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Abdtract: This paper presents an accurate tachometer model that takes into account the
effect of magnetic coupling in a DC mdor-tachometer assembly. Magnetic coupling
aises due to the presence of mutua inductance between the tachometer winding and the
motor winding (a wesk transformer effect). Tachometer feedback is widdy used for
svo-control of DC motors, which can suffer from dosed-loop ingtability due to the
presence of compliant components in the drive system. It is essentid to have an accurate
sensor model to predict and address these resonance related problems. The inadequacy of
the conventiond tachometer model, which trests the DC tachometer as a ‘gain’, is pointed
out. The exact tachometer modd identified in this paper is incorporated in the modding
of a sysem that has multiple flexible eements, and is used for parameter identification
and feedback motion control. The effect of the tachometer dynamics on controller design

is discussed in terms of system poles and zeros.

1.INTRODUCTION

Closedtloop servo control of DC motor-load systems
is a very common industrial and research application.
Very often DC tachometers are used to provide
velocity feedback for motion control (McLean, 1978;
Ogata, 1998). In the presence of flexible dements in
the sysem, eg., a compliant motor-load shaft or a
flexible coupling, this exercise in servo control
becomes quite involved since finite diffness can
cause closeloop ingability leading to high frequency
ringing (Welch, 1992). This is a highly undesirable
phenomenon that can be diminaed by means of
gppropriate  controller design. But, to be able to
predictc and €iminate this high-frequency resonance
problem, it is essentid to have an accurate mode for
the entire system including the sensor.

There are papers in the literature that discuss the
control system design for systems with mechanica
flexibilities in terms of colocated and noncolocated
controls (Cannon, 1984; Franklin, 1994). Mogt of
these discussions assume that a ‘perfect’ position or

velocity sgnd is avalable for feedback and that
s€nsor dynamics is negligible Such an assumption
might be acceptable for routine gpplications, but can
become questionable for high-performance
gpplications.

The conventiond tachometer modd (McLean, 1978)
does not recognize any sensor dynamics and treats
the tachometer as a smple ‘gan’. When high-speed
ad high-precison mation control is desred using an
integrated motor -tachometer assembly, the
conventiona model proves to be of little use in
predicting the system response for high frequencies.
This paper presents an accurate tachometer model
that tekes into account the effect of a wesk mutud
inductance between the tachometer winding and
motor winding. This magnetic coupling phenomenon
leads to noticesble sensor dynamics The exact
tachometer  dynamics thus identified is then
incorporated in the modeling of a sysem that has
multiple shaft flexibility, and is used for parameter
identification and  feedback  motion  control.



Predictions usng this new modd ae in excelent
agreement with experimenta results.

It is found that the above-mentioned tachometer
dynamics introduces some additiond zeros in the
open-loop transfer function of the system, which can
dgnificantly influence the controler  design  for
diminating closed instability.

2. EXPERIMENTAL SET-UP

To dudy and andyse the closeloop instability
problem in DC notor servo systems, an experimental
test st-up, which consigts of an integrated permanent
magnet DC motor-tachometer unit, is assembled. A
voltage-to-current PWM  servo amplifier is employed
to operate the motor in current mode. The system
input is in the form of motor current. The system
output, which is the tachometer signal, may be used
for system identification or for feedback mation
control.

The objective of this set-up is to obtain frequency
response plots for the system described above. A
DSP softwaelhardware tool, SigLab is used to send
a sne sweep over a usr-gecified frequency range as
the system input in the form of a voltage sgnd to the
current amplifier. At the same time SigLab dso
collects the system output, which is the tachometer
voltage in this case. Basad on this input-output data,
SigLab condructs the frequency response plots for
the sysem. A schematic of this set-up is shown in
Fg. 1.

3. CONVENTIONAL D.C. TACHOMTER AND
ITSINEFFICACY

Condder a DC motor-tachometer assembly. A shaft
of finite diffness, K, connects the tachometer
amature and the motor armature. For this initid test,
the motor shaft is not connected to an externd load.
A physcd mode of the system with lumped
parametersis shown in Fig. 2.
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Fig.1. Schematic of Experimenta Set-up

Fig. 2. Physicd modd of motor-tachometer assembly

By drawing free-body diagrams for the two inertias J
and Jn, and agoplying Newton's Second Law, we
obtain the following transfer function,

9 - K 3.
T, & [J, J &+ K@, + 3]

In the derivaion of the above transfer function al
frictiona losses (Coulomb, viscous and structura)
have been neglected. Beng smadl, thee dissipation
terms do not dictate the presence of poles and zeros.

Usng the convetiond eectricd modes for DC
motor and tachometer commonly found in textbooks,

Tm =K or im
T_ mo (3.2)

Vlach = Kbilach q‘l
to model the motor and tachometer system described
in Section 2. Hence the ovedl sysem transfer
function is,

Vtach —_ Kamp Kb_tach Kl_mo(or K

V, s[J J S+K (J,+K,)] 33
Table 1. List of symbolsused in this paper

VaidbleParameter Motor Tachometer
Angular position On Ot
Armatureinertia Jn J
Permanent Magnet
Armature Fidld Ba B
Armature Current I I
Torque Constant K+ motor Kt tach
Torquegenerated Tm Ttech
Flux linkagein Armature

Coil dueitsown Current  F 1 F2
AreaVector of Armat ure

Cail (pointing in the

same direction as

the armature fidd) A1 Az
Armature Resistance R1 R2
Armature Inductance L1 L
Number of Armature Coils N1 N2
Angular velocity of the

Armature Wm Wach
Back emf Congtant

/| Generator Constant Kb motor K, tach




The andyticd frequency response for this transfer
function is compared to the experimenta frequency

response plots, obtained using SiglL ab.
10 <
» O Anaytica Experimentd
§ oy ) b
£ oo [Seee 1] )\
g pa— \
= 30 e
N N
-40
107 10°
0
2 -100 !
E’:—zoo \
§ a0 B = |
o
-400
10° 10°
Frequency (Hz)
Fg. 3 Viwn/Vinn Comparison of andyticd and

experimental  frequency response plots for the
motor-tachometer system

The following obsarveations can be made from the

above comparison plots:

1 The anayticdly predicted results match the
experimentd results in the low frequency range
(< 100H2).

2 For higher frequencies the experimenta results
diginctly deviate from the predicted results and
hence the system mode bresks down in the high
frequency range.

3 The expeimenta results indicate the presence of
two pars of complex-conjugate zeros in the
system transfer function that are not predicted at
dl by theanalysis.

4. The experimentd results reved one complex-
conjugate pole par and this is very close to the
pole predicted by the andysis.

5 In the experimenta plot, a phase drop of 180°is
noticed a the first zero frequency. This implies
that the corresponding complex conjugate zero
par lies on right sde of the imaginary axis in
the splane.

In the dove andyds expressons (3.2) represent
textbook modes of idedized ‘dectromagneticaly
isolatled motor and techometer respectively, which
may be over-amplifications. Therefore, to resolve
the discrepancies obsarved, a thorough investigation
to find a more accurate mode for the integrated
motor-tachometer assembly is carried out.

4. INTEGRATED MOTOR-TACHOMETER
ASSEMBLY: A NEW ELECTRICAL MODEL

Consder an integrated motor-tachometer assembly
where the both the armatures are mounted closely on
the same shaft (Fig. 4). In generd, there can be an
angular offset between the motor gator field and the
tachometer stator field, say a in this case.

We notice that the armature fiedd of the motor
produces a flux linkage in the tachometer winding
and gmilaly the amature fied of the tachometer
produces acertain flux linkage in the motor winding,
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Motor

Fg. 4 Angular orientations of the Motor and

Tachometer permanent magnets

which in effect leads to mutual inductance between
the two coils. This effect is better understood from
Fig. 5, which shows dl the fields that play a role in
the motor-tachometer intaraction.
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Fig. 5 Motor and tachometer fields

In Fig. 5, the respective permanent megnet stator
fidds, By axd Bpp, and the armature fidds, By and
Bp, of the motor and tachometer are indicated.
Directions of B,y ad B, ae deined by the
orientation o permanent magnet Saors.  For
clockwise rotation of the rotors, directions of Ba and
Ba2, & shown in the figure, can be derived assuming
pefect commutation in the motor and tachometer.
These directions are fixed in space. Since the two
devices ae not magneticdly insulaed, the
tachometer armature (coil 2) sees a wesk field, Ban,
due to the motor armature current. Thus, By is the
megnetic fiedd due to motor armature current (l1)
experienced by the tachometer armature (coil 2). Bgp
is in the same plane as By, but is opposite in
direction. The tachometer dso experiences the effect
of the permanent magnets of the motor. This appears
in the form of a wesk fiedd By, resulting from the
leskage flux of the permanent magnets of the motor.
Bmnz is in the same direction as B. Smilar
arguments holds true for the motor winding as well,
eg, Bg: is the magnetic fidd due to tachometer
amature current  (I,) experienced by the motor
amature (coil 1). All the fields experienced by the
motor and the tachometer coils are summarized in the
following vector diagrams.
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Fig. 7 Magnetic Fieds present in the Motor

It is observed that the effect of B on the
tachometer equations is negligible. It does not lead to
any dynamic effects; it only changes the dator fied
that the tachometer armature rotates in, by a small
amount. This in turn only causes a little change in the
torque constant and the generaor/tachometer
congtant. Similarly, Bmo1 is of little consequence in
themotor equation.

The magnitudes of the armature fidds ae linearly
dependent on the respective armature currents
Therefore the following holds,

By =k I,
By =Ky I
B, =k I,
Bua=Kp Iy
wherek,, Ky, k1, and Ky, are congtants.

(41)

The presence of the armature fidds By, ad Bay
leads to mutua inductance between the two coils.
Fig. 8 illugtrates the weak transformer effect between
the two armature coils. The situation, though, is very
different from an ided transformer. There is no core
between the two coils, the permesbility of ar is very
low, and most part of the flux linked with each cail is
leskage flux and mutud flux issmal.

Motor Winding

Tachometer Winding
Coil 1 Coil 2

Fig.8 Transformer effect between the two cails

InFg. 8§,

F -istheflux linkagein coil 1 dueto |1

F xistheflux linkagein cail 1 dueto I
F 2 istheflux linkagein cail 2 dueto I

F 1w istheflux linkagein coil 2duetol1

Referring to Figures 6 and 7, and expressions (4.1), it
is seen that,

Fi=BxA=(k 1) A
FzzéazxA:(kz 1) A
F,i=By A =(k, 1) A cosa)
Fo=B,xA =(k,,) A cos@a)

(4.2

Consequently, the resultant flux linkage in  motor
amaure = F 1+F » and, the resultant flux linkage in
tachometer armature = F >+ F 1. Applying KVL and
Ohm's Law to the eectrical circuit comprising coil 1,
i.e. the motor armature, we get

v.oov N OELFL)

in backemf ~
dt

=R 1, (43

As is evident from the above equation, there are two
effects that oppose Vi a back emf that arises due to
the armature motion in the stator field Bnu and Bngl)
and an induced emf due to the inductance of the
amature coil (df-inductance as wdl as mutud
inductance). Both these effects are impeding effects,
which is reflected by the negative Sgn associated
with them (Lenz's Law). Similarly, the application of
KVL and Ohm's Law to the dectricd circuit
containing the tachometer armaure (coil 2) in Fg. 8,
leadsto

d (F,+F
v - N2 - R R, (4.4
Inductances can be defined usng expressions (4.2),
NlFl = Nl(K1I1) Aé I‘1 |1
NZFZ: NZ(KZIZ) ’%él-z IZ (45)

NlF 21 = Nl(Kzll 2) ACOS(a) é M 21 IZCOS(a)
N,F, =N, (K, 1) Acos@) =M, |, cos(a)

L; and L, are the sdf-inductance vaues for the motor
and tachometer coils respectively. M1, (=M ) is the
mutud inductance vdue between the motor and
tachometer cails, when a = (. Furthermore, it can be
shown easily that,

Voedert = Ko_moir Win

(4.9
Vo =Ky it Wean
Using these results, motor equation (4.3) reducesto,
V, - K w-L—d—I—l-M cos(a)dlz—Rll 4.7
in b motor m 1 dt 21 dt - 1 .

and the tachometer equation (4.4) reducesto,



dl dl
b tach Wiach ~ Lz dt2 - M1z cos(a) dt

*=(R+R)1,

(48)
The tachometer termind voltage measured by an
externd device, isgiven byR_ |,

Vi =R,
dl dl
= be&ash Wioeh = Lz#‘ M12 COS(a) dtl - R2 |2

(49
This is the enhanced tachometer modd that includes
the effect of mutuad inductance between motor and
tachometer amatures, which is ignored in the
conventiona modd. Torque models for the motor
and tachometer are reativdy smple The retarding
torque produced by the tachometer, the torque
generated by the motor, and the overdl torque output

from the motor -tachometer assembly, ae
respectively given by
Ttach = Kt_tach I 2
Tm = Klimolor I1 (410)
Toul = K17motcr |1 - KL tach Iz

Equetions (4.7) through (4.10) are the find results of
this derivation. At this stage certain smplifications
can be conddered. Since the input impedance of the
voltage-messuring  device (eg. SglLab) is usudly
very high, the load current $ is much smaler than the
motor current ;. We can therefore diminate terms
containing |, wherever it occurs in equations (4.7)-
(4.10). At this point however, the term ‘-R, I’ in the
Vian expresson (4.9 is retained. This is done to
reolve a dngularity in the andytica frequency plots.
Since this term conditutes a damping term, the sign
associated with it is citical in determining the phase
change a the correponding zero and pole
frequencies. In the absence of this term, the modd
faces a dngulaity and abitrarily asdgns ether a
+180° o -180° phase change A damping term,
however smdl (even negligble) resolves this
ambiguity and determines whether this phase change
has to be +180 or —180°, depending upon the sign
asociated with it. Thus, this term is retained only to
predict the phase plot in frequency response. It has
negligible effect on the magnitude plot.

A find obsavation is made regading the ‘-R, 1,
term. Had the transformer effect been an ided one,
the refationship 1, = (NJ/N,) L would hald. In the
present case, this is not true since the transformer
effect is a wesk one. Neverthdess, |, may be weakly
relaed to I, by some empirica constant. Based on
this argument, ‘R, 1, may be replaced by ‘K, I}
where K, is an expeimentdly determined empirical
congant. The vdidity of this empiricad conjecture is
confirmed later by experimental measurements.

The motor-tachometer equationsthus reduceto,
MOtOr: Vin - Kl:anolor Wm - Ll% = R.l Il

Tach: \/tach = Kb wch Wiaen + Km ddil - Kr |1 (4]-1-)

t_motor "1

Torque: T, =K

where the constants Km and K are defined &s,
K, 2-Mp,cos@) (magnetic coupling constant)
K.2R (I,/1,) (loading effect constant)

Comparing these results with the previous results
(32), it can be noticed that while the motor modd
and the torque expresson remain the same, the
tachometer model has additional terms. Note that
since the tachometer is magneticaly coupled to the
motor, the motor current influences the tachometer
terminal  voltage despite the fact tha the two are
dectricdly insulated. The new tachometer model
reduces to the conventiond modd if the magnetic
coupling congtat K, = O, and the loading effect
congant K, = 0. These two congtants are eadly
determined expeimentdly, as shdl be described in
the next section. K, is aways positive, while K, may

be postive or negative depending on the anglea.

5. EXPERIMENTAL VERIFICATION OF THE
NEW MODEL

The new tachometer model obtained in Section 4 can
now be incorporated in the anadyss for the same
motor-tachometer system that was studied earlier in
Section 3. The ovedl transdfer function for the
motor-tachometer  electromechanicd sydgem  using
the new tachometer model can be shown to be,

Vi Kap [K,, (den) 8- K (den) s+K, . K b_wenK ]
v, (den) s

(den)=[J, J, s*+K (J,+J,)]

(5.1
This andyticaly obtained transfer function for the
tachometer-motor system is used to generate the
frequency response plots in MATLAB. Thee are
then compared with the experimentdly obtained
plots (Fig. 9).
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(usng the new modd) and experimentaly
obtained frequency response plots for the motor-
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It is interesting to note that the new modd accurately
predicts the experimental observetions even for the
high frequency range. Although the conventiond
modd predicted the system poles accurately, it failed
to explan the presence of system zeros. The new
model addresses resolves this inconsistency  very
satisfactorily. Some interesting obsarvaions made
from the above comparison are:

1 Looking at the system transfer function given by
equation (5.1), the presence of the additiond
zeros can now be explaned. The most
noticesble enhancement in the new tachometer
mode is the presence of a magnetic coupling
congtant, Ky,. It is evident that a podtive Kp,
leads to complex conjugate zero pars in the
system. Clearly, these zeros will disappear for
Kn=0. Because of this magnetic coupling term,
the denominator of the system transfer function
finds a place in the numerator, hence the
additiond zeros that appear ae strongly
dependent on the system poles

2 The presence of K with a negative Sgn explains
why the phase drops by 180° a the first zero
frequency. The loading effect pushes the first
complexconjugate pole par to the right sde of
theimaginary axison the s-plane.

Snce Km and Ky ae completely dependent on
geometry and experimental s-up, they ae best
determined  experimentally. Thus, omce the new
tachometer modd is expeimentdly confirmed, the
results of the above experimenta plots are then used
to back-cdculae and tune the vaues of these
unknown parameters K (shaft  diffness), Kpy
(megnetic coupling congtant) and K, (loading effect
congant). K, and K; are found to be very smal
numbers.

6. TYPICAL MOTION CONTROL
APPLICATION

Now a typical problem in DC motor motion control
usng tachometer feedback is conddered. The same
integrated motor-tachometer assembly  described in
Section 2 is used. The motor shaft, in this case is
connected to a load by means of a flexible coupling
of known dtiffness. Furthermore the load is in the
form of two inertids connected by a shaft. Thus the
system has multiple flexible ements (Fig.10)

Shaftl Shaft2

Shaft3
X
Tach Flexible ﬁ ﬁ
Coupling  |nertial Inertia2

Motor
Fig. 10 Motor-tachometerJload System
A lumped parameter modd is used to describe the

above system, with the assumption that dissipation
terms (i.e. Coulomb friction, viscous damping and

material damping) are smal enough that they do not
influence the exisence of sysem poles and zeros.
The purpose of the present investigation is to identify
the poles and zeros of the overal system that aise
due to its mechanicd and eectromagnetic atributes,
and mechanicd damping has little influence on these
At a laer sage though, an empiricd amount of
damping is added a dl the poles and zeros, 0 as to
avoid ambiguities in the predicted phase plots (as
was discussed in Section 4). A physca modd of the
above system is shown below,
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Fig.11 Physicd Modd of the motor-tachometer-load
system

The following transfer function for the mechanica
system can be easily obtained

6.1)

where,
[num]=K (3,3, s*+(J, K,+ J,K +J, K) s +K,K,]
[den]=s®[J, 3,3, 3,]+
st [K,J 3,0, +K 3 J,+K, I 3, J, +
KJndi L +K 133, +K K g 3]+
SK K J I +KKJI +KKJIJI
KKJLI+KKJI+KKIJ,
K K J o+ K Ky dy i+ K K 3 J,+ K K, 3 3]
+ KKK, (J+3,+3,+3,)]

Usng the motor mode and the new tachometer
modd presnted in Section 4, the overdl transfer
function of the dectromechanicd sysem can be
shown to be,

V‘ﬂ— Kamp [Ky, s’ (den) - K's (dm)"'KLmq Kﬂ)ach (num)]
V, s (den)

in

(6.2
On the other hand, if the conventiond tachometer
model were used, the overdl system transfer function
would be given by,

~ Kamp K¢ Kigen (nUM)
V, S (den)

(6.3

Comparing these two transfer functions, it is clear
that the new model captures some dynamics that is
missing in the old modél. It is note-worthy that, if K
and Ky are st to zero in expresson (6.2), then it
reduces to (6.3). The andytical responses predicted
by these two models are compared with experimental
messurements.
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Clearly the conventiond modd is inadequate for
predicting the high-frequency system response. The
tachometer dynamics adds zeros to the system and
aso pushes some of the system zeros to the right side
of s-plane. This is obvious from the phase drop a
zero frequencies.

Thus the overdl sysem modd, with the new
tachometer mode incorporated, can be now used for
System Identification and Control System Design.
An experiment dSmilar to the one described above
can be caried out for the purpose of parameter
identification. Each of the complex conjugae pole
pairs in the system transfer function represents a
resonance mode of the system aisng from the
flexible dements (eg, compliant sheft, flexible
coupling etc.). Thus if the diffness of some flexible
member is unknown and can't be measure directly, it
can be eaxsly backcdeulated from the pole
frequency locations obtained from experimenta data
and an accurate knowledge of the complete sysem
modd. This was done in Section.5, where the exact
motortachometer shaft diffness was estimated from
thefrequency response plots.

Apat from parameter identification, the new
tachometer modd has dgnificant implications in

teems of controller design for achieving cdoseloop
stability. If the timeresponse requirements are not
very sringent, a lead controller works wel as long as
the crossover frequency is kept low enough. But this
sverdy limits the closeloop bandwidth. On the
other hand, if high speed servo-control is desred, the
tachometer dynamics becomes criticd in the design
of a compensator for the system. A benign aspect of
the tachometer dynamics is that it introduces a zeros
cdoe to each pole making it look like a colocated
controls problem. But this benefit is offset by the fact
that the tachometer renders the system norrminimum
phase by pushing the system zeros into the right-hand
side of the splane. This makes the control problem
very demanding, because indead of adding phese to
the system the zeros now deplete the phase of the
system. Therefore, unless a compensator that can
provide a large phase is used, the closedloop system
speed is limited. Hence the tachometer has an overdl
detrimental effect on the closed loop dability of the
system in discussion. Any controller that is designed
for such a servo-control system should recognize the
sensor dynamics and should be able to compensate
forit.
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