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ABSTRACT 
In the past, we have introduced the Beam Constraint Model 

(BCM), which captures pertinent non-linearities to predict the 

constraint characteristics of a generalized beam flexure in terms 

of its stiffness and error motions. In this paper, a non-linear 

strain energy formulation for the beam flexure, consistent with 

the transverse-direction load-displacement and axial-direction 

geometric constraint relations in the BCM, is presented. An 

explicit strain energy expression, in terms of beam end-

displacements, that accommodates generalized loading 

conditions, boundary conditions, initial curvature, and beam 

shape is derived. Using the Principle of Virtual Work, this strain 

energy expression for a generalized beam is employed in 

determining the load-displacement relations, and therefore 

constraint characteristics, for flexure mechanisms comprising 

multiple beams. The benefit of this approach is evident in its 

mathematical efficiency and succinctness, which is to be 

expected with the use of energy methods. All analytical results 

are validated to a high degree of accuracy via non-linear Finite 

Element Analysis. Furthermore, the proposed energy 

formulation leads to new insights into the nature of the BCM. 

 

1. INTRODUCTION AND BACKGROUND 
The Beam Constraint Model (BCM) is a closed-form, 

parametric, and generalized model that captures the constraint 

characteristics of a beam flexure in terms of its stiffness and 

error motions. While the background and motivation for this 

model are presented in prior publications [1], a brief review is 

provided in the following paragraphs. 

Fig.1 illustrates a simple beam (initially straight, uniform 

cross-section) of length L, thickness T, and depth H, 

interconnecting rigid bodies (1) and (2). The beam is subject to 

generalized end-loads FXL, FYL, and MZL, which result in end-

displacements UXL, UYL, and ZL with respect to the coordinate 

frame X-Y-Z. Transverse direction displacements UYL and ZL 

can be recognized to be the Degrees of Freedom (DoF) of this 

flexure unit. The axial direction UXL displacement represents a 

Degree of Constraint (DoC).  
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Fig. 1 Simple Beam Flexure 

The BCM, expressed in terms of the transverse-direction 

end load-displacement relation and the axial direction 

geometric constraint relation for the above beam flexure, has 

been derived previously [1]. This model captures the non-

linearities associated with applying load equilibrium in the 

deformed state, but neglects those associated with beam 

curvature. It has been shown that the former are crucial in 

accurately capturing the constraint characteristics of a beam 

flexure in terms of its stiffness and error motions.  

The BCM has also been extended to include beams with 

arbitrary end-loads, initial and boundary conditions, beam 

shape, and temperature distribution. Furthermore, it has been 

employed to accurately determine the load-displacement 

relations, and therefore constraint characteristics, of more 

complex flexure mechanisms that comprise beam flexures.  

However, the direct application of the BCM for this purpose 

proves to be mathematically tedious since all the internal loads 

and displacements associated with each beam have to be taken 

into account.  

This limitation provides the motivation for the energy-

based formulation of the BCM presented in this paper. In 

particular, the Principle of Virtual Work (PVW) is employed 
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because it eliminates the need to consider internal loads and 

load equilibrium for each constituent beam in a flexure 

mechanism [2]. The first requirement for applying PVW on an 

elastic system is the determination of the strain energy 

corresponding to an arbitrary deformed state. This is non-trivial 

because we want to capture a certain class of non-linearities in 

the BCM, while neglecting others. Therefore, the assumptions 

in the strain energy formulation have to be consistent with 

those made in the direct determination of the transverse and 

axial relations in the BCM. This is addressed in Section 2 of 

this paper, where non-linear strain and strain energy 

expressions are developed.  

In Section 3, we derive expressions for the transverse 

direction load-displacement relation, axial direction geometric 

constraint relation, and total strain energy explicitly in terms of 

the end-loads and end-displacements, for a variable cross-

section beam. Upon simplification (series expansion and 

truncation), these three expressions reveal beam characteristic 

coefficients, which may be classified as stiffness, constraint, 

and energy coefficients, respectively. 

In Section 4, we make use of two separate energy based 

arguments to establish fundamental relations between the beam 

characteristic coefficients. The first is based on the PVW and 

the second is based on the conservation of energy. The 

application of PVW at this stage also provides a consistent 

truncation scheme for the infinite series in the transverse load-

displacement, axial geometric constraint, and strain energy 

expressions, as shown in Section 5. Since both the axial 

constraint and strain energy expressions exhibit a dependence 

on the axial load, the two expressions are combined to yield a 

strain energy expression free of axial load terms. The resulting 

expression represents the energy formulation of the BCM.  This 

strain energy expression for a single beam is now in a form that 

may be employed in conducting the load-displacement analysis 

of a multi-beam flexure mechanism using energy methods. This 

is illustrated in Section 6, where the effectiveness and utility of 

the BCM energy formulation is highlighted using the PVW. In 

Section 7, the BCM energy formulation is further generalized 

to incorporate an initially slanted and/or curved beam.  

 

2. NON-LINEAR STRAIN AND STRAIN ENERGY 
FORMULATION FOR THE BEAM FLEXURE 
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Fig.2 Undeformed and Deformed Beam Geometries   

Fig.2 illustrates the neutral axis of a simple beam (initially 

straight and uniform-thickness) in its undeformed (dashed line) 

and deformed (solid line) geometries, with respect to the 

indicated X-Y-Z coordinate axes. UX(X) and UY(X) represent 

the X and Y direction displacements of any point Ai on the 

beam‟s neutral axis. An element AiBi along the undeformed 

beam neutral axis assumes a new position and orientation AfBf 

after deformation. Therefore, the axial strain (xx) at location X 

along the neutral axis can be stated as: 
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It is physically obvious that the axial direction U′X is much 

less than the transverse direction U′Y. For U′Y less than 0.1, 

second and higher power terms in U′X and U′Y may be dropped 

with respect to 1 in the infinite series expansions above, with 

less than 1% error. Note, however, that in the final form of the 

strain expression, the second-power 2

Y
U   term has been retained 

with respect to the first-power U′X – a key aspect of the non-

linear strain formulation. This second-power 2

Y
U  term appears 

because the deformed geometry (translation and rotation) of the 

beam neutral axis has been considered in the strain formulation, 

and it is comparable to the first-power U′X even for small 

displacements. This expression for strain represents the true 

stretch of an element along the neutral axis and inherently 

captures the kinematics associated with the geometric 

constraint in the problem, i.e., beam arc length conservation.  

Next, the axial strain of an element at distance Y from the 

neutral axis, along the Y direction, may be determined by 

calculating the additional length change of the element CfDf 

with respect to element AfBf (Fig.2). Assuming that plane 

sections remain plane and normal to the neutral axis after 

deformation (Bernoulli‟s assumptions), Eq.(1) may be 

augmented to show that:  
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where ρ(X) is the radius of curvature at a beam neutral axis 

location that was originally at X before deformation [3]. 

Consistent with the previous approximations, in the final step 

above, the second and higher power terms in U′Y have been 

neglected with respect to 1 in the curvature expression.  

Next, the net strain energy in the beam may be determined 

to be the following:  

2

XX

Volume

E
V dAdX

2
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 where E represents the Young‟s modulus of the material 

for an XY plane-stress condition and the plate modulus for an 

XY plane-strain condition. Substituting Eq.(2) in Eq.(3), 

followed by some mathematical steps, yields 
2L L

2 2ZZ

X Y Y
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EA 1 EI
V U U dX   U dX

2 2 2

 
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(4) 

where A and Izz are the area and second moment of area, 

respectively. The key difference in this strain energy 

expression, compared to a linear formulation, is the presence of 

the second-power 2

Y
U   term in the first integral above, which 

inherently captures the geometric constraint of beam arc length 

conservation. Expression (4) is also in agreement with previous 

non-linear strain energy formulations [4]. 

With the strain energy thus determined and the geometric 

boundary conditions known at the beam root (

      ,  , and 
X Y Y

U 0 0 U 0 0 U 0 0   ), the Principle of 

Virtual Work (PVW) may be applied to the beam flexure 

(Fig.1) to yield the following beam governing equations and 

natural boundary conditions.  

Governing Equations: 
iv

ZZ Y Y
EI U U 0 

XL
F  (5) 
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Natural Boundary Conditions: 

    
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XL YL
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 Eq.(5) provides the recognizable transverse direction beam 

governing equation. This fourth order linear differential 

equation in UY is exactly the same as the one obtained in the 

direct formulation [1], which is to be expected because the set 

of assumptions made in both cases are identical. Eq.(6) 

provides the axial direction geometric constraint equation for 

the beam flexure. This reaffirms that the geometric constraint 

associated with the beam arc length is inherently captured in 

the above strain and strain energy formulations (Eqs. (2) and 

(4)) and therefore is not needed explicitly in the application of 

the PVW; instead, the geometric constraint relation falls out of 

the PVW application. Eq.(6) may be integrated once to yield 

the following axial direction relation, same as the result from 

the direct formulation [1]:  

( )
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The first term above represents the linear elastic stretching 

of the beam in the axial direction in response to an axial force 

FXL and is denoted by 
( )e

XL
U . The second term captures the 

geometric constraint of beam arc length conservation. Eq.(6) 

also corroborates the fact that the Left-Hand Side represents the 

true axial strain in the beam due to stretching, which remains 

constant throughout the beam length since the axial load and 

therefore stress, given by the Right-Hand Side of this equation, 

remains constant. 

 For subsequent application of the PVW, the strain energy 

expression of Eq.(4) may be further simplified by employing 

Eq.(6) and invoking the definition of ( )e

XL
U , to yield 
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(10)  

 This clearly identifies the separate contributions to the non-

linear strain energy from beam bending and beam axial 

stretching. It will be seen later that the first term not only 

includes the bending deformation induced by the transverse 

loads but also that induced by the axial load. 

Having thus established the consistency of the non-linear 

strain energy expressions (4) and (10) with the previously 

reported transverse-direction beam governing equation, axial 

geometric constraint relation, and associated boundary 

conditions that led to the BCM  [1], we now proceed to use 

these strain energy expressions as the basis for an energy-based 

BCM formulation. 

At this stage, a normalization scheme is introduced to 

simplify mathematical expressions and their manipulation in 

the rest of this paper. All loads, displacements, position 

coordinates, stiffness, energy, and work terms are normalized 

with respect to the beam geometry and material parameters: 

displacements, lengths, and coordinates are normalized by the 

beam length L; forces by EIzz /L
2
; and moments, work, and 

strain energy by EIzz /L:  

; ;
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3. BEAM RELATIONS IN TERMS OF END LOADS AND 
DISPLACEMENTS  

For a simple beam, the beam governing equation (Eq.(5)) 

and associated geometric boundary conditions may be solved in 

closed-form,  
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The intermediary variable r (
1

2

x1
f ) is introduced 

temporarily for mathematical convenience. The application of 

natural boundary conditions (7)-(8) in the above expression 
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yields the following transverse-direction end load-displacement 

relations:  

 

 
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In this non-linear formulation, the stiffness terms are no 

longer simply elastic terms as in the purely linear case, but 

instead are functions of the axial load fx1. These transcendental 

expressions may be expanded in fx1 to yield the following 

infinite series:
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(13) 

In the BCM, the first matrix in the above series captures 

the elastic stiffness and the second matrix captures load-

stiffening, which quantifies the change in DoF direction 

effective stiffness in the presence of a DoC load [5-6]. Terms 

associated with higher powers of fx1 are found to have 

negligible contributions for practical load and displacement 

ranges of interest.  

Next, the solution given by Eq.(11) may be substituted in 

Eq.(9) to obtain the axial-direction geometric constraint 

equation in terms of end-loads and displacements: 
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This axial direction relation for the DoC end-displacement 

ux1 in terms of DoF end-displacements, uy1 and θz1, and DoC 

end-load fx1 is as expected [5-6]. Since this expression arises 

from the purely geometric constraint of constant beam arc 

length, the presence of the axial load fx1 in the constraint terms 

g‟s is somewhat surprising. While uncommon in mechanics, 

this does highlight the unique attributes of distributed 

compliance mechanisms, and will be shown to be responsible 

for the elastokinematic effect in the BCM. The transcendental 

expressions for the constraint terms may be expanded in terms 

of fx1 to yield the following infinite series: 
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The first term in this series expansion (zeroth power of fx1) 

indicates a component that is explicitly and exclusively 

dependent on the transverse end-displacements uy1 and θz1, and 

is independent of any loads. Therefore, this term is referred to 

as the kinematic component of the axial displacement and 

denoted by ( )k

x1
u . The next term, although small compared to the 

first term, is comparable to the purely elastic term ( )e

x1
u , and 

therefore cannot be ignored. Even though this term arises from 

the geometric constraint of beam arc-length conservation, it 

does have a linear dependence on fx1, and therefore contributes 

to the compliance along the DoC direction. This term, referred 

to as the elastokinematic component in the BCM and denoted 

by ( )e k

x1
u  , is unusual and a unique outcome of distributed 

compliance. The consideration of the beam in its deformed 

configuration in formulating the non-linear strain and strain 

energy in Section 3, ensures that the contribution of the axial 

load fx1 to the bending moments at any given beam cross-

section is appropriately captured. Because of the beam‟s 

distributed compliance, this additional bending moment causes 

a change in its deformation, which produces the 

elastokinematic displacement ( )e k

x1
u   along the DoC direction, 

even as the DoF displacements uy1 and θz1 remain constant. 

Second and higher power fx1 terms in the above expression 

have a negligible contribution in the load and displacement 

ranges of interest. 

Next, we proceed to determine the strain energy in terms of 

end-displacements. Note that it would be incorrect to simply 

employ the stiffness expression (12) determined above to find 

the strain energy. The stiffness given by this expression is the 

effective stiffness in the sense that it also captures load-

stiffening, which is a consequence of the geometry and not 
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deformation and therefore does not contribute to the strain 

energy. The strain energy may be accurately determined by 

substituting the beam deformation expression (11) in Eq.(10).   
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(17) 

The first term above represents energy due to beam 

bending, while the second term represents energy due to the 

axial stretching of the beam arc-length. What is unusual is that 

the bending strain energy is not simply dependent on the 

transverse end-displacements uy1 and θz1, but also on the axial 

load ( 2

x1
f r ). This is simply a consequence of the fact that 

even when the transverse end-displacements are held fixed, the 

axial load can produce additional bending moment along the 

beam shape which results in an additional bending deformation 

of the beam, thus contributing an additional component of 

energy. This is the manifestation of the elastokinematic effect 

in the strain energy domain. The transcendental terms in 

Eq.(17) may be expanded in fx1 to yield the following infinite 

series: 
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1400 6300

1 1
u1 31500 63000

  u  
1 12

63000 13500










   
    

   

 
  

   
  

 

 
  

   
  

 

x1

x1

f

f

 

(18) 

It may be shown that, for practical axial load and 

transverse displacement ranges, only the first load term, which 

is quadratic in fx1, is the most significant and the higher power 

terms may be neglected. Moreover, there appears to be some 

similarity between the stiffness and energy coefficients of the 

corresponding powers of fx1 in Eqs. (13) and (18). In fact, the 

zeroth-power coefficients are the same, showing that the 

biggest portion of the strain energy comes from the elastic 

stiffness in the transverse direction. Interestingly, there is no 

first-power term in the energy expression corresponding to the 

first-power term in the stiffness expression, which is associated 

with the load-stiffening effect. This agrees with a physical 

understanding of the system – since the load-stiffening effect is 

a consequence of geometry and not deformation, it should not 

contribute any strain energy. Subsequent stiffness and energy 

coefficients of corresponding powers of fx1 show some 

similarity but are not identical. Furthermore, there also appears 

to be some similarity between the stiffness coefficients of a 

certain power of fx1 in Eq.(16) and the constraint coefficients 

associated with one lower power of fx1 in Eq.(18). Thus, the 

natural question that arises is whether there is some underlying 

relationship between these stiffness, constraint, and energy 

coefficients of the various powers of fx1 in Eqs.(13), (16), 

and(18), respectively, or if this similarity is merely a 

coincidence.  

Another question that remains to be answered is where to 

truncate the infinite series associated with the stiffness, 

constraint, and energy expressions for the purpose of obtaining 

an accurate yet compact Beam Constraint Model. In the explicit 

formulation, we dealt with only two relations – the transverse 

direction load-displacement relation and the axial direction 

geometric constraint relation. Both relations were truncated to 

keep only the first-power term in fx1, and it was noted that this 

led to errors less than 3% over an axial load range of ±5 and 

transverse displacement range of ±0.1 [1, 5-6]. Now we have a 

third relation that captures the strain energy of the beam 

flexure. It is not clear if this third expression, or even the first 

two, can be truncated independent of each other, or if a certain 

scheme has to be followed so that the truncated expressions are 

„consistent‟ with respect to each other. The similarity between 

the coefficients noted earlier, seems to indicate that there 

should be a consistent truncation scheme that at least ensures 

that the PVW is valid even for the truncated expressions.  

However, before addressing the above two questions in 

Section 4, we first proceed to show that the format of Eqs.(13), 

(16), and(18) accommodates any general beam shape and not 

just a uniform-thickness beam. The beam deformation, end-

loading, and end-displacements representation for the variable 

cross-section beam remains the same as in Fig.1. The modeling 

assumptions are also the same as earlier, except that the beam 

thickness is now a function of X:    0
T X T X , where T0 is 

the nominal beam thickness at the beam root and (X) 

represents the beam shape variation. Thus, the second moment 

of area becomes    3

ZZ ZZ 0
I X I X . The normalization 

scheme remains the same as earlier, with the exception that IZZ0 

is now used in place of IZZ. Employing the PVW, one may 

derive the following normalized governing equations and 

natural boundary conditions for this case: 

Governing Equations: 

   
( ) ( ) ( )3

y y
x u x u x 0   

x1
f  (19) 

 
( ) ( )

( )

2

2 0

x y

t1
u x u x

2 12 x
  

x1
f  (20) 

Natural Boundary Conditions: 

    
( ) ( ) ( )3

y y
1 u 1 u 1    

x1 y1
f f  (21) 
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( ) ( )3

y
1 u 1 0   

z1
m  (22) 

Given the arbitrariness of (x), a closed-form solution to 

this ordinary differential equation with variable coefficients 

(Eq.(19)) is no longer possible. Nevertheless, the equation and 

boundary conditions remain linear in the transverse loads (fy1 

and mz1) and transverse displacements (uy(x) and its 

derivatives). This implies that the resulting relation between the 

transverse end-loads and displacement also has to be linear, of 

the form: 

   

   

; ( ) ; ( )

; ( ) ; ( )

11 12 y1

21 22 z1

k x k x u

k x k x

 

  

    
    

    

y1 x1 x1

z1 x1 x1

f f f

m f f
 (23) 

The effective stiffness terms (k‟s) will now be some 

functions of the axial load fx1, dictated by the beam shape (x), 

and might be difficult or impossible to determine in closed-

form. Nevertheless, these functions may certainly be expanded 

as a generic infinite series in fx1,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

 

( )

            ...

          

0 0 1 1

y1 y111 12 11 12

0 0 1 1

z1 z112 22 12 22

2 2

y111 122

2 2

z112 22

n n

11 12n

n

12 2

u uk k k k

k k k k

uk k

k k

k k

k k

 



        
         

        

   
   

  



y1

x1

z1

x1

x1

f
f

m

f

f
( )

y1

n
n 0 z12

u







   
  
  



 (24) 

Similarly, it may be shown that irrespective of the beam 

shape, the constraint equation may be stated and expanded as: 

 
   

   
( )

; ( ) ; ( )

; ( ) ; ( )

11 12 y1e

x1 x1 y1 z1

21 22 z1

g x g x u
u u u

g x g x

 


  

   
    

  

x1 x1

x1 x1

f f

f f

 

 
( ) ( )

 

( ) ( )
    

n n

y111 12n

y1 z1 n n
n 0 z133 12 22

ug g
u

k g g








   
    

  
x1

x1

f
f

 

(25)

 

Along the same lines, the strain energy for a variable cross-

section beam may be shown to be quadratic in the transverse 

displacements, uy1 and θz1, and some unknown function of the 

axial load fx1. This expression may be expanded as follows:  

 
   

   
( )

; ( ) ; ( )

; ( ) ; ( )

211 12 y1 e

y1 z1 33 x1

21 22 z1

v x v x u1 1
v u k u

v x v x2 2

 


  

   
   

  

x1 x1

x1 x1

f f

f f

  

 
( ) ( )

( )

( ) ( )

n n
2y111 12 n e

y1 z1 33 x1n n
n 0 z112 22

uv v1 1
 u k u

2 2v v








   
   

  
 x1

f

 

(26) 

 

4. FUNDAMENTAL RELATIONS BETWEEN BEAM 
CHARACTERISTIC COEFFICIENTS  

Having derived the generic expressions (24), (25), and (26) 

for the transverse stiffness, axial constraint, and strain energy 

for an initially straight beam with any generalized shape, the 

next step is to determine if there are any fundamental relations 

between these three expressions, and their associated beam 

characteristic coefficients. To do so, we employ the PVW once 

again. These three expressions, explicit in terms of the end-

loads and end-displacements, have been derived from the 

implicit expressions (5), (6), and (10), respectively. Since these 

implicit expressions were shown to be consistent with each 

other via PVW in Section 2, the resulting explicit expressions 

should also be consistent with regards to PVW.  

Thus, a variation of the strain energy, given by Eq.(26), 

keeping the external loads constant, in response to virtual 

displacements δux1, δuy1, and δθz1 that satisfy the geometric 

constraint condition (25), can be equated to the virtual work 

done by the external forces over these virtual displacements. 

This implies: 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

x1 y1 z1

n n

y111 12 n e e

y1 z1 33 x1 x1n n
n 0 z112 22

n n

y111 12n 1

y1 z1 n n
n 0 z112 22

e

x1 y1 z1

v u u

uv v
u k u u

v v

ug g
2 u

g g

  u u

   

  


 


  










  

   
   

  

   
   

  

  





x1 y1 z1

x1

x1

x1 y1 z1

f f m

f

f

f f m

 (27) 

Since the virtual displacements δux1, δuy1, and δθz1 are 

arbitrary, their respective coefficients may be set to zero. This 

leads to the follow end load-displacement relations: 
( )e

33 x1k u
x1

f   (28) 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0

y111 12

0 0

z112 22

n n 1 n n 1

y111 11 12 12 n

n n 1 n n 1
n 1 z112 12 22 22

uv v

v v

uv 2g v 2g
         

v 2g v 2g





 

 


    
    

    

     
           



y1

z1

x1

f

m

f

 (29) 

Eq.(28) is an expected result and provides no new 

information. However, a comparison between Eqs.(29) and (24)

, both of which should be identical given the above-mentioned 

consistency in the energy formulation, reveals a fundamental 

relation between the stiffness, constraint, and energy 

coefficients: 
( ) ( )

( ) ( ) ( ) ..

0 0

n n n 1

k v

k v 2g          n 1

 

  





    
 (30) 

where β and λ, both take indicial values of 1 and 2. This 

explains some of the similarities observed at the end of Section 

3. The above relations may be readily verified for the case of a 

simple beam using known results (13), (16), and (18); however, 

it should be noted that these are valid for any general beam 

shape, as proven above.  

A second argument, based on the conservation of energy, 

provides yet another fundamental relation between the beam 

characteristic coefficients. Since a given set of end-loads (fx1, 

fy1, and mz1) produces a unique set of end-displacements (ux1, 

uy1, and θz1), the resulting strain energy stored in the deformed 

beam is also unique, given by Eq.(26). This strain energy 

remains the same irrespective of the order in which the loading 

is carried out. Therefore, we consider a case where the loading 

is performed in two steps: 1. End loads fy1 and mz1 are applied 
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to produce some end-displacements 
x1

u , uy1, and θz1, and 2. 

While holding the end-displacements uy1 and θz1 fixed, end-load 

fx1 is applied to change the axial displacement from 
x1

u  to ux1. 

The sum of energy added to the beam in these two steps 

should be equal to the final strain energy given by Eq.(26). 

Energy stored in Step 1 is simply obtained by setting  fx1 = 0 in 

Eq.(26) 

  
( ) ( )

( ) ( )

0 0

y111 12

1 y1 z1 0 0

z112 22

uv v1
v u

2 v v




   
   

  
 (31) 

Axial displacement at the end of Step 1 is simply given by 

setting fx1 = 0 in Eq.(25) 

 
( ) ( )

( ) ( )
= 

0 0

y111 12

x1 y1 z1 0 0

z112 22

ug g
u u

g g




   
  
  

 (32) 

Next, assuming a conservative system, the energy added to 

the beam in Step 2 may simply be determined by calculating 

the work done on the system when force fx1 causes the beam 

end to move from 
x1

u  to ux1 in the axial direction. An integral 

needs to be carried out since the relation between fx1 and ux1 is 

non-linear. However, since inverting Eq.(25), which provides 

displacement in terms of force, is not trivial, determining the 

work done in this fashion is difficult, if not impossible. 

Therefore, instead we choose to determine the complimentary 

work, which is readily derived from Eq.(25) 

     * *

2 2 x1 x1

0

v w u u d   
fx1

x1 x1 x1
f f f  (33) 

 This result is then used to calculate the strain energy stored 

in the beam during Step 2, as follows: 

     *

2 x1 x1 x1  2
v u u u v   

x1 x1
f f  (34) 

Substituting Eqs. (25) and (32) first in Eq. (33), and then 

all these three in Eq.(34) yields: 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n n

y111 12n 1

2 y1 z1 n n
n 1 z133 12 22

n n2

y111 12n 1

y1 z1 n n
n 1 z133 12 22

ug g
v u

k g g

ug g1
   u

2k n 1 g g

















   
    

  

   
    

   





x1

x1 x1

x1

x1

f
f f

f
f

 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n n2

y111 12n 1

y1 z1 n n
n 1 z133 12 22

n 1 n 12

y111 12n

y1 z1 n 1 n 1
n 1 z133 12 22

ug gn
   u

2k n 1 g g

ug gn 1
   u

2k n g g












 

 


    
          

    
      

   





x1

x1

x1

x1

f
f

f
f

 

(35) 

Since v = v1+v2, Eqs. (26), (31), and (35) imply that there 

is another fundamental relation between the energy and 

constraint coefficients, given by: 

 ( ) ( ) ..n n 1n 1
v 2 g      n 1

n
 

 
    

 
 (36) 

Expressions (30) and (36) may be further manipulated to 

yield the following relations between stiffness and constraint 

coefficients, and energy and stiffness coefficients:  

( ) ( ) ..n n 12
k g      n 1

n
 

      (37) 

 

( ) ( )

( ) ( ) ..

0 0

n n

v k

v n 1 k      n 1

 

 



     

 (38) 

Together, Eqs. (36)-(38) present the far-reaching 

conclusion that the stiffness, constraint, and energy expressions 

are all inter-related;  any one can be expressed in terms of any 

of the other two. These relations may be readily verified for the 

known case of a simple beam via Eqs. (13), (16), and (18).  

The above derived relations offer considerable insight into 

the nature of the non-linear results for variable cross-section 

beam flexures. Some specific observations are noted below:  

1. Eq.(38) indicates that that no matter what the beam shape is, 
( )1v  is always zero. This simply implies that while all other 

stiffness coefficients contribute to the strain energy, the 

stiffness coefficient associated with the first power of fx1 does 

not. This agrees with our physical understanding since the 

stiffness coefficient ( )1k represents a stiffness component 

arising from geometry and not displacement.  

2. Eq.(37) shows that ( ) ( )1 0k 2g   , irrespective of the beam 

shape. This indicates that the load-stiffening effect seen in the 

transverse direction load-displacement relation and the 

kinematic component seen in the axial direction geometric 

constraint relation, are inherently related. This should be no 

surprise either, because, in physical terms, both these effects 

arise from the consideration of the beam in a deformed 

configuration.    

3. These results (Eqs. (36)-(38)) also highlight the fact that the 

transverse load-displacement expression (24), the axial 

geometric constraint expression (25), and the strain energy 

expression (26) for a generalized beam are not entirely 

independent. The geometric constraint expression captures all 

the beam characteristic coefficients, except for the elastic 

stiffness ( )0k . The strain energy, on the other hand, captures all 

the beam characteristic coefficients except for load-stiffening 

and kinematic ones. However, the transverse direction load-

displacement relation is the most complete of the three – in 

fact, it captures all the beam characteristic coefficients. This is 

reasonable because as per the PVW, both the strain energy and 

geometric constraint relations are used in deriving the 

transverse load-displacement relation. Thus, the latter captures 

all the information contained in the former two.  

This last observation leads to an important practical 

advantage. It implies that in the derivation of the non-linear 

beam mechanics, which ultimately leads to the BCM, it is no 

longer necessary to determine all three relations individually. In 

fact, solving for the constraint and energy relations individually 

is mathematically more tedious because of the integration steps 

and the quadratic terms in uy1 and z1 involved. Instead, one 

may simply derive the transverse load-displacement relation, 

and determine the constraint and energy relations indirectly 

using Eqs.(37) and (38).  
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5. BCM ENERGY FORMULATION FOR INITIALLY-
STRAIGHT VARIABLE CROSS-SECTION BEAMS  

In this section, we employ the results from the previous 

two sections to present an energy formulation associated with 

the BCM for a variable cross-section beam. One of the 

questions raised at the end of Section 3 was how to determine 

the truncation of the transverse load-displacement (24), the 

axial geometric constraint (25), and the strain energy (26) 

expressions, all of which are expressed in the form of infinite 

series in the axial load  fx1. Observation 3 from the previous 

section helps provide an answer. Since these three expressions 

are all inter-related, their truncation should be such that the 

expressions remain consistent in terms of PVW even after 

truncation. Maintaining this consistency is important because 

ultimately we plan to use only this truncated strain energy of a 

generalized beam in deriving the load-displacement relations 

for more complex flexure mechanisms using energy methods. 

It has been identified analytically as well as experimentally 

[5-7] that terms up to the first power in fx1 have to be retained 

both in the constraint expression to capture the kinematic and 

elastokinematic effects, and in the transverse load-displacement 

expression to capture the elastic and load-stiffening effects. 

Based on these requirements, a consistent BCM, comprising 

transverse load-displacement, axial constraint, and strain 

energy relations, that captures elastic stiffness, load-stiffening, 

kinematic, and elastokinematic effects is given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
             

0 0 1 1

y1 y111 12 11 12

0 0 1 1

z1 z112 22 12 22

2 2

y111 122

2 2

z112 22

u uk k k k

k k k k

uk k

k k

 



        
         

        

   
   

  

y1

x1

z1

x1

f
f

m

f

 (39) 

 

 

( ) ( )

( )

( ) ( )

( ) ( )
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z112 22

1 1
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y1 z1 1 1

z112 22

ug g
u u u

g g

ug g
u

g g







   
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  

   
   

  
x1

f

 (40) 
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( ) ( )
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( ) ( )

0 0
2 y111 12e

33 x1 y1 z1 0 0

z112 22

2 2

y111 12 

y1 z1 2 2

z112 22

uv v1 1
v k u u
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

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   
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  

2

x1
f

 (41) 

subject to the following relations between the beam 

characteristic coefficients: 

( ) ( ) ( ) ( ) ( ) ( ) ( )  ;    ;  0 0 0 1 1 2 21
k v g k g v k

2
             (42) 

To employ the above results in an energy method such as 

PVW, we need to know the strain energy of any constituent 

flexure beams as a function of displacements only, and 

similarly any geometric constraints between these 

displacements. However, in their present forms both the strain 

energy expression (41) as well as the geometric constraint 

expression (40) exhibit the presence of the axial load fx1. 

Therefore, further modification of these two expressions is 

necessary. This is simply achieved by making the logical 

substitution ( )

 

e

33 x1
k u

x1
f  in these two equations, to yield: 

 

 

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

2 2
2 y111 12e

33 x1 33 y1 z1 2 2

z112 22

0 0
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z112 22

uv v1
v k u 1 k u  

2 v v

uv v1
     u
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    

 
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( ) ( )

( )

 ( ) ( )

( ) ( )

( ) ( )

=  

      

1 1
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x1 x1 33 y1 z1 1 1

z112 22

0 0
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y1 z1 0 0

z112 22

ug g
u u 1 k u

g g

ug g
u

g g







    
    

   

   
   

    
 Now these expressions are in the desirable form. The 

independent displacement variables in this case are ( )e

x1
u , uy1, 

and θz1; and ux1 is a dependent displacement coordinate related 

to the former three via the second of the above two equations. 

Alternatively, the constraint equation may be substituted into 

the strain energy expression, while employing the relations (42)

, to yield:  

 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2
1 1
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x1 y1 z1 1 1

z112 22

33 2 2
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33 y1 z1 2 2

z112 22

0 0
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y1 z1 0 0

z112 22
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u u
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2 uk k
1 k u  

k k
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    u

2 k k
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    

   


    
    

   
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 (43) 

This is the final non-linear expression for strain energy that 

is consistent with the BCM. In this form, the strain energy may 

be used directly in an energy-based analysis of multi-beam 

flexure mechanisms, without the need for an additional 

constraint expression. The constraint is implicit here, and ux1, 

uy1, and θz1 are the three independent displacement variables. 

 

6. MULTI-BEAM PARALLELOGRAM FLEXURE 
ANALYSIS USING THE BCM ENERGY FORMULATION  

Beam 1

Beam n

Beam 3

w(i)

Beam i

Beam 2

X

Y

Z

1

O

fy

fx

mz

w(n)

- w(1)

Stage

 
Fig.3 Multi-Beam Parallelogram Flexure 

A multi-beam parallelogram flexure mechanism is shown 

in Fig.3. A rigid stage is connected to ground via parallel and 

identical beams, not necessarily uniform in thickness, 

numbered 1 through n. External loads fx, fy, and mz, normalized 
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as per the previously described scheme, act at point O on the 

rigid stage. A reference line, passing through O and parallel to 

the beams, is used to specify the location of the i
th

 beam via the 

geometric parameter wi measured along the positive Y axis. 

The spacing between the beams is arbitrary. The normalized 

displacements of point O, under the given loads, are denoted by 

ux, uy, and z (not shown in the figure). It is physically obvious 

that the Y direction represents a DoF, while the axial direction 

X and transverse direction  represent DoC given their high 

stiffness. 

The multi-beam parallelogram flexure module allows the 

use of thinner beams that lead to a low DoF stiffness without 

compromising DoC stiffness. This ensures a larger DoF motion 

range along with good DoC load bearing capacity [8-10]. 

Consequently, one would like to study the effect of the number 

of beams and their spacing on stiffness and error motion 

behavior. This necessitates the determination of the stage 

displacements in terms of the three externally applied loads. A 

direct analysis of this system would require the creation of Free 

Body Diagrams for each beam, explicitly identifying its end-

loads. The end load-displacement relations for each beam 

provide 3n constitutive relations, while another 3 equations are 

obtained from the load equilibrium of the stage in its displaced 

configuration. These 3(n+1) equations have to be solved 

simultaneously for the 3n unknown internal end-loads and the 

three displacements of the motion stage (ux, uy, and z). Even 

though the 3n internal end-loads are of no direct interest, they 

have to be determined in this direct analysis. Obviously, the 

complexity associated with solving 3(n+1) equations grows 

with increasing number of beams. 

Instead, an energy based approach for determining the 

load-displacement relations for the multi-beam parallelogram 

flexure turns out to be far more efficient. We first identify the 

geometric compatibility conditions in this case by expressing 

the end displacements of each beam in terms of the stage 

displacements. Since a physical understanding of the system as 

well as previous analytical results [6, 8] show that the stage 

angle z is very small (~10 
-3

), the small angle approximations 

cosz = 1 and sinz = z are well-justified. Thus, the end 

displacements for the i
th

 beam are given by: 

( ) ( ) ( ) ( )
   ;       ;    

x1 i x i z y1 i y z1 i z
u u w u u     

 

(44) 

Next, using Eq.(43), the strain energy for the i
th

 beam is 

given by: 

 
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
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   

   
   

  

 (45) 

The total strain energy of the system is simply the sum of 

the strain energies of all the beams: 

 

  

 

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

2
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x i z 11 y 12 y z 22 z

i 1

33 2 2 2 2 2

33 11 y 12 y z 22 z

0 2 0 0 2

11 y 12 y z 22 z

1
u w k u 2k u k

1 2
v k

2 1 k k u 2k u k

1
     n k u 2k u k
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 
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 
    

 


  

  



 (46) 

Applying the PVW, the variation of strain energy in 

response to virtual displacements ux, uy, and z may be 

equated to the virtual work done by external forces. In the 

resulting equation, the coefficients of each of these virtual 

displacements may be identically set to zero. This results in the 

following three relations, where the first one is used to simplify 

the subsequent two: 

 

 

  

( ) ( ) ( )

( )

( ) ( ) ( )

n
1 2 1 1 2

x 11 y 12 y z 22 z i z

i 1

33 2 2 2 2 2

33 11 y 12 y z 22 z

1 1
u k u 2k u k w

2 n
 = nk

1 k k u 2k u k

  

 



   
      

   

  


x

f  (47)

 
 ( ) ( )0 0

11 y 12 z
   n k u k  

y
f

  

(48)

 

  
 

  

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

n

i i zn
i 1 1 1

33 11 y 12 z2 2 2 2 2
i 1 33 33 11 y 12 y z 22 z
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i i z

i 12
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1
w w

n
 k k u k
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1
w w

n
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

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f

 
 For a DoF motion range uy ~ 0.1, Eq.(47) may be 

simplified by recognizing that z << uy to yield the axial 

direction displacement: 

( ) ( )1 2 2 2

x 11 y 11 y

33

1
 u     k u     k u

nk 2 n
  x x

f f
  (50) 

Clearly, the first term above is a purely elastic term arising 

from an axial stretching of the beams. The second term is a 

kinematic term, which is independent of the number of beams. 

The final term is an elastokinematic term. Similarly, Eq.(48) 

may be simplified to the following form:  

( ) ( ) ( )0 1  2 2

11  11 11 y

1
nk   + k   + k u  

n

 
  

 
y x x

f f f   (51)
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Here, the first term may be identified to be the elastic 

stiffness term and the second term is a load-stiffening term, 

which is seen to be independent of the number of beams. The 

consistency of the energy formulation, described above, 

dictates that if the elastokinematic term in captured in Eq.(50), 

the third term (second power in fx) will show up in Eq.(51). At 

this final stage, one may choose drop this second power term 

because its contribution is practically negligible for typical 

beam shapes and load ranges of interest.  

Finally, in addition to z << uy, we also take into account 

the fact that k33 is several orders of magnitude larger than all the 

other stiffness coefficients, in simplifying Eq.(49). 

Additionally, the second power term in fx are neglected and the 

special case of 
( )

n

i

i 1

w 0


  is assumed. The latter represents a 

somewhat symmetric arrangement of the beams about the 

reference axis, without diluting the generality of the above 

derivation. These assumptions and approximations lead to: 

 ( ) ( ) ( )

( )

0 1 2 2

z 12 12 y 11 yn
2

33
i

i 1

1 1
nk + k u k u

kw





 
     

 
z x

m f  (52) 

The accuracy of the above closed-form parametric 

analytical are corroborated via non-linear FEA carried out in 

ANSYS. A 7-beam parallelogram flexure is selected for this 

FEA study, with the beam locations wi arbitrarily chosen with 

respect to a reference X axis passing through the center of the 

stage. The beams considered are all initially straight and 

uniform in thickness. Each beam is 5mm in thickness, 50mm in 

height, and 250mm in the length; the latter serves to normalize 

all other displacements and length dimensions. The normalized 

values of the wi‟s selected are: – 0.6, – 0.45, – 0.25, – 0.1, 0.2, 

0.35 and 0.6. BEAM4 elements are used for meshing, with the 

consistent matrix and large displacement (NLGEOM) options 

turned on to capture all non-linearities in the problem. A 

Young‟s modulus of 210,000 N/mm
2
 and Poisson‟s ratio of 0.3 

are used assuming the material to be Steel.  

 

Fig.4 Parasitic axial displacement ux (DoC) vs. transverse 

displacement uy (DoF) 

 

Fig.5 Parasitic stage rotation θz (DoC) vs. transverse 

displacement uy (DoF) 

 

Fig.6 Axial stiffness (DoC) vs. transverse displacement uy (DoF) 

 These FEA results for the 7-beam parallelogram are in 

agreement with the BCM predictions (Eqs.(50)-(52)), within 

5% error. This example shows that once a consistent BCM 

energy formulation has been derived, the use of energy 

methods considerably reduces the mathematical complexity in 

the analysis of increasingly sophisticated flexure mechanisms. 

The above procedure is relatively independent of the number of 

beams chosen or the shapes of the individual beams, as long as 

the strain energy associated with each beam is accounted for 

correctly. 

 

7. BCM ENERGY FORMULATION FOR INITIALLY 
SLANTED AND CURVED BEAMS 

We next consider a uniform thickness beam with an 

arbitrary initial angle α and an arbitrary but constant curvature 

κ. Fig. 7 shows such a beam with generalized end-loads and 

end-displacements along the X-Y-Z co-ordinate frame. All 

physical quantities are normalized as per the scheme described 

previously. 
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Fig. 7 Initially Slanted and Curved Beam 

The initial (unloaded and undeformed) beam configuration 

is denoted by yi(x), final (loaded and deformed) beam 

configuration is given by y(x), and the beam deformation in the 

Y direction is given by uy(x), where  

( ) 2

i
y x x x

2


a  , and ( ) ( ) ( )

i y
y x y x u x    (53) 

Along the previous lines, the beam governing equation 

may be shown to be:  

    ( )

( ) ( )

x1 1

iv

y x 1 u x y y x

y x y x

       

 

z1 y1 x1

x1

m f f

f
  (54) 

It is to be noted that, for the curvature linearization 

assumption to be valid in the above equation, the initial slope α 

and the normalized curvature κ have to be of the order of 0.1 or 

less. This equation, along with boundary conditions 

       , , , 
y y y y1 y z1

u 0 0 u 0 0 u 1 u u 1       may be solved in 

closed form to determine uy(x). This solution is substituted in 

Eq.(10) to derive the following strain energy expression: 

 
   

   

 ( )

11 12 y1

y1 z1

21 22 z1

2
e

44 z1 33 x1

v v u1
v u

v v2

1
    v k u

2 2 2



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
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  

 
   

 

x1 x1

x1 x1

f f

f f
 (55) 

where k33, v11, v12, and v22 are the same as in Eq.(17) , and 

 

 
   

      

      

cosh
*

sinh cosh

where cosh sinh cosh
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The above transcendental functions may be expanded to an 

infinite series in fx1 (
2

r ), and third power and higher terms 

may be truncated to yield the following compact form:  

   
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 (56)

 

The last two terms in this strain energy expression for an 

initially slanted and curved beam are new as compared to 

Eq.(18) for an initially straight beam. Separately, the geometric 

constraint expression may be derived from  

   
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( ) ( ) ( )

e
1 u 1 ux1 x1

22

i y i
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 

 

(57)

 
to yield a closed-form expression for the axial end-

displacement ux1. The resulting expression may be expanded 

and truncated to retain up to second power terms in fx1, as 

follows: 
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 (58) 

One may notice similarities in the energy and constraints 

coefficients of Eqs. (56) and (58), respectively. The reason for 

this can be traced back to the same arguments as were provided 

for an initially straight beam in Section 4. Furthermore, setting 

α = κ = 0 reduces the above equations to those for an initially 

straight beam, as expected. It is interesting to note the absence 

of initial beam slant angle α in the strain energy expression (56)

. This can be justified based on the constraint expression (58), 

where α is present only in the kinematic terms and not in any 

elastokinematic terms. Since the kinematic terms arise purely 

from geometry and not elastic deformation, α does not show up 

in the strain energy expression. The last two terms of the 

constraint expression, which are dependent on curvature κ, 

represent elastokinematic deformation and can be seen to 

correspond with the last two terms in the strain energy 

expression.   

As in the case of an initially straight beam, both the 

constraint and strain energy expressions above have an explicit 

dependence on the axial load fx1. Employing the same 

arguments as presented at the end of Section 5, fx1 may be first 

replaced with ( )e

33 x1
k u  in these two expressions, and ( )e

x1
u  from the 

resulting constraint expression may be substituted in the 

resulting energy expression, to yield: 

 

 

2

y1

x1 y1 z1 y1 z1

z1

33

2

y1 z1

33 y1 z1 33 33

z1

3 1

u5 20
u u u  +

1 1 2 12

1 20 15
v k

2 1 1
u700 1400

1 k u k k
1 11 360 720

1400 6300

 
 a 



 




  
      

         
        

  
        
     

 (59) 
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  y1

y1 z1

z1

u12 61
      u

6 42




   
      

 

This is the final non-linear strain energy expression for an 

initially slanted and curved beam that may be used in energy 

methods, with ux1, uy1, and θz1 as the three independent 

displacement variables. It should be noted that while the above 

derivation was carried out for a uniform thickness beam, one 

may easily generalize it to any variable cross-section beam 

using the procedure outlined is Section 3. Upon such 

generalization, the numerical values of the energy and 

constraint coefficients above will be replaced by the generic 

symbols v‟s and g‟s, respectively.  

 

8. CONCLUSION 
In the past, the Beam Constraint Model (BCM) has been 

shown to be a dimensionless, generalized, closed-form, and 

parametric mathematical model that accurately captures the 

constraint characteristics of flexure mechanisms. These 

constraint characteristics are based on the stiffness and error 

motions in flexure elements and mechanisms, and are strongly 

dependent on structural non-linearities. However, the 

application of the BCM to more complex flexure mechanisms 

has proven to be tedious due to the involvement of internal 

loads, which are not directly relevant to the desired load-

displacement relations.  

The primary contribution of this paper is to provide a non-

linear strain energy formulation of the BCM so that it may be 

employed in energy methods, such as the Principle of Virtual 

Work, in efficiently deriving the non-linear load-displacement 

relations for complex flexure mechanisms. Energy methods 

preclude the involvement of internal loads, thus greatly 

reducing mathematical complexity. We believe that this ability 

to accurately and quickly analyze complex flexure mechanisms 

is a critical first step towards their constraint-based synthesis 

and optimization.  

This research was supported in part by a National Science 

Foundation grant (CMMI # 0846738).  
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