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ABSTRACT 
In the past, a beam constraint model (BCM) that captures 

pertinent geometric nonlinearities associated with large 

displacements has been proposed for slender spatial beams with 

uniform and symmetric cross-sections. By providing closed-

form parametric relations between the end-loads and end-

displacements of the beam, the BCM quantifies the constraint 

characteristics of the beam in terms of stiffness variations, 

parasitic error motions, and the cross-axis coupling. This paper 

presents a nonlinear strain and strain energy formulation for the 

spatial symmetric beam, based on assumptions that are 

consistent with the BCM. This strain energy derivation, 

employing the Principle of Virtual Work, provides a simpler 

mathematical approach for the analysis of flexure mechanisms 

with multiple spatial beams. Using this formulation, we obtain 

the stiffness relations in the transverse bending directions, the 

constraint relations in the axial and torsional directions, and the 

overall strain energy expression in terms of the beam end-loads 

and end-displacements. These expressions, collectively the 

BCM, are in form that is suitable for the analysis of multi-beam 

flexure mechanisms.  

 

1. INTRODUCTION AND BACKGROUND 
Flexure mechanisms provide guided motion via elastic 

deformation and are used in a variety of applications that 

demand high precision, minimal assembly, long operating life, 

and/or design simplicity [1, 2]. The spatial beam flexure, 

sometimes also referred to as a wire flexure, is commonly used 

as a constraint element in the design of flexure mechanisms [3, 

4]. The constraint behavior of a spatial beam is demonstrated in 

Fig.1. Due to the slenderness of the beam in the Y and Z 

directions, the stiffness values associated with bending in the 

XY and XZ planes and the torsion about the X axis are 

relatively low. On the other hand, the translational stiffness 

along the X axis is relatively high.  

Given this contrast in stiffness, the slender spatial beam 

serves as a constraint element in terms of its end-displacements 

with respect to a reference ground – it constrains motion along 

the UXL translation, and allows motion along the UYL and UZL 

translations and ΘXL, ΘYL and ΘZL rotations. As is common for 

flexure-based constraint elements [5], the terms degree of 

constraint (DoC) and degree of freedom (DoF) are used here to 

refer to the stiff and compliant motion directions, respectively. 
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Fig.1 Spatial Beam Flexure: Undeformed and Deformed 

 

To accurately predict the motion performance of a three-

dimensional flexure mechanism that comprises one or more 

spatial beams, it is important to first understand, qualitatively 

and quantitatively, the constraint characteristics of the 

individual spatial beam. Of particular interest is the stiffness 

along each of the six motion directions associated with the end 

of the beam and its variation with increasing end-forces and 

end-displacements. It is also important to identify the error 

motions, which by definition are undesired motions. These may 

be categorized as cross-axis errors (motion in a DoF direction 

due to displacement in another DoF direction) and parasitic 

error (motion in a DoC direction) [5, 6].  

Previous analytical and experimental results have shown 

that geometric nonlinearities strongly influence the above-

mentioned stiffness behavior and error motions in beam 
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flexures [5-8] undergoing large displacements. Using an 

explicit Newtonian approach, these effects have been 

accurately captured for a spatial, uniform, symmetric1 beam in 

the beam constraint model (BCM), which comprises closed-

form parametric relations between the end-loads and end-

displacements [8]. This approach, although mathematically 

accurate, proves to be tedious while analyzing multi-beam 

flexure mechanisms. A well-known alternative is to use energy 

methods [9], which avoid the unnecessary computation of 

internal loads and deliver the force-displacement relations at 

the point of interest in the overall mechanism.  

However, to apply an energy method such as the Principle 

of Virtual Work (PVW), an accurate, closed-form strain energy 

expression for the beam in terms of its end-displacements is 

required, which serves as the motivation for this paper. A non-

linear strain and strain energy derivation for a uniform, 

symmetric beam is presented in Section 2, with emphasis on 

capturing the relevant nonlinearities and recognizing 

appropriate approximations that are consistent with the 

previous explicit formulation. In Section 3, we employ the 

above strain energy expression in the PVW to derive the 

governing equations of the spatial beam. These include the 

differential equations that govern the bending, torsion, and 

stretching of the beam, along with natural boundary conditions. 

In Section 4, we derive a closed-form and parametric solution 

to the above differential equations and boundary conditions to 

obtain the transverse bending stiffness relations, the geometric 

relations in the axial and torsional directions, and the overall 

strain energy relation in terms of the beam end-loads and end-

displacements. A consistent truncation scheme is proposed to 

further simplify the final form of these expressions and render 

them suitable for the closed-form analysis of flexure 

mechanisms made of multiple spatial beams. We conclude in 

Section 5 with a brief summary of contributions and plans for 

future work.  

 

2. NONLINEAR STRAIN AND STRAIN ENERGY 

FORMULATION FOR A SPATIAL BEAM  

In order to determine the nonlinear strain, the spatial 

deformation of the beam needs to be mathematically 

characterized. When a long, slender2, circular cross-section 

beam is subjected to pure bending and torsion, symmetry 

implies that the Euler-Bernoulli assumption holds true [10], i.e. 

plane sections remain plane and perpendicular to the neutral 

axis after deformation. However, in the case of pure bending 

and torsion of long, slender rectangular beams, small warping 

of cross-section does take place in order to satisfy boundary 

conditions for shearing stresses [10]. In spite of this, for 

displacement (UYL and UZL) in the range of 0.1L, where L is the 

length of the spatial beam, and rotations (ΘXL, ΘYL, and ΘZL) in 

the range of 0.1 rad, it can be argued for the beam shown in 

                                                            
1 Uniform implies a non-varying cross-section along the beam length. 

Symmetric implies equal moments of area of the beam cross-section about the 

Y and Z axes. 
2 Slender generally implies a length to thickness ratio greater than 20 [10, 11] 

Fig.1 that these effects can be approximately superimposed. In 

other words, an initially plane cross-section first undergoes a 

rigid-body translation and rotation to remain plane and 

perpendicular to the neutral axis, followed by a small cross-

sectional warp (Fig.2). The rigid-body rotation is separately 

shown in Fig.2 via the Euler angles α, β and ΘXd. It should be 

noted here that the twist ΘXd, is defined in the deformed 

coordinate frame Xd–Yd–Zd, rather than the more intuitive 

undeformed X–Y–Z coordinate frame. The deformed Xd–Yd–Zd 

coordinate frame actually varies with coordinate X but at any 

particular point has its Xd axis tangential to the deformed 

neutral axis of the beam while Yd and Zd form the axis of the 

principle moment of area of the cross-section in the deformed 

state.  
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Fig.2 Spatial Kinematics of Beam Deformation  

Saint Venant‟s solution for a long slender beam with 

square cross-section [10] under pure torsion shows that warping 

causes only parallel motion of points on any cross-section with 

respect to the neutral axis of the beam; in other words, in-plane 

distortion is absent. Additionally, the analytical closed-form 

warping function of the cross-section is found to be constant 

along the length of the beam i.e. independent of the X 

coordinate. This implies that the point P, shown in Fig.2, upon 

deformation will have the same Y and Z coordinates in the 

deformed coordinate system, Xd–Yd–Zd, but will also have a 

small out of plane motion (not shown in the figure) dependent 

only on its Y and Z coordinates. Even though in the presence of 

transverse forces and moments or for cross-sections close to the 

beam ends, this solution is not strictly true, previous studies 

[10, 11] confirm that warping remains largely parallel to neutral 

axis and constant along the length of the beam, for end 

displacements within 10% of the beam length.  

Furthermore, Da Silva [12] and Hodges [13] showed that 

the warping in a slender beam is small and its effect can be 

dropped in the axial strain εXX in comparison to larger effects of 

bending and axial stretching. However, warping was shown to 

have a non-negligible effect on shear strains associated with 
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torsion. This contribution of warping can be easily captured in 

the torsional moment of area. 

With this qualitative understanding of the deformation of 

the beam, we next proceed to quantitatively determine the 

strain at any general point P with coordinate position (X, Y, Z). 

As shown in Fig.2, UX, UY and UZ, are defined in the X–Y–Z 

coordinate frame, and describe the rigid body translation of the 

centroid of a cross-sectional area. These translations along with 

the rotational displacements α, β and ΘXd, all of which are 

functions of the X coordinate location of the cross-section, 

form a set of six coordinates to describe the deformed position 

of point P and hence the strain. 

The Green‟s strain measure [14] is used to determine the 

strain components in terms of the undeformed coordinate 

system. However, since the maximum end displacements and 

rotations are limited to 0.1L and 0.1 radians, higher order 

nonlinear terms that are more than two orders of magnitude 

smaller than the primary bending and torsion effects become 

insignificant. For the purpose of obtaining a solution that is 

correct to the second order3, these terms are dropped. 

Using the above assumptions, the final strain expression 

are given by Eq. (1) and (2) below. The detailed derivation of 

this strain can be found in the references [8, 12, 13]. 
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It should be noted here that although finite end 

displacements are considered, the strains are still small because 

the beam is assumed to be slender. The first three terms in the 

axial strain, εXX, collectively represent the elastic stretching in 

the axial direction, while correcting for kinematic effects. The 

next three terms depend on the beam curvatures κXd, κYd and κZd, 

which are defined in the deformed coordinate axis Xd–Yd–Zd. 

These terms arise from the combined effect of torsion and 

bending and depend only on X. Although the last of these three 

terms is significantly smaller than the other terms, it is retained 

because it becomes significant in the absence of axial stretching 

and bending loads. The approximate value of the three beam 

curvatures, accurate to the second order are given below. A 

detailed derivation of the following simplified expressions can 

be found in previous work [8, 13]. 
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The shear strains given in Eq.(2) depend on curvature κXd 

and warping. However, since the effect of warping is assumed 

to be small, it can be factored using the correction terms YW and 

ZW [12]. Strains εYY and εZZ are also present due to Poisson‟s 

                                                            
3 Accurate to the second order implies that the error is less than 1%. 

effect. However, shear strain γYZ is zero due to the absence of 

in-plane distortion of the cross-section. Other nonlinear terms 

in strain expressions reported in the previous literature [12, 13, 

15] are at most of the order of 10-5 and contribute negligibly to 

the strains, which are generally of the order of 10-2 for the given 

maximum loading conditions. Therefore, these nonlinear terms 

have been dropped in Eq.(1) and (2). It should be noted here 

that infinitesimal strain theory does not capture the 2

Xd  term 

in εXX  or warping effect in the shear strains γXY and γXZ and 

hence not been used in this formulation. 

Using the strain expressions in Eq.(1) and (2) and 

assuming linear material properties, the strain energy for the 

spatial beam flexure may be expressed as follows:  

 2 2 2

1 2

2 2
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E G
V dAdX dAdX

V V
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As seen here, there are two components of the strain 

energy: V1 is the strain energy due to εXX, which arises from 

transverse bending and axial stretching, and V2 is the energy 

due to the shear strains, which arise due to torsion of the beam. 

The strain energy contribution from the strains εYY and εZZ 

is zero for the following reasons. Due to the slenderness of the 

beam, the variation of stresses ζYY and ζZZ in the Y and Z 

directions, respectively, can be argued to be equal to zero 

which means ζYY and ζZZ are constants. However, in the 

absence of transverse surface loading in the Y and Z direction, 

the only constant value of ζYY and ζZZ possible is zero. 

Therefore, even though εYY and εZZ are finite due to Poisson‟s 

effect, and are equal to –νεXX, where ν is Poisson‟s ratio, the 

associated stresses in these directions are negligible. Hence εYY 

and εZZ can be neglected in the strain energy calculation. 

Furthermore, using the elemental equilibrium conditions in 

Eq.(5), it can be shown that in the present case of zero ζYY, ζZZ 

and ηYZ, κXd is constant with respect to X. 
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 (5) 

Moving ahead, the two parts of strain energy from Eq.(4) 

may be expanded using the strain expressions from Eq.(1) and 

(2) 
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In the first part of the energy, V1, the six integrals are 

serially denoted by I1 through I6. Of these, the integrals I2 and I3 

are zero by the definition of the neutral axis that passes through 

the centroid of the cross-section. Integral I6 is also dropped as it 

is at least four orders of magnitude smaller than integral I1 due 

to the slenderness of the beam and the twisting angle ΘXd being 

limited to ±0.1 radians.  

Next, the strain energy expression is simplified by 

recognizing that the beam curvatures, given in Eq.(3), are only 

dependent on the axial coordinate X. Thus, the volume integral 

can be decomposed into a double integral over the cross-

sectional area and a single integral over the axial coordinate X. 

This results in the following simplified expression.  
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The first integral I1 in V1 (Eq.(7)) describes energy 

associated with axial stretching. Through UY’ and UZ’, it also 

captures the coupling between the bending directions and the 

axial constraint direction. The second term, I4, captures the 

energy that originates from bending. The third term, I5, captures 

the coupling between the torsion and axial stretching directions. 

Finally, the last term I7 captures the energy from pure torsion.  

It should be noted here that in the last step of deriving 

Eq.(7), we have also assumed a symmetric beam cross-section, 

which implies that the two principal bending moments of area 

(IYY and IZZ) are identical and equal to I. Also, due to this 

symmetry, the polar moment of area is equal to 2I. The torsion 

constant is defined as J and is, in general, different from the 

polar moment of area due to warping [10, 11]. These 

assumptions may be expressed as follows: 
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3. GOVERNING EQUATIONS FOR A SPATIAL 
SYMMTRIC BEAM 

The Principle of Virtual Work (PVW) dictates that for an 

elastic body in static equilibrium, the virtual work done by 

external forces over a set of geometrically compatible but 

otherwise arbitrary „virtual‟ displacements is equal to the 

change in the strain energy of this body due to these „virtual‟ 

displacements [9]. This is mathematically expressed as: 

W V   (9) 

Therefore, the first step in applying PVW would be to 

determine the strain energy of the beam (Eq.(7)), with respect 

to a variation of its displacements. For the following procedure, 

we choose ,  ,  ,  ,   and X Y Z Xd Y ZU U U U U   to be the 

generalized coordinates which, along with their boundary 

conditions, completely define the displacement of the beam.   

For the sake of clarity, we consider the variation of the four 

integrals in Eq.(7) one at a time.  
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 Based on Eq.(10), it is evident that the variation of the 

strain energy may be expressed in terms of the six generalized 

virtual displacements ,  ,  ,  ,   and X Y Z Xd Y ZU U U U U       , 

which are all variables in the X coordinate, along with their 

boundary values at X = 0 and L. 

At the fixed end i.e. X=0 
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At the free end i.e. X=L 
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Thus, the variation of the total strain energy in terms of the 

above virtual displacements provides the right hand side of Eq. 

(9) . 

Given the external loads FXL, FYL, FZL, MXL, MYL and MZL, 

the virtual work on the left hand side of Eq.(9), may be 

expressed as 

XL YL ZL XL

YL ZL

W U U U

       

    

 

   

 

XL YL ZL XL

YL ZL

F F F M

M M  (13) 

where ,  ,  ,  ,   and XL YL ZL XL YL ZLU U U       represent six 

independent virtual displacements at the beam end, expressed 

in the direction of the external loads.  

 For the application of PVW, these six virtual end 

displacements in Eq.(13) have to be expressed in terms of the 

previous set of six virtual end displacements given in Eq.(10). 

This requires expressing ,   and XL YL ZL   as a function of

,   ,   ,   ,    and XL YL ZL XdL YL ZLU U U U U       . This is done by 

recognizing the fact that the virtual rotations can be chosen to 

be arbitrarily small, and therefore be represented as vectors.  

Referring to Fig.2, since the final orientation of the Xd–Yd–

Zd coordinate frame is unique; the virtual rotations may be 

expressed as variations of the Euler angles: 

    ˆ ˆˆ ˆ ˆ ˆcos sin

ˆˆ ˆ

XL YL ZL
L L

X Y Z

Xd

X X X L

i j k j k i

1 U U U
i j k

1 U 1 U 1 U

      



     

   
   

     

 (14) 

Furthermore, using the geometry shown in Fig.2 the 

variations of Euler angles α and β can be expressed in terms of 

,  ,  ,  ,  and XL YL ZL YL ZLU U U U U       as follows 

 

 

Z Z X

2

X X

Y X Z ZY

2
2

2
X Z

X Z

U U U

1 U 1 U

U U U UU

1 11 U U 1 U U
2 2

 


 


  
  

 

   
 

       
 

 (15)  

For the range of end displacements considered 

,  ,  ,  and XL XL YL ZLU U U U    are of the order of  10-2,  10-2,  10-1   

and 10-1 respectively. Therefore, suitable second order 

approximations are made to simplify Eq.(14) to yield:  

 

 

XL XdL ZL YL ZL YL XL ZL ZL

YL ZL ZL XL YL XdL

ZL YL YL XL ZL ZL ZL XdL

U U U U U U U

U U U U

U U U U U U

    

   

    

         

      

        

 (16) 

Using Eq.(16), the left hand side of PVW in Eq.(9) can be 

expressed in terms of , , , ,  and XL YL ZL XdL YL ZLU U U U U      

as is the right hand side. As stated in PVW, these virtual 

displacements are geometrically consistent but otherwise 

arbitrary. Hence, for Eq.(9) to hold, the respective coefficients 

of the virtual displacements must be identical and are equated 

to get the desired beam governing differential equations and 

natural boundary conditions. It should be noted here that the 

left hand side of the PVW also has the term XLU  . Given that 

there can be only six independent generalized displacements, 

XLU   is not an independent variable. This poses a problem in 

comparing coefficients as the relation of XLU   to other variables 

is still unknown. However, XLU   is definitely not dependent on 

XLU  due to the differentiation with respect to the X, the 

independent variable of the problem. Hence, the coefficient of 

δUXL and δUX are compared first.  

 

 

2

2

,  and

0

X Xd
L

X Xd

EAU EI

EAU EI





  

  

XL
F

  

2 constantX XdEAU EI   
XL

F  (17) 

Since Eq.(5) shows κXd to be constant in X, the variation of 

XU  calculated from Eq.(17), is found to be zero. Hence, the 

dependence of XLU   on the variations of the six generalized 

displacement variables is determined as  

X Y Y Z ZU U U U U          (18) 

The value of XLU   is substituted in Eq.(16) and the 

resulting equation corrected to the second order is given below. 

XL XdL ZL YL

YL ZL YL ZL YL YL XdL

ZL YL ZL XdL

U U

U U U U U

U U

  

   

  

  

       

  

 (19) 

One can now start comparing the coefficient of virtual 

displacements on the left and right hand sides of Eq.(9). 

Comparing the coefficients of XdL  and Xd  we get

2
1  and

2
1 0

X Xd

L

X Xd

EI
GJ U

GJ

EI
U

GJ





  
   

  

  
   

  

XdL
M

 

 
2

constant 1Xd Xd Z Y X

EI
U U U

GJ GJ
 

 
         

 

XdL
M

 (20) 
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Eq.(17) and Eq.(20) can be approximately solved as 

2 2

2 2

1 1

2 2
XL YL ZL

I
U U U

EA G J A
     

2

XdLXL
MF

 (21) 

  2 2

2
Xd Z Y

I
U U

GJ G J A
    XdL XdL XL

M M F
 (22) 

It should be noted here that although solving for XU  from 

Eq.(17) and (20) requires solving a quadratic equation, for 

twisting angle Xd less than 0.1 radians, the coefficient of the 

quadratic term is relatively small and therefore can be dropped. 

Equation (21) and (22) are the characteristic differential 

equations associated with axial stretching and torsion 

respectively. Second order approximations made in deriving 

these equations are justified because XU   and κXd being of the 

order of 0.01 and 0.1 respectively.  

Equating the coefficients of the remaining virtual 

displacements, ,  ,   ,   ,   ,  and  YL Y ZL Z YL ZLU U U U U U       , 

two more characteristic differential equations associated with 

bending in the XY and XZ planes are obtained along with four 

natural boundary conditions. 

0

0

iv

Y Y Z

iv

Z Z Z

EIU U U

EIU U U

   

   

XL XdL

XL XdL

F M

F M
 (23) 

 2

Natural Boundary Conditions:

1

YL XL YL YL XdL ZL

ZL XL ZL ZL XdL YL

YL ZL XdL YL

ZL ZL YL XdL ZL

ZL YL XdL ZL

F F U EIU M U

F F U EIU M U

M EIU M U

U M EIU M U

M EIU M U

    

    

   

    

   

 (24) 

The final approximation, although consistent with previous 

second order approximation, is not necessary from the point of 

view of the beam mechanics, as the boundary conditions need 

not be symmetric. However, with this approximation the final 

model is more simple and easy to use. Using this final set of 

beam governing equations (21), (22) and (23) along with the 

natural boundary conditions in Eq.(24) and the geometric 

boundary conditions in Eq.(11) and (12), the closed form 

energy model and constraint conditions of the spatial beam will 

be derived in the next section. 

It should be noted here that the beam characteristic 

differential equation derived here is consistent with previously 

derived more accurate but complex nonlinear beam models [12, 

13], when subjected to the same assumptions and second order 

approximations that have been made here.  

Compared to a linear analysis, the governing Eqs.(21), (22) 

and (23) take into account many nonlinear effects. In Eq. (21) 

and (22) the kinematic effect of bending and the elastic 

coupling effect of torsion and axial stretching is captured in 

addition to linear stretching and twisting. Eq. (23) captures the 

effects of axial force and moment on bending which is not 

captured in linear bending analysis. Although capturing these 

effects renders the governing equations of stretching and 

torsion to be nonlinear, the bending equation is still linear in UY 

and UZ. This allows Eq.(23) to be solved with relative ease and 

then the results can be substituted in Eq. (21) and (22) in order 

to find a solution of UX and θXd.  

 

4. NONLINEAR STRAIN ENERGY IN TERMS OF END-

LOADS AND END-DISPLACEMENTS  

The solution to the beam characteristic differential 

equations (21), (22) and (23) is obtained next in order to find a 

closed form parametric strain energy expression. At this point 

in the analysis, we proceed to normalize all the loads and 

displacements per the following scheme: 
2

2 2

1 1 1

,    ,    ,    ,

,   ,   ,   ,   ,    

,    ,    ,    ,     

Y Z

y z

YL ZL

y z xd Xd xd XdL

LL L L

EI EI EI EI

L L U UVL
v u u

EI EI EI L L

U U X
u u x

L L L
   

XdLZL YL ZL

z1 y1 xd1 z1

YL XL

y1 x1

MM M F
m m m f

F F
f f (25) 

Using this normalization scheme, Eq.(23) can be 

represented in the matrix form given below. 

0 0

1 0 0 0

0 0

0 0 1 0

y y

y y

z z

z z

u u

u u

u u

u u

     
            

     
         

x1 xd1

xd1 x1

f m

m f
 (26) 

The four scalar equations represented above can be solved 

by first decoupling them. This may be done by determining the 

eigenvalues and eigenvectors of the square matrix in the above 

equation.  

2 2

E-values:    ,    ,    ,    

1
where,   4 2 2 4

2


     

  

x1 x1

1 2 3 4

x1 xd1 xd1 xd1 x1

f f
λ λ λ λ λ λ

λ

λ f m m m f

  

 

2

E-vector matrix:   

1 1 1 1

1
where,        4

2

Q

 
    

 
      
 
 
 
 

  
 

x1 x1

x1 x1

1 2 3 4

1 2 3 4

xd1 xd1 x1

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

r m m f

 

The eigenvalues λ1, λ2, λ3 and λ4 are distinct4 for non-zero 

fx1 values implying that the equations can be decoupled for fx1 

non-zero [16]5. The eigenvectors constitute the columns of the 

                                                            
4 The provided mathematical procedure and final outcomes are valid even if the 

eigenvalues are imaginary. These eigenvalues can indeed be imaginary since 

they are simply mathematical entities and not physical quantities. 
5 The case when fx1 is zero is trivial and is solved separately; however, details 

are not presented here since the final results are found to be consistent with the 

general solution for non-zero fx1. 
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matrix [Q]. Using these eigenvalues and eigenvectors, the 

solution to Eq.(26) is simply given by [16]:  

 

1 1

2 2

3 3

4 4

1 1 1 1

x x

y

x x

y

x x

z

x x

z

u c e c e

u c e c e
Q

u c e c e

u c e c e

 
         

                           
            

 
 

x1 x1

λ λ1 1

λ λ2 2
x1 x1

λ λ3 3
1 2 3 4

λ λ4 4
1 2 3 4

f f
r r

r r

f fr r

λ λ λ r λ r

λ λ λ λ

 (27) 

Here, c1, c2, c3 and c4 are the constants of integration. From 

these four scalar equations, the general solutions for the 

normalized transverse displacements uy and uz are given by:  

1 2 3 4 5 63 3 3 3

1 2 3 4

31 2 4

7 82 2 2 2

1 2 3 4

xx x x

y

xx x x

z

u c e c e c e c e c x c

c ec e c e c e
u c x c

      

     

λλ λ λx1 x131 2 4

λλ λ λ31 2 4

f fr r

λ λ λ r λ r

λ λ λ λ

(28) 

The constants c5, c6, c7 and c8 can be expressed in terms of 

c1, c2, c3 and c4 using the geometric boundary conditions at the 

fixed end of the beam:  

       0 0 0 0 0
y y z z

u u u u    

2 2 2 2

1 2 3 4

5 1

3 3 3 3

1 2 3 46 2

7 3

1 2 3 48 4

2 2 2 2

1 2 3 4

1 1 1 1

1 1 1 1

c c

c c

c c

c c

 
 
 

    
    
       

               
 
    
 

x1 x1

x1 x1

f fr r

λ λ rλ rλ

f fr r

λ λ rλ rλ

λ λ λ λ

λ λ λ λ

 (29) 

The remaining four constants, c1, c2, c3 and c4, are solved 

using the boundary conditions at the free end of the beam 

       1 1 1 1
1 ,    1 ,    1 ,    1     

y y y z z z z y
u u u u u u          

    1 2 3 4 1 1 1 1

TT

y z z y
c c c c C u u  , where 

 

1

1 1 1 1

1 1 1 1

C



 
 
 
 
 
 
 
    
 
 
    

  

x1 x1

11 12 13 143 3 3 3

1 2 3 4

x1 x1

21 22 23 242 2 2 2

1 2 3 4

31 32 33 342 2 2 2

1 2 3 4

41 42 43 44

1 2 3 4

f fr r
t t t t

λ λ rλ rλ

f fr r
t t t t

λ λ rλ rλ

t t t t
λ λ λ λ

t t t t
λ λ λ λ

 (30) 

   1 ,        1i i

i
e e    

λ λ

1i 3i 2i 4i
t t λ  t t  

Equations (28), (29) and (30) provide the exact closed-

form solutions of Eq.(26) for uy and uz in terms of the 

normalized axial coordinate x. This solution is the form of 

transcendental functions of the normalized axial load and 

moment. Substituting these solutions into Eqs.(21) and (22), 

followed by an integration gives the solution for ux and θxd in 

terms of x.  

Thus, this procedure not only captures the pertinent 

nonlinear effects in the beam characteristic Eqs.(21), (22) and 

(23) but also allows an exact closed form solution for these 

equations. These solutions can now be used to find a closed 

form strain energy expression by substituting the results of uy, 

uz, ux and θxd in the normalized Eq.(7) which is restated here for 

convenience. 

 
1

2 2

2

44 33 33 440

2

33 442

21

2 2 2

12
,    

y z

Y

v u u dx
k k k k

L GJ
k k

T EI

     
2 2 2

xd1 x1 xd1 x1
m f m f

 (31) 

The strain energy in Eq.(31) is expressed with loads in 

addition to displacements for ease of representation only and 

can be easily substituted with Eqs. (21) and (22) to express the 

strain energy only in terms of displacements, This expression 

shows the summation of the strain energies acquired from 

bending, torsion and elastic stretching (the first three terms of 

Eq. (31)) plus an extra term which come due to the combined 

effect of bending, torsion and elastic stretching. The final strain 

energy expression is given below. 

    

 ,where     for , , , ,
i j

T

y1 y1

Tz1 z1

2
z1 z1 44 33 33 44

y1 y1

2

i j

i j i j

u u

21
v C E C

u u2 2k 2k k k

r e 1
E 1 i j 1 2 3 4

 

 

 

   

   
   
   

      
   
   
   

  
   
 
 

2 2 2

xd1 x1 xd1 x1
m f m f

 (32) 

The first component in the energy expression above is a 

transcendental function in fx1 and mxd1 and can be expanded 

using Taylor series in terms of the fx1 and mxd1. Since the first 

three terms of this series up to the second power of fx1 and mxd1 

contribute to 99.99% of the total energy, the expression is 

truncated at that point. 

   
T

y1 z1 z1 y1 1 y1 z1 z1 y1

44 33

1
v u u H u u

2 2k 2k
     

2 2

xd1 x1m f

   

   

   

T

y1 z1 z1 y1 2 y1 z1 z1 y1

T

y1 z1 z1 y1 3 y1 z1 z1 y1

T

y1 z1 z1 y1 4 y1 z1 z1 y1

2

33 44

u u H u u
2

u u H u u
2

u u H u u
2

2

k k









   

   

   

2

x1

xd1 x1

2

xd1

2

xd1 x1

f

m f

m

m f

(33) 
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,1 2

1 1
0 0

700 1400
12 6 0 0 1 11

0 0
6 4 0 0 1400 6300

H H
0 0 12 6 1 1

0 0
700 14000 0 6 4

1 11
0 0

1400 6300

 
 

       
   
   
    

 
 
   

,3 4

0 0 0 1 4 2 0 0

0 0 1 0 2 1 0 01 1
H H

0 1 0 0 0 0 4 260 20

1 0 0 0 0 0 2 1

   
   


   
   
   
     

The nonlinear strain energy expression parametrically 

captures several fundamental effects in beam mechanics. The 

first three terms in Eq.(33) are the strain energy associated with 

linear beam mechanics. The next three terms are the energy 

associated with a nonlinear elastokinematic effect, also seen in 

nonlinear planar beam analysis [16]. As the name suggests, this 

effect depends both on loads and displacement, which, in this 

case, are axial loads and bending displacements respectively. In 

a finitely bent configuration, the axial force fx1 and the axial 

moment mxd1 cause additional curvature variation in the beam 

on top of bending loads fy1, fy1, my1 and mz1. This results in a 

change in the end displacements 1 1 1 1
,  ,  ,  

y z z y
u u  , thus 

producing an elastokinematic effect. Although this effect does 

not affect the calculation of displacements by more than 1%, its 

effect on the stiffness of axial stretching is as significant as 

linear elasticity. For torsional stiffness, this effect is one order 

of magnitude less than linear elasticity, which, although is not 

as significant as in the case of axial stretching, cannot be 

dropped completely.

 

The last energy term represents the energy due to a second 

nonlinear effect and is independent of transverse displacements. 

It is an elastic coupling between torsion and stretching. This 

corresponds to a small axial displacement in the presence of 

pure torsion and a slight change of stiffness in torsion direction 

due to axial force. Although this effect is at least three orders of 

magnitude smaller than linear elastic and kinematic effects, it 

becomes the only cause of axial displacement or change in 

stiffness in the absence of bending loads and hence is retained. 

In the cases of more complex mechanisms, if it can be proved 

that this effect cannot exist alone for any loading condition, its 

associated terms in energy and constraint expressions can be 

dropped. 

The axial displacement can be derived using Eq.(21) and 

the bending solution given in Eq.(28). The solution is 

transcendental in nature and can be expanded and truncated as 

given in Eq.(34). The total axial displacement can be divided 

into four fundamental components, namely linear, kinematic, 

elastokinematic and elastic torsion-stretch coupling effect. 

   

   

1 1 1 1 1 5 1 1 1 1
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1
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T

x y z z y y z z y

T

y z z y y z z y

u u u H u u
k

u u H H u u

   

   

 

 
  

 

x1

x1 xd1

f

f m

 

2

44 33

  
k k


2

xd1
m

 (34)
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3 1
0 0

5 20

1 1
0 0

20 15
where       

3 1
0 0

5 20

1 1
0 0

20 15

H

 
 
 
 
 
 
  
 
 
  
 

  

The axial displacement is dominated by the second term 

which represents the kinematic coupling between bending and 

axial displacements. It occurs due to the inherent arc-length 

preservation of beams. The stiffness, however, is dependent on 

the first and third terms which are due to linear and the 

elastokinematic effects respectively. An additional axial 

displacement, given by the fourth term, is caused by the 

twisting moment which, although is small, can be significant in 

the absence of axial and bending forces. 

The transcendental expression for θxd1 can be derived using 

Eq.(22) and the bending solution given in Eq.(28). The 

expanded and truncated form of the solution is as follows. 

   

   

1 1 1 1 1 6 1 1 1 1

44

1 1 1 1 4 3 1 1 1 1
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2

T

xd y z z y y z z y

T

y z z y y z z y

u u H u u
k

u u H H u u

    

   

 

 
  

 

xd1

xd1 x1

m

m f

 

2

33 44

2

k k
 xd1 x1

m f
 (35) 
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2

2 1
where    

2

2 1

0 0 0

0 01
H

0 0 04

0 0

 
 

 
 
 
 
  

 

The twist in the beam is divided into four fundamental 

effects, similar to the axial displacement expression in Eq.(34). 

While the solution is dominated by the first term capturing the 

linear twist in the beam, the second term, representing the 

kinematic rotation caused bending displacements, can become 

significant in the absence of a twisting moment. The twist angle 

also has an elastokinematic component, the third term, 

dependent on bending displacements and axial loads. Unlike 

the kinematic effect, this term also contributes to the torsional 

stiffness. The fourth term completes this load-displacement 

relation showing the effect of axial forces on torsion. The effect 

of this term is generally very small, but can become significant 

for high axial forces that can occur for load bearing 

applications and over-constraint situations. 
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The strain energy model, given in Eq.(33) can be used 

along with constraint equations (34) and (35) in PVW to derive 

the bending force displacement relations. The result is given in 

Eq.(36) and it matches with previously published results using 

explicit analysis with a minor correction in the coordinate 

frame used for defining the twist moment [8].  

   

   

 

1 1 1 1 1

5 6 7 1 1 1 1

2 3 4 1 1 1 1

= 

          2 2

          

T T

y z z y

T

y z z y

T

y z z y

H u u

H H H u u

H H H u u

 

 

 

    

    

y1 z1 z1 y1

x1 xd1

2 2

x1 xd1 x1 xd1

f m f m

f m

f m f m

(36) 

7

Where

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

H

 
 
 
 
 
 

 

As expected the linear (first term), nonlinear kinematic 

(second term) and nonlinear elastokinematic (third term) 

behaviors have been captured in bending direction load-

displacement relation in Eq.(36). 

 

5. DISCUSSION AND CONCLUSION 
A nonlinear closed form strain energy model for symmetric 

spatial beam flexure, compatible with the previously presented 

nonlinear beam constraint model, is formulated. In addition to 

linear effects, the model explicitly shows the possible changes 

in energy and constraint relations via closed-form parametric 

expressions that arise due to the nonlinear interactions of the 

bending, axial stretching and torsion directions. The 

formulation also shows an interesting similarity between the 

twist angle expression in Eq.(35) and axial translation 

expression in Eq.(34), which shows the constraint-like behavior 

of θxd in the application of energy methods, contrary to its 

expected DoF–like behavior due to its relatively low stiffness. 

This analysis paves the way for analyzing complex three-

dimensional flexure mechanisms, comprising several spatial 

beam flexures, using energy methods. Since no assumption, 

other than symmetry, is made for the beam cross-section, this 

formulation is applicable to beams with circular, square and 

other regular polygon shaped cross-sections. Furthermore, the 

simplicity of the nonlinear strain energy is expected to help in 

the analysis of complicated flexure mechanisms. Future work 

includes analyzing complex parallel–kinematic and serial 

spatial flexure mechanisms using this methodology followed by 

an FEA and experimental validation. 
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