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INRODUCTION AND BACKGROUND 
In this paper, we present two new single-axis 
flexure mechanism designs that overcome the 
limitations associated with bearing direction error 
motion and bearing direction stiffness in the 
traditional parallelogram and double parallelogram 
flexure designs, respectively [1, 2].  
The parallelogram (P) flexure shown in Fig. 1 
provides low motion direction stiffness (Ky), 
relatively high bearing direction stiffness (Kx), but 
also exhibits considerable bearing direction error 
motion (Ex). Assuming the Motion Stage and 
Ground to be perfectly rigid: 
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Here, L1 is beam length, E is the Young’s Modulus, 
I1 is the second moment of area in bending, and Y 
is the motion direction displacement. The non-
dimensional coefficients ( ) ( ) ( )k k g k0 1 1

11 11 11 33, , , and  are all 
functions of the beam shape ao shown in Fig. 1 and 
the in-plane beam thickness T1, as shown in [2]:  
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When ao = 0.5, which corresponds to uniform 
thickness beams, these coefficients assume the 
values of 12, 1.2, 1/700, and 12(L1/T1)2, 
respectively. As seen in Eqs. (1) and (2), while Ky 
remains constant with increasing Y displacement, 
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Figure 1. Parallelogram (P) Flexure 

Kx gradually drops. This drop is dictated by the 
elastokinematic effect, which is quantitatively 
captured by the coefficient ( )1

11g  [1, 2]. This 
coefficient and therefore the Kx drop can be 
reduced by optimizing the beam shape via 
parameter ao. In general, it is desirable to maximize 
the bearing direction stiffness (Kx) and minimize the 
motion direction stiffness (Ky); therefore, the ratio 
Kx/Ky ratio is plotted in Fig. 2 for ao = 0.5 and 0.2, 
with L1 =1000 m, T1 = 3 m, out-of-plane thickness 
H1 = 50 m, W = 400 m, and E = 169GPa.  
The error motion given in Eq. (3) is fundamental to 
the kinematics of the P flexure design, causing the 
Motion Stage to trace a roughly parabolic trajectory 
instead of a straight line. It arises from beam arc 
length conservation, which is quantitatively 
captured by the coefficient ( )1

11k  and cannot be 
eliminated by beam shape optimization [1, 2]. This  
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Figure 2. P and DP-DP Flexure Performance 
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Figure 3. Paired Double Parallelogram (DP-DP) 

Flexure 

error motion is shown in Fig. 2, and proves to be 
undesirable in certain applications [3]. 
This error motion is entirely canceled out, in theory, 
by geometric reversal in the double parallelogram 
(DP) flexure as well as its paired version (DP-DP) 
shown in Fig. 3.  However, both the DP and DP-DP 
designs suffer from a precipitous drop in the 
bearing direction stiffness with motion direction 
displacement (Y). For the DP-DP flexure design, 
the bearing direction stiffness is given by:  
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Unlike the P flexure, here the drop in Kx is dictated 
by the relatively large kinematic coefficient ( )1

11k , 
which is fundamental to the beam and cannot be 
reduced much via beam shape optimization. 
However, the motion direction stiffness (Ky) of the 
DP-DP flexure remains the same as that of the P 
flexure, and fairly constant with Y displacement. 
With the previous dimensions and W1 = 500 m and 
W2 = 400 m, the resulting Kx/Ky ratio for the DP-DP 
flexure is also plotted in Fig. 2 for ao = 0.2 and 0.5. 
In the latter case, when going from Y = 0 to Y = 
0.01L1, the Kx stiffness drops by 80% for the DP-DP 
flexure, compared to 16% for the P flexure. 
The large drop in bearing stiffness is explained by 
the fact that the DP flexure geometry represents a 
kinematically under-constrained design [1, 2, 4-6]. 
When its Motion Stage is held fixed at a non-zero Y 
displacement, its Secondary Stage moves by Y/2 
but remains kinematically free in the motion 
direction. Therefore, when a bearing direction force 
Fx is applied on the Motion Stage, the load-
stiffening and load-softening effects in the flexure’s 
constituent beams causes the Secondary Stage to 

move additionally from its nominal Y/2 
displacement. This additional displacement of the 
Secondary Stage leads to a disparity between the 
geometric contraction of the constituent beams 
along their length, thus producing an additional 
displacement at the Motion Stage and therefore an 
additional compliance in the bearing direction. In 
the DP-DP flexure, both the Secondary Stages are 
under-constrained. Upon the application of a 
bearing force Fx, when Motion Stage is displaced 
by Y, both Secondary Stages move from their 
nominal Y/2 displacement by equal and opposite 
amounts. An analytical derivation of how this under-
constrained behavior affects the bearing direction 
stiffness is presented in [1, 2]. 
In this paper, we present two new flexure designs, 
both based on the DP-DP layout that appropriately 
constrain the redundant motion of the Secondary 
Stage, thereby improving the bearing stiffness 
significantly while maintaining Ex close to zero.  
 
PRIOR ART 
The problem of under-constraint in the DP flexure 
geometry was originally reported by Plainvaux [4] 
and Jones [5], and subsequently by Awtar [1, 2] and 
Brouwer [6] among others. While Plainevaux [4] 
recommended the use of gearing to enforce a 1:2 
displacement ratio between the Secondary Stage 
and Motion Stage of the DP flexure, Jones [6] 
accomplished this “slaving” of the Secondary Stage 
via a lever mechanism. A monolithic, flexure-based 
implementation of this lever solution has been 
implemented by German [7] and Brouwer [8]. These 
designs indeed produce the desired improvement in 
the bearing stiffness of the DP.  
A separate approach of pre-tilting or pre-bending 
the beams of a DP or DP-DP flexure mechanism 
has been common in the design of MEMS 
electrostatic actuators [3]. This design variation 
does not mitigate the drop in Kx stiffness with 
increasing Y displacement; instead, it shifts the 
location of the Kx stiffness peak in Fig. 2.  
 
CLAMPED DP-DP FLEXURE DESIGN  
In the proposed Clamped Paired Double 
Parallelogram (C-DP-DP) flexure mechanism, 
shown in Fig.4, the two Secondary Stages are 
connected to an external clamp via secondary 
parallelogram (P) flexures. The high rotational 
stiffness of these P flexures (provided by an appro- 
priate choice of beam separation W3) suppresses 
any relative motion direction displacement between 
the two Secondary Stages, forcing them to maintain 
Y/2 displacement at all times. This constrains these 
stages from responding to an FX force on the 
Motion Stage. Also, the beam length L3 and in- 
plane thickness T3 in the secondary parallelogram 
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Figure 4. Clamped Paired Double Parallelogram (C-

DP-DP) Flexure 
flexures are chosen such that they offer minimal 
resistance to the bearing direction kinematic 
displacement of the Secondary Stages. This 
ensures that the motion direction stiffness (Ky) of 
the C-DP-DP flexure remains the same as that of 
the DP-DP flexure. However, with the Secondary 
Stages appropriately constrained, the bearing 
direction stiffness shows remarkable improvement. 
It has been analytically shown that the effectiveness 
of the clamp is given by the dimensionless 
parameter , given by [9]: 

( )

W L T
k L L T


 

  
 

2 3
3 1 3

0 2 3
11 2 3 1

6  

where dimensions are as shown in Figs. 3 and 4. 
The effect of  on bearing stiffness is shown in Fig. 
5 for ao = 0.5 and other dimensions being same as 
earlier. When L3 is sufficiently long (typically within 
0.5 L1) and  is in the range of 100 or greater, the 
motion and bearing direction stiffness values for the 
C-DP-DP flexure are given by: 
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  Eq. (6) 

Thus, the bearing stiffness drop is now dictated by 
the relatively weak elastokinematic coefficient ( )1

11g , 
which can be reduced via beam shape optimization 
(ao). Kx/Ky stiffness ratio for the C-DP-DP flexure, 
with  = 575, is plotted in Fig. 5 for ao = 0.2 and 0.5. 
In the latter case, from Y = 0 to Y = 0.01L1, the Kx 
stiffness drops by only 4.5%. Ex in this design 
remains theoretically zero. 
As earlier, the above relations assume that all the 
components of the mechanism other than the beam 
flexures are perfectly rigid. Another variation of the 
C-DP-DP design, shown in Fig. 4b, offers similar 
improvement in bearing stiffness. Obviously, the C- 
DP-DP design takes up a larger foot-print, which 
should be optimized for a given application. 
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Figure. 5 C-DP-DP bearing stiffness: Analytical 

results (solid lines) and FEA (circles) 
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Figure. 6 C-DP-DP Flexure Performance 



ASYMMETRIC DP-TDP FLEXURE DESIGN 
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Figure 7. DP-TDP Flexure 
The proposed asymmetric Double Parallelogram – 
Tilted-beam Double Parallelogram (DP-TDP) 
flexure (Fig. 7) employs a non-intuitive geometric 
arrangement to kinematically constrain the 
Secondary Stage of the TDP. The geometry of the 
TDP module on the right side of Fig. 7 ensures that 
when the Y and  displacements of the Motion 
Stage are specified, there are two conflicting 
instantaneous centers of rotation (C1 and C2) 
created for its Secondary Stage. However, for this 
to happen, the  rotation of the Motion Stage has to 
be specified, ideally to zero. This is not the case for 
a TDP by itself, which exhibits finite  rotation. 
Therefore, to constrain this  rotation to 
approximately zero, a DP flexure is employed on 
the left side. Thus, the TDP and DP flexures, when 
coupled together, serve distinct but highly 
complementary roles. Even though not good with Kx 
stiffness, the DP flexure provides a high rotational 
stiffness which constrains the rotation of the 
combined Motion Stage. This rotational constraint, 
in turn, ensures that the Secondary Stage of the 
TDP is kinematically constrained such that its 
motion direction displacement remains 
approximately half that of the Motion Stage. This  
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Figure. 8 DP-TDP Flexure Performance 

provides the desired improvement in the Kx stiffness 
behavior of the overall DP-TDP flexure. With 
suitable choice of angles  and , the overall Ky 
stiffness can be maintained at the same level as the 
DP-DP flexure and the error motion Ex can be 
maintained close to zero [9]. One optimal combi-
nation of  and  is 0.11 and 0.14, respectively.  
Closed-form analysis of the DP-TDP design is 
relatively more complicated. Instead, with same 
dimensions as earlier, FEA prediction of the Kx/Ky 
ratio are provided in Fig.8 for ao = 0.2 and 0.5. In 
the latter case, from Y = 0 to Y = 0.01L1, the Kx 
stiffness drops by 45%. Ex in this design is two 
orders of magnitude less than the P flexure. The 
DP-TDP flexure covers approximately the same 
foot-print as the DP-DP flexure.  
 
RESULTS AND CONCLUSION 
All closed-form analytical results presented here 
have been validated via FEA, which was conducted 
in ANSYS using BEAM4 elements for the flexures 
and MPC184 for the rigid stages. Large 
displacement option (NLGEOM) was turned on. The 
C-DP-DP and DP-TDP flexures have been 
separately incorporated within MEMS electrostatic 
actuators, which experimentally demonstrated large 
strokes and confirmed the high bearing stiffness. A 
macro-scale experimental set-up has been 
assembled to measure the predicted stiffness 
values, which is work in progress. 
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