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Abstract: This paper presents an accurate tachometer model that takes into account the 
effect of magnetic coupling in a DC motor-tachometer assembly. Magnetic coupling 
arises due to the presence of mutual inductance between the tachometer winding and the 
motor winding (a weak transformer effect). Tachometer feedback is widely used for 
servo-control of DC motors, which can suffer from closed-loop instability due to the 
presence of compliant components in the drive system. It is essential to have an accurate 
sensor model to predict and address these resonance related problems. The inadequacy of 
the conventional tachometer model, which treats the DC tachometer as a ‘gain’, is pointed 
out. The exact tachometer model identified in this paper is incorporated in the modeling 
of a system that has multiple flexible elements, and is used for parameter identification 
and feedback motion cont rol. The effect of the tachometer dynamics on controller design 
is discussed in terms of system poles and zeros. 

 
 
 
 

 
1. INTRODUCTION 

 
Closed-loop servo control of DC motor-load systems 
is a very common industrial and research application. 
Very often DC tachometers are used to provide 
velocity feedback for motion control (McLean, 1978; 
Ogata, 1998). In the presence of flexible elements in 
the system, e.g., a compliant motor-load shaft or a 
flexible coupling, this exercise in servo control 
becomes quite involved since finite stiffness can 
cause close-loop instability leading to high frequency 
ringing (Welch, 1992). This is a highly undesirable 
phenomenon that can be eliminated by means of 
appropriate controller design. But, to be able to 
predict and eliminate this high-frequency resonance 
problem, it is essential to have an accurate model for 
the entire system including the sensor.  
 
There are papers in the literature that discuss the 
control system design for systems with mechanical 
flexibilities in terms of colocated and noncolocated 
controls (Cannon, 1984; Franklin, 1994). Most of 
these discussions assume that a ‘perfect’ position or 

velocity signal is available for feedback and that 
sensor dynamics is negligible. Such an assumption 
might be acceptable for routine applications, but can 
become questionable for high-performance 
applications.  
 
The conventional tachometer model (McLean, 1978) 
does not recognize any sensor dynamics and treats 
the tachometer as a simple ‘gain’. When high -speed 
and high-precision motion control is desired using an 
integrated motor-tachometer assembly, the 
conventional model proves to be of little use in 
predicting the system response for high frequencies. 
This paper presents an accurate tachometer model 
that takes into account the effect of a weak mutual 
inductance between the tachometer winding and 
motor winding. This magnetic coupling phenomenon 
leads to noticeable sensor dynamics. The exact 
tachometer dynamics thus identified is then 
incorporated in the modeling of a system that has 
multiple shaft flexibility, and is used for parameter 
identification and feedback motion control. 



 

Predictions using this new model are in excellent 
agreement with experimental results. 
 
It is found that the above-mentioned tachometer 
dynamics introduces some additional zeros in the 
open-loop transfer function of the system, which can 
significantly influence the controller design for 
eliminating closed instability.  
 
 

2. EXPERIMENTAL SET-UP 
 

To study and analyse the close-loop instability 
problem in DC motor servo systems, an experimental 
test set -up, which consists of an integrated permanent 
magnet DC motor-tachometer unit, is assembled. A 
voltage-to-current PWM servo amplifier is employed 
to operate the motor in current mode. The system 
input is in the form of motor current. The system 
output, which is the tachometer signal, may be used 
for system identification or for feedback motion 
control. 
 
The objective of this set-up is to obtain frequency 
response plots for the system described above. A 
DSP software/hardware tool, SigLab is used to send 
a sine sweep over a user-specified frequency range as 
the system input in the form of a voltage signal to the 
current amplifier. At the same time SigLab also 
collects the system output, which is the tachometer 
voltage in this case. Based on this input-output data, 
SigLab constructs the frequency response plots for 
the system. A schematic of this set -up is shown in 
Fig. 1.  
 
 

3. CONVENTIONAL D.C. TACHOMTER AND 
ITS INEFFICACY 

 
Consider a DC motor-tachometer assembly. A shaft 
of finite stiffness, K, connects the tachometer 
armature and the motor armature. For this initial test, 
the motor shaft is not connected to an external load. 
A physical model of the system with lumped 
parameters is shown in Fig. 2. 
 
 

Fig.1. Schematic of Experimental Set-up 

Fig. 2. Physical model of motor-tachometer assembly 
 
By drawing free-body diagrams for the two inertias Jt 
and Jm, and applying Newton’s Second Law, we 
obtain the following transfer function, 
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In the derivation of the above transfer function all 
frictional losses (Coulomb, viscous and structural) 
have been neglected. Being small, these dissipation 
terms do not dictate the presence of poles and zeros.  
 
Using the conventional electrical models for DC 
motor and tachometer commonly found in textbooks, 
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to model the motor and tachometer system described 
in Section 2. Hence the overall system transfer 
function is, 
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Table 1. List of symbols used in this paper 
 
Variable/Parameter Motor Tachometer 
 
Angular position θm θ t 
Armature inertia  Jm Jt 
Permanent Magnet  
 Stator Field  Bm1 Bm2 
Armature Field  Ba1 Ba2 
Armature Current I1 I2 
Torque Constant Kt_motor Kt_tach 
Torque generated Tm Ttach 
Flux linkage in Armature 
 Coil due its own Current  Φ 1 Φ 2 
Area Vector of Armat ure  
 Coil (pointing in the  
 same direction as  
 the armature field) A1 A2 
Armature Resistance R1 R2 
Armature Inductance L1 L2 
Number of Armature Coils N1 N2 
Angular velocity of the  
 Armature ωm ωtach 
Back emf Constant  
 / Generator Constant  Kb_motor Kb_tach 
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The analytical frequency response for this transfer 
function is compared to the experimental frequency 
response plots, obtained using SigLab.  
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Fig. 3 Vtach/Vin: Comparison of analytical and 

experimental frequency response plots for the 
motor-tachometer system 

 
The following observations can be made from the 
above comparison plots: 
1. The analytically predicted results match the 

experimental results in the low frequency range 
(< 100Hz). 

2. For higher frequencies the experimental results 
distinctly deviate from the predicted results and 
hence the system model breaks down in the high 
frequency range. 

3. The experimental results indicate the presence of 
two pairs of complex-conjugate zeros in the 
system transfer function that are not predicted at 
all by the analysis. 

4. The experimental results reveal one complex-
conjugate pole pair and this is very close to the 
pole predicted by the analysis. 

5. In the experimental plot, a phase drop of 180o is 
noticed at the first zero frequency. This implies 
that the corresponding complex conjugate zero 
pair lies on right side of the imaginary axis in 
the s-plane.  

 
In the above analysis, expressions (3.2) represent 
textbook models of idealized ‘electromagnetically 
isolated’ motor and tachometer respectively, which 
may be over-simplifications. Therefore, to resolve 
the discrepancies observed, a thorough investigation 
to find a more accurate model for the integrated 
motor-tachometer assembly is carried out. 
 
 

4. INTEGRATED MOTOR-TACHOMETER 
ASSEMBLY: A NEW ELECTRICAL MODEL 

 
Consider an integrated motor-tachometer assembly 
where the both the armatures are mounted closely on 
the same shaft (Fig. 4). In general, there can be an 
angular offset between the motor stator field and the 
tachometer stator field, say α in this case.  
 
We notice that the armature field of the motor 
produces a flux linkage in the tachometer winding 
and similarly the armature field of the tachometer 
produces a certain flux linkage in the motor winding, 

 

 
 

Fig. 4 Angular orientations of the Motor and 
Tachometer permanent magnets  

 
which in effect leads to mutual inductance between 
the two coils. This effect is better understood from 
Fig. 5, which shows all the fields that play a role in 
the motor-tachometer interaction. 

Fig. 5 Motor and tachometer fields 
 
In Fig. 5, the respective permanent magnet stator 
fields, Bm1 and Bm2, and the armature fields, Ba1 and 
Ba2, of the motor and tachometer are indicated. 
Directions of Bm1 and Bm2 are defined by the 
orientation of permanent magnet stators. For 
clockwise rotation of the rotors, directions of Ba1 and 
Ba2, as shown in the figure, can be derived assuming 
perfect commutation in the motor and tachometer. 
These directions are fixed in space. Since the two 
devices are not magnetically insulated, the 
tachometer armature (coil 2) sees a weak field, Ba12, 
due to the motor armature current. Thus, Ba12 is the 
magnetic field due to motor armature current (I1) 
experienced by the tachometer armature (coil 2). Ba12 
is in the same plane as Ba1, but is opposite in 
direction. The tachometer also experiences the effect 
of the permanent magnets of the motor. This appears 
in the form of a weak field Bm12, resulting from the 
leakage flux of the permanent magnets of the motor. 
Bm12 is in the same direction as Bm1. Similar 
arguments holds true for the motor winding as well, 
e.g., Ba21 is the magnetic field due to tachometer 
armature current (I2) experienced by the motor 
armature (coil 1). All the fields experienced by the 
motor and the tachometer coils are summarized in the 
following vector diagrams. 

 Motor 
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Fig. 6 Magnetic Fields present in the Tachometer 
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Fig. 7 Magnetic Fields present in the Motor 
 
It is observed that the effect of Bm12 on the 
tachometer equations is negligible. It does not lead to 
any dynamic effects; it only changes the stator field 
that the tachometer armature rotates in, by a small 
amount. This in turn only causes a little change in the 
torque constant and the generator/tachometer 
constant. Similarly, Bm21 is of little consequence in 
the motor equation. 
  
The magnitudes of the armature fields are linearly 
dependent on the respective armature currents. 
Therefore the following holds,  
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where k1, k 2, k 12 and k21 are constants. 
 
The presence of the armature fields Ba12 and Ba21 
leads to mutual inductance between the two coils. 
Fig. 8 illustrates the weak transformer effect between 
the two armature coils. The situation, though, is very 
different from an ideal transformer. There is no core 
between the two coils, the permeability of air is very 
low, and most part of the flux linked with each coil is 
leakage flux and mutual flux is small.  

Fig.8 Transformer effect between the two coils 

In Fig. 8,  
Φ ? is the flux linkage in coil 1 due to I1 
Φ 2? is the flux linkage in coil 1 due to I2   
Φ 2 is the flux linkage in coil 2 due to I2 
Φ 12 is the flux linkage in coil 2 due to I1 
 
Referring to Figures 6 and 7, and expressions (4.1), it 
is seen that, 
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Consequently, the resultant flux linkage in motor 
armature = Φ 1 + Φ 21 and, the resultant flux linkage in 
tachometer armature = Φ 2 + Φ 12. Applying KVL and 
Ohm’s Law to the electrical circuit comprising coil 1, 
i.e. the motor armature, we get 
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As is evident from the above equation, there are two 
effects that oppose Vin: a back emf that arises due to 
the armature motion in the stator field (Bm1 and Bm21) 
and an induced emf due to the inductance of the 
armature coil (self-inductance as well as mutual 
inductance). Both these effects are impeding effects, 
which is reflected by the negative sign associated 
with them (Lenz’s Law). Similarly, the application of 
KVL and Ohm’s Law to the electrical circuit 
containing the tachometer armature (coil 2) in Fig. 8, 
leads to 
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Inductances can be defined using expressions (4.2),  
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L1 and L2 are the self-inductance values for the motor 
and tachometer coils respectively. M12 (=M21) is the 
mutual inductance value between the motor and 
tachometer coils, when α = 0ο. Furthermore, it can be 
shown easily that, 
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Using these results, motor equation (4.3) reduces to, 
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and the tachometer equation (4.4) reduces to, 
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The tachometer terminal voltage measured by an 
external device, is given by RL I2, 
 

2

2 1
_ 2 1 2 2 2

 

  
       cos( )  

tach L

b tach tach

V R I

d I d I
K L M R I

dt dt
ω α

=

= − − −
  

  (4.9)  
This is the enhanced tachometer model that includes 
the effect of mutual inductance between motor and 
tachometer armatures, which is ignored in the 
conventional model. Torque models for the motor 
and tachometer are relatively simple. The retarding 
torque produced by the tachometer, the torque 
generated by the motor, and the overall torque output 
from the motor-tachometer assembly, are 
respectively given by 
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Equations (4.7) through (4.10) are the final results of 
this derivation. At this stage certain simplifications 
can be considered. Since the input impedance of the 
voltage-measuring device (e.g. SigLab) is usually 
very high, the load current I2 is much smaller than the 
motor current I1. We can therefore eliminate terms 
containing I2, wherever it occurs in equations (4.7)-
(4.10). At this point however, the term ‘-R2 I2’ in the 
Vtach expression (4.9) is retained. This is done to 
resolve a singularity in the analytical frequency plots.  
Since this term constitutes a damping term, the sign 
associated with it is critical in determining the phase 
change at the corresponding zero and pole 
frequencies. In the absence of this term, the model 
faces a singularity and arbitrarily assigns either a 
+180o or –180o phase change. A damping term, 
however small (even negligible), resolves this 
ambiguity and determines whether this phase change 
has to be +180o or –180o, depending upon the sign 
associated with it. Thus, this term is retained only to 
predict the phase plot in frequency response. It has 
negligible effect on the magnitude plot.   
 
A final observation is made regarding the ‘-R2 I2’ 
term. Had the transformer effect been an ideal one,, 
the relationship I2 = (N1/N2)  I1 would hold. In the 
present case, this is not true since the transformer 
effect is a weak one. Nevertheless, I2 may be weakly 
related to I1 by some empirical constant. Based on 
this argument, ‘R2 I2’ may be replaced by ‘Kr I1’ 
where Kr is an experimentally determined empirical 
constant. The validity of this empirical conjecture is 
confirmed later by experimental measurements.  
 
The motor-tachometer equations thus reduce to, 
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where the constants Km and Kr are defined as, 
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Comparing these results with the previous results 
(3.2), it can be noticed that while the motor model 
and the torque expression remain the same, the 
tachometer model has additional terms. Note that 
since the tachometer is magnetically coupled to the 
motor, the motor current influences the tachometer 
terminal voltage despite the fact that the two are 
electrically insulated. The new tachometer model 
reduces to the conventional model if the magnetic 
coupling constant Km = 0, and the loading effect 
constant Kr = 0. These two constants are easily 
determined experimentally, as shall be described in 
the next section. Kr is always positive, while Km may 
be positive or negative depending on the angle α.  
 
 
 

5. EXPERIMENTAL VERIFICATION OF THE 
NEW MODEL 

 
The new tachometer model obtained in Section 4 can 
now be incorporated in the analysis for the same 
motor-tachometer system that was studied earlier in 
Section 3. The overall transfer function for the 
motor-tachometer electromechanical system using 
the new tachometer model can be shown to be,  
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  (5.1) 
This analytically obtained transfer function for the 
tachometer-motor system is used to generate the 
frequency response plots in MATLAB. These are 
then compared with the experimentally obtained 
plots (Fig. 9).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 Vtach/Vin: Comparison of analytically predicted 

(using the new model) and experimentally 
obtained frequency response plots for the motor-
tachometer system. 
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It is interesting to note that the new model accurately 
predicts the experimental observations even for the 
high frequency range. Although the conventional 
model predicted the system poles accurately, it failed 
to explain the presence of system zeros. The new 
model addresses resolves this inconsistency very 
satisfactorily. Some interesting observations made 
from the above comparison are: 
 
1. Looking at the system transfer function given by 

equation (5.1), the presence of the additional 
zeros can now be explained. The most 
noticeable enhancement in the new tachometer 
model is the presence of a magnetic coupling 
constant, Km. It is evident that a positive Km 
leads to complex conjugate zero pairs in the 
system. Clearly, these zeros will disappear for 
Km=0. Because of this magnetic coupling term, 
the denominator of the system transfer function 
finds a place in the numerator, hence the 
additional zeros that appear are strongly 
dependent on the system poles 

2. The presence of Kr with a negative sign explains 
why the phase drops by 180o at the first zero 
frequency. The loading effect pushes the first 
complex-conjugate pole pair to the right side of 
the imaginary axis on the s-plane.  

 
Since Km and Kr are completely dependent on 
geometry and experimental set-up, they are best 
determined experimentally. Thus, once the new 
tachometer model is experimentally confirmed, the 
results of the above experimental plots are then used 
to back-calculate and tune the values of these 
unknown parameters K (shaft stiffness), Km 
(magnetic coupling constant) and Kr (loading effect 
constant). Km and Kr are found to be very small 
numbers. 
 
 

6. TYPICAL MOTION CONTROL 
APPLICATION 

 
Now a typical problem in DC motor motion control 
using tachometer feedback is considered. The same 
integrated motor-tachometer assembly described in 
Section 2 is used. The motor shaft, in this case, is 
connected to a load by means of a flexible coupling 
of known stiffness. Furthermore the load is in the 
form of two inertia’s connected by a shaft. Thus the 
system has multiple flexible elements (Fig.10) 
 

Fig. 10 Motor-tachometer-load  System 
 

A lumped parameter model is used to describe the 
above system, with the assumption that dissipation 
terms (i.e. Coulomb friction, viscous damping and 

material damping) are small enough that they do not 
influence the existence of system poles and zeros. 
The purpose of the present investigation is to identify 
the poles and zeros of the overall system that arise 
due to its mechanical and electromagnetic attributes, 
and mechanical damping has little influence on these. 
At a later stage though, an empirical amount of 
damping is added at all the poles and zeros, so as to 
avoid ambiguities in the predicted phase plots (as 
was discussed in Section 4). A physical model of the 
above system is shown below, 

 
Fig.11 Physical Model of the motor-tachometer-load 

system 
 
The following transfer function for the mechanical 
system can be easily obtained 
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Using the motor model and the new tachometer 
model presented in Section 4, the overall transfer 
function of the electromechanical system can be 
shown to be, 
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On the other hand, if the conventional tachometer 
model were used, the overall system transfer function 
would be given by,  
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Comparing these two transfer functions, it is clear 
that the new model captures some dynamics that is 
missing in the old model. It is note-worthy that, if  Kr 
and Km are set to zero in expression (6.2), then it 
reduces to (6.3). The analytical responses predicted 
by these two models are compared with experimental 
measurements.  
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Fig. 12 Vtach/Vin: Comparison of experimental 

frequency response and predicted frequency 
response using conventional tachometer model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 Vtach/Vin: Comparison of experimental 

frequency response and predicted frequency 
response using the proposed tachometer model 

 
Clearly the conventional model is inadequate for 
predicting the high-frequency system response. The 
tachometer dynamics adds zeros to the system and 
also pushes some of the system zeros to the right side 
of s-plane. This is obvious from the phase drop at 
zero frequencies.  
 
Thus the overall system model, with the new 
tachometer model incorporated, can be now used for 
System Identification and Control System Design. 
An experiment similar to the one described above 
can be carried out for the purpose of parameter 
identification. Each of the complex conjugate pole 
pairs in the system transfer function represents a 
resonance mode of the system arising from the 
flexible elements (e.g., compliant shaft, flexible 
coupling etc.). Thus if the stiffness of some flexible 
member is unknown and can’t be measure directly, it 
can be easily back-calculated from the pole 
frequency locations obtained from experimental data 
and an accurate knowledge of the complete system 
model. This was done in Section.5, where the exact 
motor-tachometer shaft stiffness was estimated from 
the frequency response plots.  
 
Apart from parameter identification, the new 
tachometer model has significant implications in 

terms of controller design for achieving close-loop 
stability. If the time-response requirements are not 
very stringent, a lead controller works well as long as 
the crossover frequency is kept low enough. But this 
severely limits the close-loop bandwidth. On the 
other hand, if high speed servo-control is desired, the 
tachometer dynamics becomes critical in the design 
of a compensator for the system. A benign aspect of 
the tachometer dynamics is that it introduces a zeros 
close to each pole making it look like a colocated 
controls problem. But this benefit is offset by the fact 
that the tachometer renders the system non-minimum 
phase by pushing the system zeros into the right-hand 
side of the s-plane. This makes the control problem 
very demanding, because instead of adding phase to 
the system the zeros now deplete the phase of the 
system. Therefore, unless a compensator that can 
provide a large phase is used, the closed-loop system 
speed is limited. Hence the tachometer has an overall 
detrimental effect on the closed loop stability of the 
system in discussion. Any controller that is designed 
for such a servo-control system should recognize the 
sensor dynamics and should be able to compensate 
for it. 
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