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ABSTRACT 

This paper presents a model to explain complex non-
minimum phase (CNMP) zeros seen in the non-collocated 
frequency response of a large displacement XY flexure 
mechanism, which employs multiple double parallelogram 
flexure modules (DPFM) as building-blocks. Geometric non-
linearities associated with large displacement along with the 
kinematic under-constraint in the DPFM, lead to a coupling 
between the X and Y direction displacements. Via a lumped-
parameter model that captures the most relevant geometric non-
linearity, it is shown that specific combinations of the operating 
point (i.e. flexure displacement) and mass asymmetry (due to 
manufacturing tolerances) give rise to CNMP zeros. This model 
demonstrates the merit of an intentionally asymmetric design 
over an intuitively symmetric design in avoiding CNMP zeros. 
Furthermore, a study of how the eigenvalues and eigenvectors 
of the flexure mechanism vary with the operating point and 
mass asymmetry indicates the presence of curve veering when 
the system transitions from minimum phase to CNMP. Based on 
this, the hypothesis of an inherent correlation between CNMP 
zeros and curve veering is proposed. 
 
1. INTRODUCTION AND MOTIVATION  

This research investigation is motivated by the need to 
achieve large range, high precision, and high speed – all 
simultaneously – in multi-axis flexure-based motion systems  
[1, 2]. Such capability is of practical importance in various 
applications such as compact and affordable motion stages for 
semiconductor wafer inspection [3] and MEMS scanners for 
high speed imaging [4]. Flexure mechanisms are well-suited for 
these applications because of their joint-less construction and 
inherently high precision due to lack of friction and backlash, 
but present significant tradeoffs between large displacement and 
dynamic performance [5]. 

Large displacement generally implies transverse 
deformation of the constituent beams in the flexure mechanism 

greater than 5% of the beam length. This corresponds to several 
millimeters of displacement or motion range for a desktop size 
flexure-based motion system. The relevant system dynamics 
include natural frequencies, mode shapes, and transfer functions 
between the points of actuation and sensing. The closed-loop 
dynamic performance objectives include high bandwidth, good 
noise and disturbance rejection, good command tracking, small 
steady-state error, fast point-to-point positioning and settling, 
stability robustness, low sensitivity to plant variations, etc. 

While recent results have demonstrated large range as well 
as high precision in multi-axis flexure mechanisms, achieving 
dynamic performance remains a challenge [5, 6]. Fig.1a shows 
an XY nanopositioning system based on a parallel-kinematic 
flexure mechanism, designed to achieve a range of 10mm and 
precision of ±25nm per axis. This mechanism employs a 
systematic and symmetric layout of eight double parallelogram 
flexure modules (DPFM). This design provides: a high degree 
of geometric decoupling between the X and Y motions of the 
motion stage resulting in large unconstrained motion range; 
actuator isolation that allows the use of large-stroke single-axis 
actuators (X Actuator and Y Actuator); a complementary end-
point sensing using commonly available sensors (e.g. Sensor 1 
and Sensor 2 for the X direction). For reference, relevant 
dimensions of this flexure mechanism are summarized in the 
Appendix. 

There are many factors that make the dynamics of such a 
flexure mechanism challenging. Large displacements lead to 
geometric non-linearities in flexure mechanics. Given their 
dependence on displacement, these non-linearities (and their 
impact on system dynamics) vary with the operating point of the 
flexure mechanism. Furthermore, large displacements require 
relatively low stiffness in the motion directions and therefore 
low natural frequencies of the first few modes. Any attempt to 
achieve a closed-loop bandwidth that is greater than these low 
natural frequencies requires a proper understanding of higher 
order dynamics, which is complicated by the above-mentioned 
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geometric non-linearities. Furthermore, while the symmetric 
layouts (e.g. Fig.1a) help provide large range, cancel undesired 
motions, improve space utilization, and enhance quasi-static 
performance, they also result in multiple closely spaced modes 
that are highly sensitive to manufacturing tolerances. This 
results in parametric uncertainty in the system dynamics. 

Fig.1b shows an experimental measurement of the non-
collocated X direction frequency response from force input Fx 
to the displacement output Xms, for different values of Y 
displacement (Yms = 0, 1.5, 3 mm) [5, 7]. One may notice that 
there are multiple closely spaced modes around 150Hz. These 
correspond to the natural frequency of the secondary mass in 
each DPFM (discussed further in Section 3). It is also 
noteworthy that the X direction frequency response changes 

with the Y direction operating point. At the operating points yms 
= 1.5 and 3mm, the frequency response shows an additional 
phase drop of 360° and 720°, respectively, near 150 Hz 
compared to the nominal operating point yms = 0. The 
magnitude and phase below and above 150 Hz remains the 
same for all the operating points. Such observation cannot be 
explained by minimum phase zero pairs. Thus such phase drop 
is due to CNMP zero pairs on the right half plane. This dynamic 
response was unexpected and the existence and number of 
CNMP zeros seemed arbitrary. From closed-loop performance 
stand-point, it is well known that NMP zeros severely limit 
bandwidth, stability robustness, and positioning speed [8, 9]. 
When and why do these CNMP zeros appear? Can they be 
analytically predicted? Do they have physical meaning? Can 
they be avoided via physical system design? Addressing these 
questions is the motivation behind this investigation. 

Section 2 provides an overview of the relevant literature on 
modeling geometric non-linearities in flexure mechanics and 
NMP zeros in the dynamics of flexible systems. Section 3 
presents closed-form kinematic relations to capture the relevant 
non-linearity and coupling in the DPFM. In Section 4, these 
relations are employed in initially investigating the X direction 
dynamics of a simple representative XY flexure mechanism for 
different Y operating points. This simple mechanism has all the 
essential attributes of the more complex XY flexure mechanism 
of Fig.1a, but is more conducive for an initial investigation. A 
closed-form, parametric dynamic model helps predict the range 
of operating points and parametric asymmetry where CNMP 
zeros appear in a non-collocated transfer function of this simple 
flexure mechanism. Similar modeling and CNMP prediction is 
then extended to the XY flexure mechanism of Fig.1a. Section 5 
explores a potential correlation between these CNMP zeros and 
the phenomenon of curve veering, which lends some physical 
insight into the former. The paper concludes in Section 6 with a 
list of contributions and future tasks. One of the key findings is 
that the intentional use of specific parametric asymmetry, which 
is counter-intuitive, helps avoid the CNMP zeros altogether. 
 
2. LITERATURE REVIEW 

In recent years, there has been a growing body of research 
literature on the dynamics of flexure mechanisms. Lan et al. 
[10] presented a distributed-parameter dynamic modeling 
approach of elastic flexure mechanisms. The resulting equations 
of motion in the time domain were solved using numerical 
methods, which are not very suitable for frequency domain 
analysis of complex NMP zeros. Akano and Fakinlede [11] used 
finite element based non-linear analysis to predict the effect of 
design parameters on the dynamic performance of flexure 
mechanisms. While accurate, these methods are 
computationally intensive and provide limited physical insights 
in the frequency domain. Alternatively, lumped-parameters 
closed-form modeling approaches have also been investigated. 
Shilpiekandula and Youcef-Toumi [12] derived a lumped-
parameter dynamic model of a diaphragm flexure using 
Timoshenko beam theory, but did not include geometric non-
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Fig.1 a. Large-displacement XY Nanopositioning System 

b. X-Direction Frequency Response 
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linearities. Awtar and Parmar [5] captured the non-linear 
variation in the stiffness of flexure building blocks to create a 
lumped-parameter dynamic model of a XY flexure mechanism 
(Fig.1a), but did not capture the non-linear coupling between X 
and Y directions in a DPFM and therefore were unable to 
predict the NMP behavior seen experimentally (Fig.1b). The 
pseudo-rigid-body approach has also been used for modeling 
the non-linear dynamics of flexure mechanisms [13-15]. While 
this approach leads to simple lumped-parameter closed-form 
models, the model parameters are computed via numerical 
optimization and depend on the boundary conditions of each 
beam, thereby increasing the modeling complexity in flexure 
mechanisms that have a large number of beams. 

Dynamic modeling of rigid link mechanisms with inherent 
flexibilities, e.g. robotic manipulators, has also been an active 
area of research. An overview and classification of various 
modeling approaches is found in the review paper by Dwivedy 
and Eberhard [16]. Research in this area includes the study of 
manipulators with one or more flexible links as well as one or 
more flexible joints. Various methods including finite elements, 
assumed modes, lumped parameter, and inverse dynamics have 
been adopted to study the relevant dynamics. This body of work 
assumes small deformation of the links, compared to rigid body 
motion, which is justified since the links are designed to be stiff. 
However, this assumption fails for flexure mechanisms that 
provide large deformation in their motion directions. 

The large deformation of constituent elements or beams in 
a flexure mechanism results in geometric non-linearities arising 
from arc-length conservation, cross-sectional warping, trapeze 
effect, and Wagner’s effect in beam mechanics [17-23]. The 
impact of these non-linearities on the dynamics of flexible 
beams and structures has been studied extensively, as reported 
in the review papers by Modi [24] and Pandalai [25]. 
Furthermore, the dynamics and control of flexible beams with 
an end-mass [26] as well as rotating beams [27] have also been 
investigated. In further generalization, DaSilva formulated the 
non-linear differential equations of motion for Euler-Bernoulli 
beams experiencing flexure along two principal directions, 
along with torsion and extension [28]. Jonker has formulated a 
highly generalized model for spatial beams taking into account 
relevant non-linearities, using finite element based multi-body 
dynamics computations [19, 29]. Nayfeh modeled the non-
linear transverse vibration of beams with properties that vary 
along the length [30]. Zavodney and Nayfeh studied the non-
linear response of a slender beam with a tip mass to a principal 
parametric excitation [31]. Moeenfard studied the in-plane 
flexural and axial vibration of a flexure beam with a tip mass 
while accounting for the non-linearity associated with arc length 
conservation [32]. While the resulting non-linear equations of 
dynamics are solved in time-domain via perturbation, 
homotopy, or computational methods, this prior work [32] does 
not pursue the frequency domain investigation relevant to the 
present work. 

Separately, there exists a significant body of work in the 
frequency domain dynamics of lumped or distributed parameter 

flexible systems [33-35]. It has been shown that lightly damped 
flexible systems with collocated sensor and actuator have 
alternating poles and zeros along the imaginary axis and are 
easy to stabilize in closed-loop [36, 37]. Non-collocated 
systems do not share these attributes and, under certain 
conditions, exhibit real non-minimum phase (NMP) zeros in the 
right half plane [38-40]. Spector and Flashner [38] studied the 
sensitivities of beam cross-section, material properties, and 
sensor placement on the locations of poles and zeros in flexible 
systems. They showed that as the sensor placement is moved 
away from the actuator, the conjugate zeros, originally located 
along the imaginary axis, migrate towards infinity and then 
reappear along the real axis. Miu [39] provided a physical 
explanation for these real NMP zeros stating that they are 
related to the non-propagation of energy within the structural 
subsystem confined by the actuator and sensor. Unlike real 
NMP zeros, CNMP zeros are relatively rare and have been 
reported in the context of a non-collocated acoustical transfer 
function of a room [41], as well as in a non-collocated transfer 
function of a lumped parameter spring-mass system [42, 43]. 
Awtar identified CNMP zeros arising due to an electromagnetic 
coupling between a DC motor and tachometer used in a servo-
system [44]. These studies on CNMP zeros simply report a 
mathematical or experimental observation, without providing 
further insight into when or why the zeros appear.  
 
3. MODELING GEOMETRIC NON-LINEARITY IN DPFM  

A DPFM, shown in Fig.2, comprises a reference stage, a 
secondary stage, and a primary stage connected via two 
parallelogram flexures in series. This arrangement uses 
geometric reversal to cancel the X direction kinematic error 
motion (i.e. parabolic trajectory) of one parallelogram with that 
of the second parallelogram. In quasi-static operation, these two 
error motions exactly cancel out, resulting in a straight-line 
motion along the Y direction between the primary and reference 
stages while providing high stiffness in the X and Θ axes. 
Furthermore, the DPFM provides large displacement range and 
low stiffness in the Y direction for a given footprint. For a 
building block, these are desirable attributes because they help 
minimize various error motions and enable large motion range 
in the resultant flexure mechanisms [5].  

One of the limitations of the DPFM is that it presents a 
kinematic under-constraint associated with the Y displacement 
of its secondary stage. In quasi-static operation, this under-
constraint adversely impacts the X direction stiffness, as 
reported previously [23]. In dynamic operation, this leads to an 
additional degree-of-freedom (DoF) in the DPFM even though 
it is intended to be a single-DoF building block. Referring to the 
X and Y displacements of the primary and secondary stages 
with respect to the reference stage in Fig.2, the following quasi-
static relations hold [7, 23]:   

 2
0.6 /i j i jX X Y Y L    (1) 

 2
0.6 /j k j kX X Y Y L     (2) 

3 Copyright © 2016 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/D

SC
C

/proceedings-pdf/D
SC

C
2016/50701/V002T17A002/2375505/v002t17a002-dscc2016-9658.pdf by U

niversity of M
ichigan user on 29 August 2019



 

These kinematic relations, which define the X direction 
error motion of the parallelogram flexures, are the result of the 
geometric non-linearity associated with beam arc-length 
conservation. Relative to the reference stage, there are four 
displacement coordinates in the DPFM (i.e. Xi, Yi, Xj, Yj); of 
these, only two are independent because of the above kinematic 
relations. This illustrates the 2 DoFs of the DPFM and its 
under-constraint.  

The above quasi-static relations are based on certain core 
assumptions that may be extended to low-frequency dynamics 
spanning the resonance of the secondary stage of a DPFM with 
respect to the reference and primary stages. In the flexure 
mechanism of Fig.1, this is the frequency range in which 
complex non-minimum phase zeros appear. Since the secondary 
stage mass is small compared to the other stages and the X 
direction stiffness of the beams is relatively high, modes 
associated with beam stretching appear at much higher 
frequencies. This observation justifies the first assumption that 
the individual flexure beams may be treated as inextensible. 
Beam inextensibility also eliminates Θ displacement 
coordinates in the DFPM. Furthermore, in the frequency range 
of interest, the beams are also assumed to be massless, given the 
relatively larger masses of the various stages. This implies that 
the beams deform in the quasi-static S-shape with amplitude 
dictated by the relative Y displacement of the relevant 
parallelogram flexure [22, 23]. At higher frequencies, there will 
be other beam shapes dictated by the resonance of individual 
beams, in which case the above relations will no longer hold.   

Additional assumptions in the dynamic modeling include 
neglecting the out-of-plane displacements (and associated 
modes) and neglecting damping. Beyond arc-length 
conservation, there are several other non-linearities in beam 
mechanics [20, 21], but these are systematically estimated and 
neglected using an order of magnitude analysis [7, 45].  
4.1 DYNAMIC MODELING OF XY MECHANISMS 

The kinematic non-linearity of Eqs. 1 and 2 may be 
incorporated in deriving the equations of motion for a flexure 
mechanism involving the parallelogram or double parallelogram 
flexure modules. To investigate how the frequency domain 

dynamic response varies with the operating point, these non-
linear relations may be linearized about an arbitrary operating 
point. But this potentially holds the risk of premature 
linearization. To test this possibility, we retain the non-linear 
kinematic relations throughout the derivation of the dynamic 
equations of motion and linearize the latter in the end. The 
results prove to be the same as when the kinematic relations 
themselves are linearized at the onset [45]. 

Thus, defining Yij = Yi–Yj, using the subscript “o” to denote 
nominal values at an operating point, and lower case letters to 
denote deviation from these nominal values, Eq.1 becomes:  

   2
0.6 io i jo j ijo ijX x X x Y y      (3) 

Since the nominal values are still related by Eq.1, Eq.3 may 
be linearized for small deviations about the nominal values  

1.2  i j ijo ij ijx x Y y y     (4) 
Here α is a coupling coefficient that depends on the 

operating point Yijo and captures the coupling between the X 
and Y axis displacement coordinates.  

Next, for the purpose of investigating CNMP zeros in XY 
flexure mechanisms that have multiple DPFM building blocks, 
we select a simple representative flexure mechanism shown in 
Fig.3 to initially limit modeling complexity and enable physical 
insights into the observed dynamic phenomena. Yet, this design 
captures all the essential attributes of more complex flexure 
mechanisms (e.g. Fig.1). The layout comprises the smallest 
number of symmetrically placed DPFMs (i.e. two) needed to 
produce multiple (i.e. two) closely spaced modes associated 
with the kinematic under-constraint of the secondary stages (2 
and 3). This mechanism allows stage 1 to displace in the X and 
Y directions. The former is due to the X direction bearings 
(indicated by the rollers) at stages 4 and 5 and the latter is due 
to large bending deformations of the beams in the two DPFM. 
Large deformation leads to the geometric non-linearity and 
associated coupling between X and Y displacements, mentioned 
above. For this mechanism, the operating point is given by a 
static displacement of stage 1 in the Y direction with respect to 
ground (Y1o) caused by a constant force Fy1o. Thus, the non-
collocated transfer from an X direction force P on stage 4 to the 
X displacement of stage 1 (X1) can be investigated for different 
values of Y1o. In fact, this simple mechanism is representative of 
a portion (indicated by the red rectangular outline) of the more 
complex XY mechanism of Fig.1a. 

The five stages have eight displacement coordinates, as 
shown in Fig.3; lower case versions of these coordinates 
represent the respective deviations with respect to an operating 
point. Furthermore, these coordinates are related by four 
kinematic relations (Eq.4), one for each parallelogram. Thus, 
this mechanism has four DoFs (chosen to be x1, y1, y2, and y3 for 
convenience) and is therefore referred to as the simple 
representative 4-DoF (SR4DoF) mechanism in this paper. 

Assuming a lumped parameter Y direction bending stiffness 
for each of the parallelograms (k12, k24, k13, k35), the equations of 
motion for the SR4DoF may be derived to be the following:  
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Fig.2. Double Parallelogram Flexure Module (DPFM) 
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Based on these matrix expressions, one can derive the 
transfer function G(s) from the input force P to output 
displacement x1 for different values of α, which depends on Y1o:   

10.6 oY  (6) 
In the above stiffness matrix, the Y direction bending 

stiffness for each parallelogram (k12, k24, k13, k35) is nominally 
24EI/L3, where E is the bending modulus, L is the beam length, 
and I is the second moment of area about the Z axis [23]. To 
obtain numerical results, we use the same dimensions as those 
for the XY flexure mechanism of Fig.1a (see Appendix). 
Furthermore, although not included in the above derivation, 
small nominal values for damping are assumed to avoid 
singularities in the numerical simulation. Although the SR4DoF 
is intended to be symmetric, there is the possibility for 
parametric asymmetry between (m4 and m5), (m2 and m3), (k4 
and k5), or (k12, k24, k13, and k35) resulting from finite 
manufacturing tolerances. Initially, we assume the parameters 
be perfectly symmetric; but the above lumped parameter model 
allows us to study the impact of asymmetries in Section 4.2.  

The last three of the four predicted modes are shown in 
Fig.4 (relative to the displaced configuration / operating point 
of Fig.3) while all modes are quantified in Table 1. There are 
three key observations: (1) The 1st mode is the ‘rigid body’ 
mode in which all the stages vibrate together in the X direction 
due to springs k4 and k5; (2) The 2nd mode corresponds to the 
primary bending of the beams and resulting Y direction 
vibrations of stages 1, 2, and 3; (3) The 3rd and 4th modes 
correspond to primarily the vibrations of the two secondary 

stages (2 and 3) in the opposite or same directions, respectively, 
with natural frequencies close to each other. 

The 3rd and 4th modes arise due to the under-constrained 
secondary stages in the DPFM. When Y1o = 0 (i.e. α = 0), the 
vibration of the secondary stages does not cause any X direction 
motion of stage 1. Therefore, these two modes are hidden in the 
G(s) transfer function. However, when Y1o ≠ 0, the X and Y 

Y
X

(a) 2nd mode

(b) 3rd mode

(c) 4th mode

 
Fig.4 Mode shapes of the SR4DoF 
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Fig.3 Simple Representative Flexure Mechanism 
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displacements of the DPFMs get coupled, which affects the 3rd 
and 4th modes differently. For the 3rd mode, the Y vibration of 
the two secondary stages is coupled to the X vibration of stage 
1. However, in the 4th mode, the two secondary stages have the 
same vibration magnitude and phase in the Y direction, which 
results in a cancellation of the coupling at stage 1 in the X 
direction. Instead, the coupling results in X direction vibrations 
at stages 4 and 5 (Fig.4c). Thus, when parameters are symmetric 
but Y1o ≠ 0, the 3rd mode shows up in the G(s) transfer function 
(from P to x1) while the 4th mode remains unobservable. 
 
4.2. PARAMETRIC ASYMMETRY AND CNMP ZEROS 

While the SR4DoF was assumed to be perfectly symmetric 
so far, some parametric asymmetry is inevitable in a practical 
situation due to manufacturing tolerances. Using the above 
lumped parameter model, we varied parametric asymmetry over 
a ± 5% range for (m4 and m5) and (k4 and k5). This did not have 
much of an effect on the flexure mechanism dynamics in terms 
of mode shapes and transfer functions. But an asymmetry in 
(k12, k24, k13, and k35) or (m2 and m3) impacts the vibrations of 
the secondary stages (i.e. 3rd and 4th modes) and therefore the 
overall flexure mechanism. Of the two sets of parameters, the 
mass parameter is more sensitive. When the DPFM is used as a 
building block, its secondary stage size and mass are minimized 
to reduce footprint and raise the resonance frequency at which it 
vibrates. For example, in the XY flexure mechanisms of Fig.1a 
and Fig.3, the nominal mass of the secondary stage is 18g. 
Therefore, even a small additional mass such as 0.9g results in a 
relatively large variation (5%). Therefore, in this section, we 
investigate how an asymmetry in masses, ∆m23 (= m2/m3 – 1), 
affects the dynamics of SR4DoF.  

As seen via the respective eigenvectors in Table 1, the 
impact of non-zero ∆m23 on the 1st and 2nd modes is minimal. 
This mass asymmetry primarily impacts the vibration of the two 
secondary stages, which directly influence the 3rd and 4th modes. 
As noted earlier, the 4th mode of the SR4DoF flexure 
mechanism is hidden in the transfer function G(s) for any Y1o 
(zero or non-zero) when ∆m23= 0. However, for a small 
parametric asymmetry, e.g. ∆m23= 5%, the two secondary stages 
have different vibration magnitudes as seen in the eigenvector 
in Table 1. Thus, the X direction coupling no longer cancels out 
at stage 1 and the 4th mode appears in G(s). Similarly, the 
impact of ∆m23 = 5% on the 3rd mode is significant.  

G(s) is plotted in Fig.5 as Y1o varies from 0% to 5%, for 
∆m23 = 0% and 5%. Key observations are: (1) As expected, the 

3rd mode is hidden when ∆m23 = 0 but appears when ∆m23 = 
5%; (2) The natural frequencies of the 3rd and 4th modes drop as 
Y1o increases. As the X vibration of stage 1 gets increasingly 
coupled with the Y vibration of the secondary stages, the modal 
mass increases more than the modal stiffness, resulting in 
reduced natural frequencies; (3) A 360° phase drop is observed 
at around 150 Hz in the asymmetric case (∆m23 = 5%) when Y1o 

= 5% but not in a symmetric case (∆m23 = 0%). In the latter 
case, the phase drop due to the complex pole pair (3rd mode) is 
off-set by a phase rise due to the complex zero pair (“valley”), 
resulting in no net phase drop. For the asymmetric case, there 
are two stable complex pole pairs (3rd and 4th modes), each 
contributing 180° phase drop. But since the overall phase drop 
is 360°, this implies that there is no phase rise or drop at the 
“valley” even though there are two pairs of complex zeros at in 
this frequency region (~153 Hz). This indicates the presence of 
a quartet of complex zeros, with one pair in the left half plane 
and the second pair in the right half plane, thereby contributing 
no net phase change. This is an important observation because it 
suggests that CNMP zeros can arise at certain combinations of 
operating points and parametric asymmetry. 
 
4.3. EXISTENCE OF CNMP ZEROS 

Next, we proceed to analytically determine the conditions 
under which CNMP zeros arise. Based on modal 
decomposition, the transfer function G(s) may be written as 

Table 1. Eigenvectors of the SR4DoF Mechanism at Operating Point Y1o=5% of L 

∆m23=0% 
f1=18.2 

Hz 
f2=27.6 

Hz 
f3=153.2 

Hz 
f4=154.3 

Hz ∆m23=5% 
f1=18.2 

Hz 
f2=27.6 

Hz 
f3=150.1 

Hz 
f4=153.9 

Hz 
x1 0.9999 0 -0.0231 0 x1 0.9999 -0.0000 -0.0189 -0.0139 
y1 0 0.8075 0 0.0481 y1 0.0000 0.8073 0.0294 -0.0387 
y2 0.0068 0.4171 -0.7069 -0.7063 y2 -0.0068 0.4176 -0.9845 0.1384 
y3 -0.0068 0.4171 0.7069 -0.7063 y3 0.0068 0.4169 0.1718 0.9895 
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Fig.5 G(s) transfer function for different operating points 

(Y1o) and mass asymmetry (∆m23) 
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follows, where βi is the modal residue and ωi is the 
corresponding natural frequency:  

2 3 24
3 2 1 0

2 2 4 3 2
1 4 3 2 1 0

( )( )
( )

u s
i

i i

b u b u b u b N uG s
D us a u a u a u a u a




  
  

    


 (7) 

The decomposed form can also be expressed via a 
numerator N(u) and a denominator D(u), each a polynomial. 
Note that there are no odd power s terms because damping is 
ignored. If N(u), which is a cubic polynomial, has two complex 
conjugate roots, then G(s) will have a quartet of complex zeros. 
Two of these zeros will be in the right half plane (i.e. CNMP 
zeros). For this to happen, the following inequality in the 
coefficients of N(u) has to hold [46]: 

3 2 2 3 2 2
3 2 1 0 2 0 2 1 3 1 3 018 4 4 27 0b b b b b b b b b b b b       (8) 

Therefore, this is the mathematical condition for the 
existence of CNMP zeros in the G(s) transfer function. Shown 
in Fig.6, Δ is plotted in a contour map against a range of 
operating points and parametric asymmetry values for the 
SR4DoF flexure mechanism. The color in the contour map 
represents the magnitude of Δ: red represents higher positive 
values, blue represents lower positive values, and the black 
region represents the conditions for which Δ becomes negative, 
indicating the presence of CNMP zeros. This particular 
mechanism is seen to be very sensitive to positive asymmetry, 
i.e., if m2 is greater than m3 even by a small amount, then 
CNMP zeros arise in specific ranges of Y1o. However, if m2 < 
m3, then the entire operating range is free of CNMP zeros. The 
reason for such asymmetric behavior is due to the physical 
asymmetry introduced by the actuator placement in Fig.3). 

With this finding, we are able to replicate via modeling 
some aspects of the NMP phenomenon previously observed 
experimentally (Fig.1b). Although, for this study we 
intentionally chose the SR4DoF mechanism to keep modeling 
complexity and assumptions minimal, it is representative of the 
more complex designs in that it incorporates the key attributes 
of DPFM building blocks (with their under-constrained 
secondary stages), geometrically symmetric design, large 
displacements leading to non-linear coupling  between axes, 
non-collocated transfer functions, and parametric asymmetry.  

In the design of multi-DoF flexure mechanisms, it is a 
common guideline to employ symmetric and/or periodic 
geometries to cancel undesired motion, improve space 
utilization and enhance quasi-static performance [1]. However, 
the above dynamic model for the SR4DoF mechanism indicates 
that a perfectly symmetric layout is sensitive to parametric 
asymmetry, which is likely to occur due to manufacturing 
tolerances and can give rise to CNMP zeros. But if the design is 

intentionally made asymmetric (i.e. if ∆m23 is sufficiently 
negative), then CNMP zeros can be avoided even if there are 
finite manufacturing tolerances.  

This also shows that one can choose the springs in the 
flexure mechanism (i.e. beam flexures dimensions and layout) 
to be symmetric to achieve the desired quasi-static performance, 
while choose certain masses to be asymmetric which provides 
the desired dynamic performance without impacting quasi-static 
performance. This combination of symmetry in certain 
attributes and asymmetry in others is rather counter-intuitive but 
helps meet both quasi-static and dynamic performance goals.  

With CNMP zeros thus eliminated via physical design, we 
also create the possibility of achieving closed-loop bandwidth 
higher than 150Hz, while maintaining robustness, in the 
SR4DoF flexure mechanism. This would have been impossible 
in the presence of CNMP zeros at around 150Hz.  
 
4.4. MODELING A COMPLEX XY MECHANISM 

So far, we modeled the SR4DoF flexure mechanism to 
predict CNMP zeros at around 150 Hz. Next, we extend this 
modeling approach to the more complex (and practically 
relevant) XY flexure mechanism of Fig.1a. The transfer 
function X actuator force Fx to the X displacement of the 
motion stage Xms is investigated. The Y actuator is used to 
provide a constant force Fyo to achieve various Y direction 
operating points Ymso. There are 13 rigid stages in this case, 
each with an X and Y displacement coordinate.  Each of the 16 
parallelogram flexures provides one kinematic relation between 
relative X and Y coordinates. Therefore, the model has 10 
independent DoFs, which results in the same number of 
equations of motion, natural frequencies, and mode shapes. 
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Fig. 6 Contour Map of ∆ function 

Table 2. Deviations of Masses that Cause Different Phase Drops 

Phase Drop Yms 

(% of L) 
% deviation in masses 

ma mb mc md me mf mg mh 
0 0 0 0 0 0 0 0 0 0 

360 4.88 -8.16 13.10 8.57 -13.21 -13.24 0.66 -4.80 -13.12 
720 9.54 8.47 12.08 -14.19 -12.78 6.59 -2.42 14.97 5.14 
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There is a “rigid body” X vibration mode, a “rigid body” Y 
vibration mode, and eight modes associated with the vibration 
of the secondary stages (all around 150Hz) in the eight DPFM. 
Next, we arbitrarily vary these secondary stage masses with 
respect to their nominal value, and use the model to predict the 
0° / 360° / 720° phase drop seen in Fig.1b and the existence of 
CNMP zeros. The secondary stages are identified by the 
subscript a-h, as shown in Fig.1a. We present three cases in 
Table 2 with different combinations of secondary stage mass 
variations that result in the three different phase drops. Thus, we 
are able to analytically predict the seemingly unexplained 
phenomena observed experimentally in Fig.1b.  
 
5. POSSIBLE RELATION BETWEEN CNMP ZEROS 
AND CURVE VEERING 

As noted earlier, the SR4DoF mechanism considered in this 
paper has a symmetric and repetitive geometry, which leads to 
multiple closely spaced modes (i.e., the 3rd and 4th modes shown 
in Table 1). Furthermore, these modes vary with the operating 
point and parametric asymmetry. The operating point 
determines the extent of the cross-axis coupling between X and 
Y displacements, thus building a connection between the 3rd and 
4th modes. All these features make the phenomenon of curve 
veering (or mode veering) potentially relevant in this study.  

Curve veering occurs when the eigenvalue loci of two 
closely spaced modes in a system approach each other and then 
diverge, as a result of parameter variation [47]. The point in the 
parameter space where the two modes are the closest is called 
the veering point. The special case when the two modes 
intersect at the veering point is called mode crossing [48]. In the 
vicinity of the veering point, eigenvectors undergo dramatic 
changes. As a result, the system could become so-called 
“critically configured” meaning that small changes in a system 
parameter could cause large changes in system response [49]. 

In the SR4DoF flexure mechanism dynamics, we observe 
curve veering close to the operating point and parametric 
asymmetry value at which the CNMP zeros arise. Fig.7a shows 
the eigenvalue loci of the 3rd and 4th modes as a function of the 
operating point (Y1o) and parametric asymmetry (∆m23). When 
the structure is completely symmetric (i.e. ∆m23=0), the two loci 
intersect with each other at a frequency of 153 Hz and 
Y1o=6.6%. Graphically (Fig.7a) as well as qualitatively, this is 
mode crossing. When the structure is asymmetric (e.g. ∆m23 > 
0), the two loci do not intersect. Instead, they approach each 
other and then diverge as Y1o increases. Thus the point when 
Y1o=6.6% is the veering point. 

In the 3rd and 4th modes, the Y direction vibrations of the 
two secondary stages (i.e. y2 and y3) are dominant in the 
respective eigenvectors (see Table 1). Therefore, only the 
evolution of y2 and y3 are plotted in Fig.7. Fig.7b shows such 
evolution of the 3rd mode. When ∆m23 = 0 and Y1o = 0, y2 is 0.7 
and y3 is – 0.7 (i.e. opposite directions). When Y1o reaches the 
crossing point, the value of y3 suddenly changes from -0.7 to 0.7 
and stays constant with y2 unchanged (i.e. y2 and y3 become in 

the same direction); in other words, modes 3 and 4 ‘swap’ at the 
crossing point. This transition is more gradual (i.e. without a 
discontinuity) for non-zero ∆m23. Similarly, as shown in Fig.7c, 
in the 4th mode, y2 and y3 change from being in the same 
direction to opposite directions. Note that modes shapes shown 
in Fig.4 correspond to those before curve veering has happened.   

To summarize, the eigenvalues and eigenvectors of the 3rd 
and 4th modes exhibit veering. Furthermore, for the asymmetric 
case (∆m23 > 0) at the veering point, y3 becomes zero while y2 
becomes 1 in the 3rd mode, while opposite happens in the 4th 
mode. This is recognized to be mode localization [50].  

The above analysis shows that curve veering exists in the 
SR4DoF flexure mechanism dynamics. However, the more 
important observation here is that the curve veering happens at 
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about the same operating point (Y1o=6.6%), positive parametric 
asymmetry (∆m23 > 0), and frequency (153 Hz) at which CNMP 
zeros appear (see Figs. 5 and 6). Moreover, the CNMP 
phenomenon and curve veering share the same key factors such 
as closely spaced modes, parametric asymmetry, and mode 
coupling (caused by operating point variation in this case). 
Therefore, we hypothesize that this is not merely a coincidence 
and that there exists a fundamental relationship between these 
two phenomena. If established, this would allow a new physical 
perspective and interpretation of the CNMP phenomenon, and 
may help guide physical system design. 

   
6. CONTRIBUTIONS AND CONCLUSION 

The key contributions of this paper are: (1) A lumped-
parameter modeling approach is proposed to analytically model 
the dynamics of flexure mechanisms comprising the 
parallelogram or double parallelogram modules. This model 
captures the key relevant geometric non-linearity in large 
displacement flexure mechanics. Linearization about any 
arbitrary operating point enables frequency domain analysis; (2) 
Based on this model we are able to predict previously 
unexplained CNMP zeros seen experimentally. The model 
establishes the existence of CNMP zeros under certain 
combinations of operating point and parametric asymmetry in 
the non-collocated transfer function of a simple representative 
XY flexure mechanism; (3) This finding helps generate the 
design insight that, rather than an intuitively symmetric design, 
an intentional asymmetry in mass can avoid CNMP zeros and 
make the system conducive to better dynamic performance.  

In addition, there are several new questions posed by this 
work that are currently being addressed: (1) Experimental 
validation of the analytical predictions such as the CNMP map 
(Fig.6) that can validate the modeling simplifications and 
assumptions. (2) While CNMP zeros were predicted for the 
SR4DoF as well as the full XY flexure mechanisms, these 
results are mathematical; greater physical insight into what 
causes the CNMP zeros is desirable. (3) The potential 
correlation between CNMP zeros and curve veering was based 
on observations in this paper but needs to be investigated 
scientifically. (4) Based on the findings of this paper, physical 
and control system design can be explored to achieve the 
originally stated dynamic performance goals of large range, 
high precision, and high speed.  

This overall investigation may have relevance not just to 
the XY flexure mechanisms considered in this paper but also to 
a broader range of flexible systems. 
 
APPENDIX 

Dimensions and Physical Parameters 
Name Symbol Value Unit 

Beam length L 47.5 mm 
Beam height H 25 mm 

Beam thickness T 0.625 mm 

Young’s modulus (aluminum) E 6.9×1010 N/m2 

Second moment of area I 5.09×10-4 mm4 

Poisson’s ratio ν 0.33  
Motion stage mass m1 0.284 kg 

Secondary stage mass m2, m5 0.018 kg 
Intermediate stage mass m3, m4 0.177 kg 

Spring stiffness k3, k4 4.4×103 N/m 
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