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ABSTRACT  

The objective of this work is to analytically study the non-
linear dynamics of beam flexures with a tip mass undergoing 
large deflections. Hamilton’s principal is utilized to derive the 
equations governing the non-linear vibrations of the cantilever 
beam and the associated boundary conditions. Then, using a 
single mode approximation, these non-linear partial differential 
equations are reduced to two coupled non-linear ordinary 
differential equations. These equations are solved analytically 
using combination of the method of multiple time scales and 
homotopy perturbation analysis. Parametric analytical 
expressions are presented for the time domain response of the 
beam around and far from its internal resonance state. These 
analytical results are compared with numerical ones to validate 
the accuracy of the proposed closed-form model. We expect 
that the qualitative and quantitative knowledge resulting from 
this effort will ultimately allow the analysis, optimization, and 
synthesis of flexure mechanisms for improved dynamic 
performance. 
 
1. INTRODUCTION 

Beam flexures are one of the most important building 
blocks in flexure mechanisms. Flexure mechanisms provide 
guided motion via elastic deformation, instead of employing 
sliding or rolling joints, and are used in a variety of applications 
that demand high precision, minimal assembly, long operating 
life, or design simplicity [1, 2]. Since they exhibit motion 
guidance as well as elastic behavior, flexure mechanisms are 
also well-suited for applications such as single- and multi- axis 
resonators, energy harvesting devices, and high-speed scanners, 
where dynamics is important.  

Large motion range in flexure mechanisms implies large 
elastic deflections of the constituent beams, which in turn give 
rise to geometric non-linearities [1, 3]. Even though sometimes 
ignored, these non-linearities critically influence the dynamic 
characteristics of beams [4]. Depending on the application, the 
relevant dynamic characteristics could include vibrational mode 
shapes, flow of energy between modes, bandwidth or speed of 
response, dynamic range, command tracking, noise and 
disturbance sensitivity, closed-loop stability and robustness, etc. 
As a result, investigating the non-linear dynamical behavior of 
flexure mechanisms is of primary importance in their design. 

In a flexure mechanism, the elastic motion provided via 
flexure beams is transferred to one or more moving stages, 
which can initially be modeled as concentrated masses. In fact, 
many flexure mechanisms can be represented as a system of 
point masses interconnected with beams. Therefore, a logical 

first step in investigating the non-linear dynamics of flexure 
mechanisms is to consider and understand the vibrational 
behavior of a simple beam with a tip mass at its end. Such a 
study is the focus of this paper. 

In general, non-linearities may arise from the geometry of 
deformation or from material properties. Geometric non-
linearity arises from arc-length conservation of the beam and 
large deformation curvatures due to which the linear 
relationship between displacement field and strains no longer 
holds. Material non-linearity occurs when the stresses are non-
linear functions of strains [5]. 

Because of its long, slender geometry, a uniform-thickness 
planar beam flexure may be modeled using the Euler-Bernoulli 
beam theory. This theory assumes that plane cross-sections 
continue to remain plane and normal to the neutral axis after 
deformation [6], and has been successfully utilized to study the 
static,  dynamic, and vibrational behavior of beams. In 
particular, large amplitude vibrations of beams have been 
extensively investigated both theoretically and experimentally 
in the literature. Crespo daSilva [7] formulated the non-linear 
differential equations of motion for Euler-Bernoulli beams 
experiencing flexure along two principal directions, along with 
torsion and extension. Furthermore, Crespo daSilva [8] 
presented a reduced-order analytical model for the non-linear 
dynamics of a class of flexible multi-beam structures. Nayfeh 
[9] modeled the non-linear transverse vibration of beams with 
properties that vary along the length. Zaretzky et al. [10] 
experimentally investigated the non-linear modal coupling in 
the response of cantilever beams. 

The presence of a tip mass on the beam changes the 
differential equations governing its deflection. This is because 
the inertial force exerted on the beam due to the presence of a 
concentrated mass is a function of the deflection itself. Large 
amplitude vibrations of beams with tip mass have also been 
investigated in the literature. Hijmissen and Horssen analyzed 
the weakly damped transverse vibrations of a vertical beam 
with a tip mass [11]. Zavodney and Nayfeh  studied the non-
linear response of a slender beam carrying a lumped mass to a 
principal parametric excitation [12]. But the axial dynamics of 
the beam, which can become important at large deflections, was 
not considered in these formulations. 

This paper presents an analytical investigation of the non-
linear in-plane oscillations of a flexure beam with a tip mass, 
while including axial stretching. The Homotopy Perturbation 
Method (HPM) [13] is employed because it does not depend 
upon the assumption of small parameters in the non-linear 
equations and takes full advantage of the traditional 
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perturbation methods as well as homotopy techniques. HPM 
has been used to investigate non-linear vibrations of beams in 
the recent literature. For example Moeenfard et al. used a 
combination of HPM and the modified Lindstedt-Poincare 
technique to analyze non-linear free vibrations of Timoshenko 
micro-beams [14]. In this paper, HPM is utilized in conjunction 
with the multiple time scale perturbation method to solve the 
non-linear dynamics of a beam with tip mass. 
 

2. PROBLEM FORMULATION 

The beam with tip-mass considered in this analysis is shown 
in Figure 1. The dashed line represents the undeformed state, 
while the solid line represents a general deformed state. The 
gravitational field, if any, is assumed normal to the plane and 
therefore does not affect the planar analysis considered here.  

 
Figure 1 Schematic view of a beam with a tip mass 

As the first step, the equations of motion and boundary 
conditions corresponding to the transverse and axial vibrations 
of a slender beam will be derived using the generalized 
Hamilton’s principle. In the Euler–Bernoulli beam theory, plane 
cross-sections remain plane and perpendicular to the neutral 
axis after deformation, which implies that distortions due to 
shear are neglected. These assumptions are applicable for long 
and slender beams, with length much greater than the thickness 
[6]. Since the beam undergoes large deflections, the non-linear 
strain expression is used for calculating its strain energy.  

The axial strain at a differential element at distance z, along 
the Z direction, from the neutral axis may be expressed as 
follows [15]. 
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where u  and w  are the displacements along X and Z axes, 
respectively. 

Using equation (1), the strain energy of the beam assuming 
linear elastic material properties would be 
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where l is the un-deformed length of the beam, A is the area of 
the cross section, and I is the second moment of the area of the 
cross section about the neutral axis. 

In long slender beams where u(x,t) = O(w(x,t)2), the axial 
inertia of the beam can be ignored compared with the 
concentrated inertial loads applied at the tip of the beam [5]. 
Assuming that axial damping is also negligible, the axial strain 
εxx would remain constant along the neutral axis of the beam. In 
such a condition, the potential energy given in equation (2) can 
be simplified as 
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It can be shown that for an infinitesimal element of the 
beam, the ratio of the rotational kinetic energy to the 
translational kinetic energy is approximately of the order of 
(h/l)2, where h is the in-plane thickness of the beam. Since for a 
long and slender beam h l , the rotational kinetic energy may 
be ignored [5, 6]. Additionally, since in a planar beam flexure, 
u(x,t) is approximately two orders of magnitude smaller than 
w(x,t), i.e. u(x,t) = O(w(x,t)2), the axial kinetic energy of a 
beam element is at least four orders of magnitude smaller than  
its transverse kinematic energy, and therefore may also be  
ignored [5]. Thus, the total kinetic energy is simply given by:  
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where  is the material density and M is the tip mass. 
Assuming that the beam vibrates in viscously damped 

media and assuming that the axial damping is negligible with 
respect to transverse damping, the virtual external work done 
on the beam by distributed damping loads would be  
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where tc  is the damping coefficient per unit length in the 

transverse direction.  
Now using the generalized Hamilton’s principle, the 

equations governing the non-linear dynamics of a beam 
undergoing large in-plane motions and the related geometric 
boundary conditions are obtained as follows. 
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In equation (6),  f̂ x  is the Dirac delta function which is 

used to model the concentrated inertial load at x = l. For 
convenience, the following dimensionless variables are 
introduced. 
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By substituting these dimensionless quantities into 
equations (6) and (7), dropping the hats, assuming that E.I is 
constant with respect to coordinate x, and assuming ρ.A and M 
are constant with respect to time, the following equations may 
be derived: 
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where u(t) is the normalized axial displacement of the tip mass 
and 
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The first mode of a typical system is generally the most 
important one. When the system is excited by a broadband 
signal, most of the input excitation energy is injected into this 
first mode. Assuming this to be the case for the system being 
considered, one may employ the Galerkin projection method 
[5]. Accordingly, the response of the system to an initial 
disturbance can be assumed to be as follows: 
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Here, w(t) is the transverse displacement of the beam tip. 
Furthermore, φ(x) is the first linear un-damped transversal 
vibrational mode of the system. φ(x) can be used as the basis 
function for describing the non-linear behavior of the system. 
For a beam with a tip mass, φ(x) is given by [6]: 

      
   
        

cos cosh

cos cosh
             sin sinh

sin sinh

x x x

x x

  

 
 

 

  






 (15) 

In this equation, β is the absolute value of the smallest 
positive root of equation (16). 
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Substituting equation (14) into equation (10), multiplying it 
by φ(x) and then integrating the resulting equation over the 
dimensionless domain, the following non-linear ordinary 
differential equation is obtained. 
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Furthermore, by substituting equation (14) into equation 
(11), the following equation is obtained for the axial 
displacement of the beam tip. 
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In equations (17) and (18), ci (i = 1 to 5) and d2 are defined 
as follows. 
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In order for the coefficients of equations (17) and (18) to 
appear at the same order, the following dimensionless variable 
is introduced. 

1t   (25) 

Substituting equation (25) into equations (17) and (18),  the 
following equations are obtained. 
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where ωn, Ci’s (i = 1 to 3) and Dj’s (j = 1 to 3) are defined as 
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It should be noted that the natural frequency ωn in equation 
(26) is not the actual frequency but instead a normalized one.  
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3. SOLUTION PROCEDURE 

A beam with a tip mass with characteristics given in Table 1 
is considered. 

Table 1: Characteristics of the simulated beam and its tip mass 

symbol definition value 

E  
Young’s Modulus of elasticity 

of the beam material 
69 GPa  

  Density of the beam material 37800 kg m  

l  Beam’s length 0.15 m  

b  Beam’s width 0.015 m  

h  Beam’s thickness 0.001 m  

M  Tip mass 0.050 kg  

 
To provide a sense of the order of magnitude of the 

intermediate parameters defined in the paper, their values are 
compiled Table 2. 

Table 2: Values of the intermediate parameters 
defined in the analysis. Parameters listed without any 

units represent normalized quantities. 

5 21.5 10A m   1 13.033c   
12 41.25 10 mI   3 13.729c   

21.755 10  kgm    5
4 8.845 10c    

5
1 2.7 10    6

5 1.477 10c    

2 2.849   2 0.598d   
5

1 1.055 10    33.334 10n
   

0.993   2 0.716C   

C1 = 0.001 
3 1.196C   

 
In addition, the damping coefficient Ct is selected such that 

the final damping coefficient becomes C1 = 0.001 (a nominal 
value). For a practical choice of dimensions, as listed in Table 
1, even though the non-normalized natural frequency is finite 
(equal to 37.6 rad/s), the normalized natural frequency n  in 

equation (26) is very small. This is simply a consequence of the 
fact that time is normalized via equation (25) using the natural 
frequency of the axial direction dynamics, given by eq. (18). 

In the next section, HPM is used in parallel with the 
multiple time scale perturbation method to solve the non-linear 
system of ODE’s given in equations (26) and (27). 

 
3-2. SOLUTION PROCEDURE 

Now, HPM is utilized in parallel with the multiple time 
scale perturbation method to derive analytical closed form 
solutions for equations (26) and (27). To do so, the homotopy 
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At this step, the independent variable τ is expanded in terms 
of multiple time scales T0= τ and T1= Pτ so that the first and the 
second time derivatives become 
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The solution of equations (29) and (30) are sought in the 
form 
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By substituting equations (31), (32), (33) and (34) into the 
homotopy forms and equating the coefficients of like powers of 
P, the following equations are obtained. 
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Equations (35) and (36) constitute a system of linear 
ordinary differential equations with constant coefficients and 
their solution can be written as: 
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u T T B T IT B T

IT

 


 (40) 

where A1(T1) and B1(T1) are complex functions and  1 1A T  and 

 1 1B T  are the complex conjugate of A1(T1) and B1(T1) 

respectively. 



 5  

Substituting equations (39) and (40) into equations (37) and 
(38), these equations can be solved easily using the theory of 
linear ODEs. But any particular solution of equations (37) and 
(38), contains a secular term, T0exp(±Iω0T0) and T0exp(±IT0) unless the coefficients of T0exp(IωT0) and T0exp(IT0) in the 
right hand side of equations (37) and (38) are zero respectively. 
Therefore the following equations have to be satisfied in order 
to avoid any secular term in the response. 

   1 1
1 1 1

1

2 0n n

dA T
I I C A T

dT
    (41) 

 1 1

1

2 0
dB T

I
dT

  (42) 

For solving equations (41) and (42), it is convenient to write 
A1(T1) and B1(T1) in the form 

      1 1 1 1 1 1

1
exp

2
A T a T T I  (43) 

      1 1 1 1 1 1

1
exp

2
B T b T T I  (44) 

By substituting equations (43) and (44) into equations (41) 
and (42), making the necessary simplifications and equating 
both the real and imaginary parts of these equations with zero, 
the following equations are obtained. 

   1 1
1 1 1

1

1
0

2

da T
C a T

dT
   (45) 

 1 1

1

0
d T

dT


  (46) 

 1 1

1

0
db T

dT
  (47) 

 1 1
1

1

0
d T

b
dT


  (48) 

Equations (45) to (48) can be solved consequently and the 
results would be as follows. 

 1 1 1 1 1

1
exp

2
a T a C T

   
 

 (49) 

 1 1 1T   (50) 

 1 1 1b T b  (51) 

 1 1 1T   (52) 

Using equations (39), (40), (43), (44), (49), (50), (51) and 
(52), w0(T0,T1) and u0(T0,T1) are obtained as follows. 

   0 0 1 1 1 1 0 1

1
, exp cos

2 nw T T a C T T     
 

 (53) 

   0 0 1 1 0 1, cosu T T b T    (54) 

As seen later, a zero order approximation is sufficient for 
predicting the time domain behavior of w(τ), but for accurate 
prediction of the behavior of

 
u(τ)

 
at least a first order 

perturbation approximation is required. So, by substituting 
equations (53) and (54) into equation (38) and solving the 
resulting equation, u1(T0,T1) is obtained as equation (55).  

     2
0 11 1 1 1

1 0 1 2

cos 2 2exp
, 1

2 1 4
nTD a C T

u T T
 


   

   
 (55) 

By substituting T0 = τ into equation (53) and substituting 
equations (54), (55), P = 1, T0 = τ and T1 = τ into equation (34), 
the zero order and first order approximate solutions for w(τ) and 
u(τ), respectively, are obtained as follows. 

   1 1 1

1
exp cos

2 nw a C        
 

 (56) 

     

 

2
1 1 1

1 1

1
2

exp
cos

2

cos 2 2
                         1

1 4
n

D a C
u b


  

  


 
  

 
   

 (57) 

Figure 2 and Figure 3 compares the result of the presented 
analytical model with the numerical simulation for an un-
damped and a damped system respectively. It is observed that 
when there is no internal resonance in the system, the analytical 
results well follow the numerical ones and as a result, the 
presented analysis can be used to investigate the dynamics of 
flexure beams in flexure mechanisms. 

In Figure 2 (b) and Figure 3 (b), the normalized axial 
displacement is composed of a large-amplitude, low-frequency 
component and a small-amplitude, high-frequency component. 
The former is due to the effect of the transverse vibration of the 
beam on its axial vibration while the latter is the direct conse- 

 

 
Figure 2 Comparison of analytical results with numerical 

simulations for an un-damped system with initial conditions 
w(0) =0.1 and u(0)= ‒ 0.006.  
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Figure 3: Comparison of the analytical results with numerical 
simulations for a damped system with C1 = 0.001 and initial 

conditions w(0) =0.1 and u(0)= ‒ 0.006.  

quence of the large axial stiffness of the beam. Zoomed views 
of the latter component are shown in Figure 4. At higher values 
of normalized time, the difference between the results is due to 
a slight difference between the frequency of the numerical and 
analytical solutions. 

Next, one may mathematically analyze the case when ωn is 
close to 1/2, which represents a condition of internal resonance 
in the system of non-linear ordinary differential equations given 
by (26) and (27). It is important to note that this normalized 
value of n actually corresponds to a natural frequency of 5874 
rad/sec. At such large frequencies, the approximations made in 
deriving equations (26) and (27) break down. To accurately 
analyze the dynamics of the system in this frequency range, 
several transverse and axial modes will need to be considered 
and the axial kinetic energy cannot be ignored. Therefore, 
solving the above equations for the case when ωn ≈ 1/2 is a 
strictly mathematical exercise and of little physical relevance. 
Nevertheless, a closed-form solution is presented here for the 
sake of completeness.  

In the case ωn ≈ 1/2, the nearness of ωn to 1/2 can be 
expressed as follows. 

1

2n P    (58) 

which leads to 

   0
0 1exp exp exp

2n

IT
I T I T      

 
 (59) 

 

 

 

Figure 4: Zoomed view of the normalized axial displacement 
(a) Un-damped system, and (b) Damped system, C1 = 0.001 

     0 0 1exp exp 2 exp 2nIT I T I T      (60) 

By using equations (39) and (40) and substituting equations 
(59) and (60) into the right hand side of equations (37) and (38) 
respectively, the terms capable of producing secular terms are 
obtained as 

   1 1
1 1 1

1

2 0n n

dA T
I IC A T

dT
    (61) 

     21 1
1 1 1 1

1

2 exp 2 0
dB T

I D A T I T
dT

   (62) 

Substituting equations (43) and (44) into equations (61) and 
(62) and equating the real and imaginary parts to zero gives 

   1 1
1 1 1

1

1
0

2n n

da T
C a T

dT
    (63) 

 1 1

1

0
d T

dT


  (64) 

     

  

21 1
1 1 1 1 1

1

1 1 1

1
sin 2

4

2 0

db T
D a T T

dT

T T



 



  
 (65) 

       

  

21 1
1 1 1 1 1 1 1

1

1 1 1

1
cos 2

4

2 0

d T
b T D a T T

dT

T T




 

 

  
 (66) 
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Equations (63) to (66) can be transformed into an 
autonomous system by letting 

     1 1 1 1 1 1 12 2T T T T       (67) 

The results are 
   1 1

1 1 1
1

1

2

da T
C a T

dT
   (68) 

   1 1 1

1 1

2
d T d T

dT dT

 
   (69) 

      21 1
1 1 1 1

1

1
sin

4

db T
D a T T

dT
   (70) 

        21 1
1 1 1 1 1 1

1

1
cos

4

d T
b T D a T T

dT


  (71) 

By solving equations (68) to (71), one can find a1(T1), 
γ1(T1), b1(T1) and β1(T1). 

After eliminating secular terms, the solution of equations 
(37) and (38) becomes 

 1 0 1, 0w T T   (72) 

   2

1 0 1 1 1 1

1
,

2
u T T D a T   (73) 

Using equations (53), (54), (72) and (73), the final solution 
for w(τ) and u(τ) would be 

   1 1 1 0 1

1
exp cos

2 nw a C T       
 

 (74) 

        2
2 1 1 1 1 1

1
exp cos

2
u D a C b           (75) 

 
4. CONCLUSION 

The importance of analytically studying the dynamics of 
flexure mechanisms to better inform their design and 
optimization is well-recognized. However, such an 
investigation is complicated by the fact that in many 
applications, geometric non-linearities in flexure mechanics 
play an important role in the dynamics of the system. As a 
starting point in a broader investigation, we have modeled a 
simple beam flexure with a tip mass in this paper and analyzed 
its large amplitude in-plane oscillations. In particular, axial 
stretching and geometric non-linearity associated with arc-
length conservation are included. Analytical zero-order and first 
order expressions for the beam tip displacement have been 
derived and presented. Comparison of these analytical results 
with the numerical simulations was used to validate the 
accuracy of the presented closed-form solution approach. While 
the approximations and assumptions made in this solution 
approach are justified by physical and mathematical arguments, 
the final results are yet to be validated via experimental 
measurements. In addition to experimental validation, our on-
ongoing research effort includes extending the above analysis 
approach to include greater number of modes shapes in a single 
beam with tip mass and to more complex flexure modules and 
mechanisms. 
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