 
flexible LTI system can be modally decomposed into 
second order modes where each mode is characterized by 
two system parameters – modal residue and modal 
frequency [17]. Martin [18] showed that when all the 
modal residue signs are the same, all the zeros of the multi-
DoF undamped flexible LTI system are minimum phase 
(MP). It was further shown that this elimination of NMP 
zeros is robust to the variations in system parameters 
caused by modelling uncertainties and/or unmodelled 
dynamics [18-21] as long all the modal residue signs 
remain the same. Collocated actuator-sensor configuration 
is one technique that guarantees the same sign for all 
modal residues [16, 22]. However, certain trajectory 
tracking applications such as tracking the tip displacement 
of a flexible link robot while providing input torque at its 
root requires a non-collocated actuator-sensor 
configuration [23]. This non-collocated actuator sensor 
configuration can lead to the occurrence of NMP zeros in 
the transfer functions of multi-DoF undamped flexible LTI 
systems [24]. Different researchers proposed different 
linear combinations of outputs from multiple sensors in 
order to achieve the same sign for all modal residues. This 
technique guaranteed the elimination of NMP zeros in 
multi-DoF undamped flexible LTI systems with non-
collocated actuator sensor configurations [23, 25, 26]. In 
all these studies, the focuses were the investigation of 
minimum phase zeros obtained when all modal residue 
signs are the same and the investigation of actuator-sensor 
placements in order to achieve the same sign for all modal 
residues. However, the same sign for all modal residues is 
only a sufficient condition for the elimination of NMP 
zeros from the transfer functions of multi-DoF undamped 
flexible LTI systems [27]. It may not always be possible to 
achieve this condition given various constraints on the 
number and location of actuators and sensors [7]. Hence, it 
is important to investigate the distribution of zeros with 
respect to the poles when all the modal residue signs are 
not the same and derive sufficient conditions in terms of 
the system parameters to eliminate NMP zeros.  

The zero dynamics of multi-DoF undamped flexible 
LTI systems when all modal residue signs are not the same 
has been less thoroughly studied analytically. However, 
there are several numerical studies for specific multi-DoF 
undamped flexible LTI systems [7, 16, 28-31]. These 
flexible LTI systems employ a single actuator and sensor in 
non-collocated configurations which lead to all modal 
residue signs not being the same. The transfer functions of 
certain flexure mechanism based motion stages [7, 28, 29] 
have demonstrated the transition of two pairs of marginally 
minimum phase (MMP) zeros into a quartet of complex 
minimum phase (CMP) – complex non-minimum phase 
(CNMP) zeros, as illustrated in Fig. 1b, for small changes 
in the mass distribution and operating position of the 
motion stages. Canon demonstrated that the transfer 
function of a multi-DoF undamped flexible LTI system 
consisting of rigid disks attached serially via flexible rods 
[16] undergoes pole-zero flipping as illustrated in Fig. 1c. 

It was shown that a small variation in the mass of one of the 
rigid disks led to this pole-zero flipping. Spector [30] and Lee 
[31] carried out numerical investigation of the transfer 
function of a pinned-free beam model and free-free beam 
model respectively and identified the migration of the zeros 
on the real and imaginary axis due to variation in sensor 
position. 

In all these studies, the focus is the numerical investigation 
of the distribution of the zeros with the respect to the poles 
and the presence of NMP zeros in specific multi-DoF 
undamped flexible LTI systems. They do not provide any 
broader conclusions from the numerical results. Rath [27] 
carried out analytical investigation of the zeros of a three-DoF 
undamped flexible LTI system by constructing zero loci that 
comprehensively covered all possible distribution of the zeros 
with respect to the poles for any value of system parameters. 
Based on these zero loci, the necessary and sufficient 
conditions for the elimination of NMP zeros were provided. 
However, this work was limited to only three-DoF undamped 
flexible LTI systems. It is easier to construct all possible zero 
loci that span the entire parameter space and use them to 
derive the necessary and sufficient conditions for the 
elimination of NMP zeros for low-DoF undamped flexible 
LTI systems such as three-DoF. However, this process 
becomes tedious and complicated as the number of DoFs 
increase. Therefore, in this paper instead of providing the zero 
loci for all possible distribution of zeros with respect to the 
poles for a multi-DoF undamped flexible LTI system, we 
provide results on the parity of the number of zeros with 
respect to the poles on the real and imaginary axis as a 
function of system parameters (Section III). Based on these 
results, Section III also provides the necessary and sufficient 
condition for pole-zero flipping to occur on the imaginary 
axis as shown in Fig. 1c.  

The results in Section III also enable the derivation of a 
non-unique sufficient condition for the elimination of NMP 
zeros from the transfer functions of multi-DoF undamped 
flexible LTI systems when all modal residue signs are not the 
same. This sufficient condition will be covered in a future 
research paper. Section II provides the underlying 
assumptions for this paper. Section IV provides the conclusion 
and briefly discusses the course of future research.  

II. ZERO DYNAMICS AND MODAL 
DECOMPOSITION 

The input-output dynamics of a LTI system given by 
transfer function G(s) can be expressed as the sum of the 
contributions of its decomposed modes where the coefficients 
ai and bi are real numbers. 
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Assumption 1: The LTI flexible system investigated in this 
paper is assumed such that all the decomposed modes are 
second order, and that there are no first order modes. 
Additionally, it is assumed that these second order modes are 
all oscillatory in nature (i.e. the poles associated with each 
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mode lie on the imaginary axis). This is a reasonable 
assumption for many continuous structural and discrete 
spring-mass systems [7, 29, 32]. 
Assumption 2: Next, it is assumed that the flexible system 
is undamped. This assumption is reasonable for many 
flexible systems such as flexure mechanisms with no 
rolling or sliding joints and negligible damping from the 
air [7, 29] and for space structures [1, 2, 33] where 
damping is negligible.  
Assumption 3: If force is assumed to be the input and 
displacement is selected as the output of such a flexible 
LTI system, then the input-output transfer function G(s) 
from (1) can be restated as follows:  
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Furthermore, it is assumed that i ≠ 0 for any i from 1 
to n and 1<2<n without any loss of generality. 
Here the total number of second order modes is n, which is 
also the DoF of the system. i and i are the modal 
frequency and the modal residues of the ith mode, 
respectively, and are called the system parameters per the 
nomenclature of this paper. Additionally, it is assumed that 
G(s) represents a physical system (as opposed to a 
mathematical system), and is strictly proper (i.e. m < n). In 
other words, the number of zero pairs is less than the 
number of modes or pole pairs in the system and 2n-2m is 
the relative degree of the transfer function G(s). Since, the 
coefficients of the numerator N(s), given by bi are real, the 
zeros occur in complex conjugate pairs. The numerator 
N(s) is also an even function hence the distribution of the 
zeros of the transfer function G(s) is symmetric about the 
real and imaginary axis. Therefore, it is sufficient to focus 
on the zeros lying on the positive real axis (from origin to 
+∞) and the positive imaginary axis (from origin to +∞).   

III. PARITY OF NUMBER OF ZEROS ON THE 
REAL AND IMAGINARY AXIS 

The transfer function of a multi-DoF undamped 
flexible LTI system that follows Assumptions 1, 2, and 3 
is denoted by G(s) and mathematically expressed by (2). 
The distribution of the zeros of the transfer function G(s) 
on the imaginary and real axis of the s-plane is given in 
terms of the parity of the number of the zeros i.e. odd or 
even number of zeros between two points, s = c1 and s = 
c2, either both on the real axis or both on the imaginary 
axis with |c1| < |c2|. The choice of c1 and c2 divides the 
imaginary and the real axis into four distinct segments for 
which the parity of the number of zeros is investigated. 
These segments are graphically illustrated in Fig. 2 and 
described below: 
1. Segment 1: Parity of number of zeros between c1 = jf 
and c2 = jf+1 on the imaginary axis for any f from 1 to 
n−1. 
2. Segment 2: Parity of number of zeros between c1 = jn 

(pole corresponding to the last mode of G(s)) and c2 = +j∞ 

on the imaginary axis.  

3. Segment 3: Parity of number of zeros between c1 = origin 
and c2 = +∞ on the real axis.  
4. Segment 4: Parity of number of zeros between c1 = origin 
and c2 = j1 (pole corresponding to the first mode of G(s)) on 
the imaginary axis. 

When seeking to find the parity of the number of zeros 
between two points, c1 and c2, the sign of N(s), given by (2), 
will be sought at both points. Since N(s) is a continuous 
function in s, examining its sign at points c1 and c2 tells us 
how many times N(s) can become zero between these two 
points. An odd number of zeros occur between points c1 and 
c2 if the sign of N(c1)N(c2) < 0 and an even number of zeros 
occur between points c1 and c2 if the sign of N(c1)N(c2) > 0. 
The opposite statements are also true i.e. if there are odd 
number of zeros between points c1 and c2 then N(c1)N(c2) < 0 
and if there are even number of zeros between points c1 and c2 

then N(c1)N(c2) > 0. For the case where N(c1)N(c2) = 0 
because N(c1) = 0 and/or N(c2) = 0, they will be replaced by 
their respective limits as shown in (3). If N(c2)→∞, then it 
will replaced by its limiting case as shown in (3).  
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Figure 2. Imaginary and Real axis divided into four distinct segments 

 

A. Parity of number of zeros between jf and jf+1 

Result 1: In a multi-DoF undamped flexible LTI system 
whose transfer function is given by (2), the parity of number 
of zeros between any two of its consecutive poles, given by 
jf  and jf+1 for any f from 1 to n−1, is given by (4). 
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Proof: Express the transfer function G(s) as the sum of 
three transfer functions.  

   

  , 1

1
, 1 2 2 2 2

1

1, 1 2 2
, 1

, 1

( )
where 

( )
f f

f f
f f

f f

n i
if f
i f f

f f i

G s G s
s s

N s
G s

D s s

 
 












 

  
 

 
    


 (5) 

Next, the numerator of G(s) which given by N(s) is 
evaluated at s = jf and s = jf+1. 
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 (6)   

Taking the product of N(jf) and N(jf+1) and evaluating 
the sign of the product leads to (7).  
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Observe that 
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Substituting (8) in (7), we get (4) which is restated 
below. 
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Result 1 provides the necessary and sufficient 
condition for pole-zero flipping to occur on the imaginary 
axis. Assume that a single MMP zero pair flips its position 
with respect to a pole pair as the system parameters are 
varied and there are no other pole-zero flippings at that 
instance. Therefore, a pole-zero flipping at pole jf will 
only occur when the parity of number of zeros between 
poles jf-1 and jf and between poles jf and jf+1 
changes. Result 1 proves that the change in the parity of 
number of zeros in these two sub-segments will occur only 
if the sgn(f f-1and sgn(f f+1 undergo a change in 
sign. Since, it has been assumed that no other pole-zero 
flipping occurs at the same instance, the parity of number 

of zeros between other neighboring poles remains the same 
and hence their corresponding modal residue signs remain the 
same due to Result 1.  

Therefore, the only way that sgn(f f-1and sgn(f f+1 
undergo a change in sign is if f undergoes a change in sign. 
Hence, pole-zero flipping on the imaginary axis occurs if and 
only if the modal residue corresponding to the pole (i.e. modal 
frequency) undergoes a change in sign. 

As an example, consider Fig.1c which illustrates the pole-
zero flipping as observed in [16]. It can be assumed without 
any loss of generality that the modal residue corresponding to 
the first pole is positive. Based on the distribution of poles 
and zeros on the imaginary axis in Fig. 1c and by using 
Result 1, it can be inferred that before the pole-zero flipping, 
the modal residue sign sequence corresponding to the four 
modes are (+ − − +). After the pole zero flipping, the modal 
residue sign sequence becomes (+ − + +). Therefore, it can be 
seen that the change in the sign of the modal residue 
corresponding to the third mode is responsible for the pole-
zero flipping. This information can be used to choose physical 
parameters of the flexible system so that under small 
parametric variations, the modal residue corresponding to the 
third mode does not switch signs thus avoiding pole-zero 
flipping.   

B. Parity of number of zeros between jn and j∞ 

Result 2: In a multi-DoF undamped flexible LTI system 
whose transfer function is given by (2), the parity of number 
of zeros between the last pole, given by jn, and positive 
infinity on the imaginary axis, j∞, is given by (9) 
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Proof: Express the transfer function G(s) as the sum of two 
transfer functions. 
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Next, the sign of the numerator of G(s) which is given by N(s) 
is evaluated at s = jn as shown in (11). 
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Observe that 
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Substituting (12) into (11) yields 
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Now the sign of N(s) is evaluated at s = j∞. It is impossible 
to directly evaluate the sign of N(s) at s = j∞, because N(s) 
→ ∞. Therefore, the limit of N(s) is considered as below, 
by making a change of variables and substituting for c2 in 
(3). 
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As y tends to infinity, the term with the highest power of y 
in (14) which is y2m will dominate. This leads to (15). 
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Using Vieta’s formulae and binomial expansion, an 
expression for bm can be derived in terms of the elementary 
symmetric polynomials, which are defined as follows. 
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The expression for bm is stated in (17). 
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Taking the product of the signs of N(s) at s = jn and s = 
j∞ using (13) and (15) gives (9), restated below: 
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Therefore, 
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The term 2(n−m) is the relative degree of the transfer 
function of G(s) and bm corresponds to the highest power 
of s in the numerator as shown in (2). There are classes of 
multi-DoF undamped flexible LTI systems whose relative 
degree depends only on actuator and sensor location and is 
independent of the other physical parameters such as mass 
and stiffness distribution [32, 34]. In such cases, Result 2 
can prove to be quite useful in evaluating the effect of 
mass and stiffness distribution on the parity of number of 
zeros in Segment 2 for a given actuator and sensor 
location. A change in the parity of number of zeros in 
Segment 2 indicates that odd number of zeros may have 
migrated (i) To/From Segment 1 from/to Segment 2 which 
suggests pole-zero flipping close to the frequency n (ii) 
To/From Segment 3 from/to Segment 2 leading to 

transition from MMP zeros to real non-minimum phase 
(RNMP) zeros or vice-versa.  

C. Parity of number of zeros between 0 and ∞ on the real axis 

Result 3: In a multi-DoF undamped flexible LTI system 
whose transfer function is given by (2), the parity of number 
of zeros between the origin and positive infinity on the real 
axis is given by (18) 
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Proof: The sign of N(s) is evaluated at s = ∞.  
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As x tends to infinity, the term with the highest power of x in 
(19) which is x2m will dominate. This leads to (20). 
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Equation (17) provides the expression for bm. We evaluate 
the sign of N(s) at the origin by substituting c1 = 0 into (3). 
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Observe that  
 1  as 0k kx x x   (22) 
Hence, the term with the lowest power of x in (21) which is 
x2q* will dominate due to (22). 
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Note that an expression for this coefficient can be obtained by 
substituting q* for m in (17). 
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Taking the product of the sign or sign limits at 0 and ∞ using 
(20) and (23) yields (18), restated below: 
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There is a class of multi-DoF undamped flexible LTI 
system for which q* = 0 for any actuator and sensor location 
and mass stiffness distribution [32]. A change in the parity of 
number of zeros in Segment 3 indicates that odd number of 
zeros may have migrated (i) From/to Segment 2 to/from 
Segment 3 leading to transition from MMP to RNMP zeros or 
vice-versa (ii) From/to Segment 4 to/from Segment 3 leading 
to transition from MMP to RNMP zeros or vice-versa.  
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D. Parity of number of zeros between 0 and j1 on the 
imaginary axis   

Result 4: In a multi-DoF undamped flexible LTI system 
whose transfer function is given by (2), the parity of 
number of zeros between the origin and the first pole, 
given by j1 on the imaginary axis is given by (25). 
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Proof: Express the transfer function G(s) as the sum of 
two transfer functions. 

 

   

   
 

1
1 2 2

1

1
1 2 22

1

where 
n i

i
i

G s G s
s

N s
G s

D s s







 


 


 (26) 

Next, the sign of the numerator of G(s) which is given by 
N(s) is evaluated at s = j1 as shown in (27). 
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Observe that 
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Substituting (28) into (27) yields 

     1 1sgn sgnN j   (29) 

Now the sign of N(s) will be evaluated at j0, by 
substituting for c1 in (3) 
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Based on the procedure followed in (21) and (22) in 
Section III-C, (30) can then be simplified to (31) as 
shown below.  
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Taking the product of the sign or sign limits at j0 and j1 
using (29) and (31) yields (25), restated below: 
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A change in the parity of number of zeros in Segment 
4 indicates that odd number of zeros may have migrated (i) 
To/From Segment 1 from/to Segment 4 which suggests 
pole-zero flipping close to the frequency 1 (ii) To/From 
Segment 3 from/to Segment 4 leading to transition from 
MMP to RNMP zeros or vice-versa.  

IV. CONCLUSION AND FUTURE RESEARCH 

This paper investigates the distribution of zeros with 
respect to the poles on the imaginary and real axes of the s-
plane for a multi-DoF undamped flexible LTI system. The 
investigation is carried out by dividing the imaginary and real 
axis into four distinct segments and deriving the parity of 
number of zeros in each segment as a function of system 
parameters – modal residues and modal frequencies. Result 1 
leads to the necessary and sufficient condition for pole-zero 
flipping to occur on the imaginary axis. It is found that pole-
zero flipping on the imaginary axis occurs if and only if the 
modal residue corresponding to the pole (i.e. modal 
frequency) undergoes a change in sign. This necessary and 
sufficient condition will enable informed physical design 
choices like stiffness and mass distribution and actuator and 
sensor placement in order to guarantee the elimination of 
pole-zero flipping that tend to destabilize the controller and 
plant dynamics in closed loop.  Results 2, 3 and 4 provide 
certain mathematical conditions for the transition of odd 
number of MMP zero pairs to odd number of RMP – RNMP 
zero pairs and vice-versa.  

Results 1, 2, 3 and 4 also enable the derivation of a 
sufficient condition for the elimination of NMP zeros in multi-
DoF undamped flexible LTI systems. The derivation of this 
sufficient condition will be covered in a future research paper. 
However, the steps for the derivation are discussed here 
briefly. Result 1 enables the derivation of a sufficient 
condition in terms of the sequence of modal residue signs that 
guarantee the elimination of only CNMP zeros from the 
transfer functions of multi-DoF undamped flexible LTI 
systems. Considering the derived sufficient condition for the 
elimination of only CNMP zeros holds true, Results 2, 3, and 
4 enable the derivation of the necessary and sufficient 
condition for the elimination of RNMP zeros, therefore 
leading to a sufficient condition that guarantee the elimination 
of all types of NMP zeros. It will be shown via numerical 
simulations in the future papers that this sufficient condition 
will enable informed physical design choices like stiffness and 
mass distribution and actuator and sensor placement. These 
choices will guarantee that the elimination of all types of 
NMP zeros which are detrimental to the dynamic performance 
of multi-DoF undamped flexible LTI systems. 
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